
Low-latency and zero-copy message passing
protocols for SCI-based clusters

Fábio A. D. de Oliveira', Rafael B. Ávila', Marcos E. Barreto', Philippe O. A. Navaux1
,

1 lnslilule of Informalics
Federal Universily of Rio Grande do Sul (UFRGS)

Pono Alegre, RS, Brazil
E-mail: {fabreu , avila , barreto , navaux}@inf . ufrgs .br

Abstract-
This pape r presents lhe design and implementation of three message

passing prolocols, whose developmenl aimed ai efficiently exploiling lhe
high-performance capabilities of lhe SCI interconnect. These protocols
are compared to lhe communication mcchanisms adoptcd by MPI im
plcmentalions ,for SCI cluslers. The performance of thc proposed pro
locols allows us to state thal they are more efficient, in tcrms of latcncy
and bandwidth, than thc correspondent communicatíon stratcgies em
ployed by cxisting MPI implementations spccllically designed for SCI
connectcd clusters.

Keywords- messagc passing, high-performance networks, clustcr
computing, SCI.

I. INTRODUCTION

In the last few years, clusters have raised as a platform for
the execution of parallel applications, which is at the same
time economically viable and technologically comparable to
massively parallel processors (MPPs). Following the defini
tion given in [Buy99], a cluster is referred to as a group of
homogeneous PCs or workstations - possibly of the SMP
kind -, interconnected by a system area network (SAN),
Iike Myrinet [Bod95], Memory Channel [Gil96] and SCI
(Scalable Coherent Interface) [1EE92] .

The SCI technology, an IEEE standard since I 992,
have turned out to be an interesting alternative as high
performance interconnect for clusters. SCI supports very Iow
latencies for short messages - 2-3 JJS - , high bandwidth
and scalability, being comparable to the Myrinet network,
undoubtedly the most widely used interconnect technology
in the cluster computing scenario. The main difference be
tween Myrinet and SCI lies on the way communication is
done. Whereas Myrinet is essentially a message-passing net
work, SCI is a hardware-supported DSM (Distributed Shared
Memory) platform, in the sense that each node of the cluster
can directly get access to memory locations residing on an
other nodes. This behavior explains the Iow-Iatency inherent
to SCI, since ali communication can be done at user levei,
through simple CPU loads and stores, without the operating
system intervention or the need of additional protocols.

As SCI is gaining acceptance in the cluster computing
community, severa! efforts have been done to offer message
passing parallel programming environments for such ar-

148

chitecture, including adaptations of established standards
Iike MP! [MPI94] and PVM [Gei94]. Nowadays, there
are two MPI implementations designed for SCI clusters:
ScaMPI [Hus99], which is commercially distributed by Scali
AS- one o f the manufacturers o f SCI network interfaces - ,
and SCI-MPICH [Wor99, WorOO], a freely available MPICH
distribution, conceived at RWTH, in Aachen, Germany.

Besides MPI, the PVM standard was also ported to SCI
clusters. SCIPVM [Zor99] and PVM-SCI [Fis97, Fis99] are
the existing implementations of PVM on top of SCI net
work. Moreover, in the scope of the SISCI project [Gia98],
CML [Her98], a low-Jevel messaging layer, has been devel
oped in order to serve as a basis for PVM and MPI imple
mentations on top of SCI clusters.

In spite of ali these efforts, most of the message pass
ing protocols that underlie the aforementioned programming
environments are unable to provide a full performance ex
ploitation of the SCI network. PVM-SCI makes no distinc
tion between sending a short or a large message; further
more, it uses interrupts for signaling the arrival of a mes
sage at a destination node. Not surprisingly, the interrupt
mechanism increases considerably the Iatency, mostly for
short messages, and the utilization of a traditional memcpy
routine for message transfers Iimits seriously the maximum
achievable bandwidth. SCIPVM, in turn, follows a some
what different approach. lt adopts two strategies for message
transfers, depending on the message size. Short messages are
sent by means o f explicit memcpy over SCI shared segments,
whereas large messages are transmitted through DMA. Nev
ertheless, SCIPVM is also based on interrupts as the mech
anism for signaling the arrival of a message and accordingly
it cannot obtain a performance near the potential of the SCI
technology. The low-level messaging layer CML, as well as
PVM-SCI and SCIPVM, lacks of more elaborated commu
nication protocols, but it is clear better than the PVM imple
mentations. CML reduces the Iatency for exchanging short
messages, avoiding the interrupt mechanism, and it transfers
large messages via DMA; despite this improvement, how
ever, CML still makes poor use o f the SCI high-performance
capabilities.

Both MPI implementations for SCI, ScaMPI and SCI
MPICH, are clearly more efficient than the other available
similar programming environments. They make use of three
different communication protocols, according to the size of
the message to be sent. This really special treatment of short
and large messages allows the MPI implementations to ob
tain lower latency and higher bandwidth. However, the em
ployed protocols sti ll bring unnecessary overheads that make
impossible to reach a even better performance.

These observations have led us to devise, propose
and implement high-performance message-passing protocols
specifically for SCI clusters, in order to reduce the overhead
to a minimum and get as much as possible from the SCI net
work. On the one hand the careful use of the SCI adapter's
stream buffers can provide very low latencies when dealing
with short messages, on the other hand a zero-copy proto
col for large messages can produce a rapid increase in the
bandwidth and approach it to the limit imposed by the SCI
hardware. In the following, we present the main ideas be
hind the proposed protocols and we compare them with the
protocols used by ScaMPI and SCI-MPICH.

The remainder of this paper is organized as follows: in
section II we present the main characteristics of SCI, ex
plaining how this interconnect technology works and what
are the implications of its behavior to the development of
message-passing protocols; section III presents the design
and implementation details o f the proposed message-passing
protocols; in section IV we evaluate the designed protocols,
by comparing them with the protocols used by the existing
MPI implementations for SCI; finally, section V brings the
authors' conclusions and final remarks.

li. RELEVANT CHARACTERISTICS OF THE SCI
NETWORK

If one is willing to find out effective solutions to the prob
lem of high-performance message-passing over SCI, it is
mandatory to completely understand some idiosyncrasies of
such network. We comment below not only the way commu
nication is carried out by SCI, but also the main issues that
must be observed before pursuing efficient communication
protocols.

A. Hardware and software platform

The presented work took place on a cluster composed of
4 SMP nodes. The SMP nodes are Dual Pentium-ITI 500
MHz, each with 256MB of RAM and Intel BX-chipset. The
SCI interconnect is done with PCI-SCI (32 bits, 33 MHz PCI
bus) network interfaces, model 0312 (distributed with Scali
Wulfkits), equipped with SCI link controller LC2 and PSB
revision D. The nodes run Linux with kemel 2.2.14 and Scali
Software Platform version 2.0.2.

149

B. SCI global address space and shared-memory segments

In the SCI network, communication relies on shared
memory segments that belong to the 64-bits SCI global ad
dress space. The most significant 16 bits of an SCI address
specify a node, and the remaining 48 bits address the local
memory within that node.

The SCI network interfaces, together with the driver, es
tablish the global address space in the following manner. For
example, a given node creates a shared segment in its physi
cal memory and exports it to the SCI network. Other nodes
can now import this segment into their UO address space;
in order to do that, each SCI adapter has an address transla
tion table which maintains the mappings between local 1/0
addresses and global SCI addresses. Further, processes run
ning on the nodes can map a created DSM segment in to their
logical address spaces.

Once these mappings have been done, the inter-node com
munication may be carried out by simple CPU loads and
stores into DSM segments mapped from remote memories.
The SCI network interfaces transparently translate UO bus
transactions into SCI transactions and vice-versa; in other
words, the communication is perforrned totally at user levei,
without the operating system intervention. The driver is only
used for the establishment o f DSM segments, not when com
munication is taking place. It is exactly this support to di
rectly accessing remote memory that is responsible for the
low latency nature of SCI and makes it a very interesting
choice as high-performance network for clusters.

However, the implementation of efficient communication
protocols for message-passing requires more than trivial
loads and stores into shared segments. In the sequei, we
point out some SCI characteristics that designers of commu
nication protocols for such architecture must keep track o f so
that the best performance can be achieved.

C. Remote reads versus remote writes

In SCI, remote reads, i.e. loads from memory addresses
residing on remote memory, are approximately ten times
slower than remote writes. The problem is that every load
operation stalls the processar until the data has arrived; in
other words, today 's processors are not able to generate non
blocking load operations from main memory. Although the
SCI adapters can be configured to perform prefetching, this is
not enough to hide the latency inherent to remote reads, be
cause the PCI-bridge - the interface between the PCI bus
and the system bus - causes a PCI transaction for every
CPU Joad operation.

Fortunately, remote writes allow a considerably more effi
cient use of the PCI-bridge, which supports write-gathering.
Such an operation amounts to write as much data as possible
into a single PCI transaction. Therefore, remote write ac
cesses reach a peak bandwidth that is ten times higher than

Block size (bytes)

Fig. 1. Latency of SCI remote read and write.

the maximum bandwidth o f remote reads.
Figure I shows the performance of SCI remote read and

remote write, in terms o f latency. Dueto the observed perfor
mance disparity, it is of paramount importance that ali data
structures handled by message-passing protocols are placed
so that write-only protocols can be devised, in the sense that
ali accesses to DSM segments are necessarily done by means
o f CPU stores and never through loads. This behavior must
be kept track of in the design of high-performance commu
nication protocols for SCI.

D. Stream buffers o f the SCJ network interface

The PCI-SCI network interface has eight write stream
buffers, each with 64 bytes 1 • When a contiguous block of
bytes is being written onto a remote address, the block is di
vided into 64-bytes sub-blocks, and each sub-block is stored
in a different stream buffer. In this way, a sub-block can be
put onto a stream buffer while another sub-block is being
sent to the SCI network, i.e., by combining the eight stream
buffers we have a pipeline with eight stages. This technique,
implemented by the SCI hardware, is referred to as stream
combining [Rya96]. As soon as a stream bufferbecomes full,
it will be readily flushed and a corresponding 64-bytes SCI
packet is put onto the network. So, a single SCI transaction
corresponds to each completely filled stream buffer. Not sur
prisingly, the maximum payload of an SCI packet is 64 bytes.

However, a partially filled stream buffer is only flushed in
three situations: by means of a command issued to the SCI
network interface- explicit flush -; when the accessed ad
dress of remote memory is not consecutive to the last one
- i.e., the last contiguous block of bytes is over -; or, fi-

I The most recent model o f adapters counts on 16 buffers with 128 bytes.

ISO

nally, if the timeout associated with the stream buffer has
expired. Furthermore, when a stream buffer not yet full is
flushed, a number of 16-bytes SCI packets will be necessary
to carry out the communication. For instance, writing 60
bytes onto a remote memory address requires four SCI trans
actions, whereas the same operation over 64 bytes will gen
erate a single SCI transaction. This behavior explains why
the Jatency curve for remote writes, shown in figure 1, drops
abruptly for amounts o f bytes multi pie of 64 bytes. Also, that
is the same reason for the sawtooth appearance o f the curve,
since the latency for transferring a given amount of data de
pends on the number of SCI packets - SCI transactions -,
and this number does not vary proportionally to the amount
of data, but is strictly related to the use of stream buffers.
An increment of 64 bytes leads to an increment of one SCI
packet, but if the amount of data is incremented by a value
not multiple of 64 bytes, more than one SCI packet will be
added.

In the Iight of these observations, it can be noted that to
take full advantage of the stream combining technique the
communication protocols should schedule remote memory
accesses in such way that as few SCI transactions as possible
are generated. The most intuitive solution is always transfer
ring an amount of bytes multiple of 64, despi te the message
size from the user point-of-view, making the number of SCI
transactions a minimum. Also, ali buffers must be aligned on
a 64-bytes boundary.

E. How to generate a write burst on the PC/ bus

Another question concerning the design of message
passing protocols for SCI is how to carry out communication.
Ata first glance, the most intuitive way isto do it by means o f
the standard memcpy routine. Nevertheless, the traditional
memcpy, present in the standard C library, is unable to gen
erate a write burst on the PCI bus. To increase the maximum
achievable bandwidth, it is necessary to find a way to gather
as much data as possible into a PCI transaction, instead of
a single word, before submitting it to the SCI adapter. By
using MMX stores rather than traditional memcpy we can
clearly increase the maximum bandwidth, as pointed out in
figure 2. Notice that there is an increase from 49.94 Mbytes/s
with conventional memcpy to 87.72 Mbytes/s with MMX
stores. In both cases, observe that the maximum bandwidth
is reached for 512 bytes, which is the point where the pipeline
composed by the eight stream buffers (8x64 = 512) has ali its
stages with data.

Ill. THE PROPOSED MESSAGE PASSING PROTOCOLS

We have designed and implemented three different pro
tocols: a minimal overhead and low-latency protocol, opti
mized for exchanging short messages; a generaJ-purpose pro
toco!; anda protocol that makes use of a zero-copy commu-

~
Q)

>.
.o
6
.t::
'õ
'i
'O
c
111
(I)

90

80

70

60

50

40

//'1(-----*·--·*····K·--·-*'··--><-----><-----><----

30

20

10

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

Block size (bytes)

Fig. 2. Bandwidth of SCI remote write.

nication technique developed in order to increase the maxi
mum achievable bandwidth for large messages. The resulting
communication kernel is being used in DECK/SCI [OliOl],
an environment for parallel programming for SCI clusters,
originally developed for Myrinet ones [BarOO], that provides
communication and multiprogramming services. DECK/SCI
offers the abstractions o f mail boxes and messages for com
munication, besides threads and semaphores for multipro
gramming. Each thread can create one or more mail boxes to
receive messages from threads residing on another nodes.

Although each protocol has its own specialization and pe
culiarities, ali of them, in order to obtain the best perfor
mance, were implemented taking into account the SCI char
acteristics analyzed in the previous section. Additionally, ali
protocols avoid using interrupts for signalling the arrival o f a
message at a destination node; instead, the message-passing
is based on polling, so that the latency can be kept low. Ba
sically, the three developed protocols share a couple of char
acteristics, namely: polling-based message reception; write
only communication; use of MMX instructions for remote
writes; transfer of blocks of bytes whose size is multi pie of
64, in spite of the message length from the user point-of
view. Moreover, ali protocols are thread-safe and thread
aware.

A. "Protocol I ": short messages

The Jatency for transferring short messages is particularly
affected by unavoidable extra overheads like signalling of
message arrival and ftow control schemes. However, these
overheads are of paramount importance to the correct oper
ation of a message-passing protocol. For this reason, short
message transfers are required to receive special attention
from a message-passing library that is willing to ensure very

151

low Jatency.
Hence, we have devised a special mechanism that opti

mizes the use of SCI network. This short messages oriented
protocol utilizes a single 64-bytes SCI packet to send a mes
sage. The last byte of the packet payload contains an iden
tifier that allows the receiver to get notified about the mes
sage arrival. In this way, a single remote write is sufficient
to transmit the message and notify the receiver. This pro
posed scheme was in much inspired by the valid ftag algo
rithm [Oma97].

Another advantage of the "pro toco I 1" is the fact that there
is no need to explicitly ftush the stream buffers, since it al
ways sends 64 bytes, which is important to keep latency low.
The message occupies the first 62 bytes of the packet; the
63th byte contains a sequence number, used for message or
dering purposes; and the 64th byte is the message identifier
used to notify the receiver, as already commented. Thus, the
"protocol I" is suitable to messages whose size ranges from
O to 62 bytes.

As the message and its corresponding signalling flag are
sent into a single SCI packet, it is guaranteed that the packet
data arrives exactly in the order it was sent and, since the last
byte of the packet is used for notification, when the receiver
gets notified the message certainly was completely received.

For the correct work o f "protocol I", every ma i! box cre
ated during the execution of a parallel application reserves,
within its SCI shared segment, a separate ring buffer to each
process. Each position of a ring buffer maintains 64 bytes,
used to store the packet data. Whenever a thread wants to
send a short message - O to 62 bytes - to a given mail box,
it must send a 64-bytes packet - based on the structure com
mented above - to the current write position related to the
ring buffer reserved to the node which it is running on. After
the message transfer, the sender thread, by means of a mod
ulo operation, updates its write position as well as the iden
tifier and sequence number of the message to be sent next
time the communication primitive is invoked on the related
mail box.

The receiver thread, in turn, polls the last byte o f the cur
rent read position of each ring buffer, until a message has
arrived. When the value stored into the last byte of the cur
rent read position of a given ring buffer equals to the next
expected message identifier for that ring buffer, the receiver
thread copies. the message to the user buffer in local mem
ory, if the sequence number also matches; at the end, it up
dates the current read position, as well as the next expected
sequence number and message identifier for the appropriate
ring buffer, by means of the same modulo operation as that
performed by the sender thread.

Additionally, the receiver thread informs the sender about
the current read position, by writing it into a predefined ad
dress within a previously established shared segment, used

for control purposes, owned by the sender, so that the sender
can avoid the ring buffer overrun when sending messages.
This is the way flow control is done.

8. "Protoco/2 ": general-purpose mechanism

The "protoco12" is a more generic message-passing mech
anism which can virtually deal with messages of arbitrary
sizes. This protocol manages buffers that can store messages
greater than those handled by "protocol I". Again, every
mail box reserves a different buffer to each process. The
buffers o f "protocol 2", in contrast to that o f "protocol l ",
are not logically divided into pieces of a given size; rather,
the messages are contiguously copied into them. Related to
each buffer, there is a Iocation where the mail box owner
expects a control packet that indicates a message have been
transferred to the corresponding buffer.

lnternally, the messages handled by "protocol 2" are com
posed of a header, that contains the message size, followed
by the data. To send a message to a mail box, the sender
thread first writes it into the buffer reserved to the process
which the thread is running on. Before notify the receiver, it
is mandatory to flush the SCI adapter's stream buffers, oth
erwise the signalling packet could be received while some
SCI packets of the message are still in transit. This situation
could take place because SCI does not ensure packet order
ing. In order to overcome this undesirable behavior, "proto
col 2" flushes the SCI adapter's stream buffers, waiting for
the completion of ali outstanding SCI transactions, and only
after doing so the sender thread can safely notify the receiver
by sending a 64-bytes control packet to the appropriate loca
tion within the shared segment of the mail box. Finally, the
sender updates the current write position related to the "pro
toco! 2" buffer reserved to the process which it is running
on, as well as the sequence number and the identifier of the
message to be sent next by means o f "protocol 2".

In order to get a message from a mail box, the receiver
thread polls ali addresses where control packets are expected
to be sent to. When a control packet arrives, the receiver
thread reads from the proper buffer the message header,
pointed by the current read position related to that buffer.
After reading the size of the message, its data is copied to
the user buffer present in local memory. Then, the receiver
updates the current read position and the next expected se
quence number and message identifier associated with the
recently used buffer. Similarly to "protocol 1 ", the receiver
thread informs the sender about its current read position, for
flow control purposes.

Note that this flow control scheme, employed in both pro
tocols, does not require that the sender waits for the infor
mation concerning the receiver read position, because com
munication is done through a remote write operation into
a shared segment previously created and exported by the

!52

sender. Each process, during initialization, creates its own
control segment and maps into its logical address space the
control segments o f ali processes.

C. "Protoco/3 ": zero-copy communication

Although "protocol 2" may be used for exchanging mes
sages of virtually any size, it limits seriously the maximum
achievable bandwidth. The disadvantage of "protocol 2" is
the fact that it only initiates moving the message from shared
to local memory after the message h as been completely trans
rnitted. Specially for large messages, this constraint results
in poor utilization of SCI bandwidth and cannot be tolerated
when the main objective is to accomplish high-performance
comrnunkation.

The most efficient communication libraries for SCI clus
ters developed so far, SCI-MPICH and ScaMPl, have two
different protocols equivalent to protocols I and 2. Further,
both MPI implementations adopt the same solution to the
relative poor performance of their eager protocol - corre
sponding to our "protocol 2". In order to increase the band
width, SCI-MPICH and ScaMPI implement a third protocol,
making use of a rendez-vous mechanism, the main idea of
which is to interleave the message transmission and the copy
of the message to the user buffer in local memory. In this
way, through a handshaking scheme, the receiver is allowed
to copy the message from shared to local memory while the
message is still being sent.

Indeed, the mentioned rendez-vous protocol is effective in
increasing the maximum achievable bandwidth. Neverthe
less, it still relies on the message copy from shared to local
memory, due to the semantics of the MPI receive primitives
which impose that an user-allocated buffer be passed as ar
gument to them.

In DECK/SCI API - the programming interface on top
of the proposed protocols -, the message abstraction exists
explicitly, being represented by a message object. As the pro
grammer is required to utilize specific DECK/SCI primitives
to manipulate messages - creation, packing, unpacking, etc.
- and the message buffer is under control of DECK/SCI,
it was possible to devise a zero-copy protocol to really in
crease the maximum bandwidth beyond the values obtained
by MPI implementations and near to SCI limits. Of course,
even though the message buffer is internally managed by
DECK/SCI, the programmer can get its address and use it
normaHy.

Following this idea, "protocol 3" is a zero-copy commu
nication scheme, in the sense that there is no extra copy
besides the message transmission. The message is directly
sent to the user buffer, which resides on SCI shared mem
ory. When the programmer creates a message, depending
on the size passed as argument DECK/SCI will allocate the
buffer on local or shared memory. The threshold to the tran-

Sender Receiver

REQUEST ADDRESS

--
BUFFER ADDRESS -

DATA MESSAGE

END_OF _PROTOCOL

--
Fig. 3. The proposed zero-copy message passing protocol.

sition from protocol 2 to 3 is configurable by changing the
value ofDECK...MSG..BUF ..LIMIT. Usually, however, this pa
rameter can remain untouched and the user does even not
need to know about the multiple communication protocols o f
DECK/SCI.

As depicted in figure 3, "protocol 3" requires the exchange
of some control messages before the actuaJ data transfer.
FirstJy, the sender thread sends a control message request
ing the address of the user buffer from the receiver. By do
ing polling, the receiver thread gets the request message and
then informs the sender about the address which the message
is supposed to be sent to. After that, the sender effectively
sends the data message to the appropriate address and flush
the SCI adapter 's stream buffers, waiting for the completion
of a li outstanding SCI transactions. Finally, the sender sig
nals the end o f zero-copy communication by transmitting the
last control message. Under the reception of such control
message, the receiver can safely retum from the communi
cation primitive, as it is guaranteed that the data message
was complete ly transmitted. Again, notice that the signalling
message was sent after the flush of stream buffers, which is
necessary to cope with reordering of SCI packets, as aJready
stated.

It should be noted that the mail box abstraction remains
valid, even when the zero-copy protocol is used. From the
user point-of-view, messages are just posted to and retrieved
from mail boxes.

IV. EVALUATION OF THE PROPOSED PROTOCOLS

ln this section, the performance o f protocols I , 2 and 3 is
analyzed in terms of latency and bandwidth. All measures
were done through a traditional ping-pong algorithm, with
I 000 repetitions for each message size.

Figure 4 shows the latency o f the designed protocols. The
curves allow one to verify the specialization of each proto-

30

~ 25
(/)

2..

g 20 .,
§ 15

153

10

5 .. .

2 4 8 16 32 64 128 256 512 1k 2k

Message size (bytes)

Fig. 4. Latency of protocols I, 2 and 3.

col. As can be seen, the latency of "protocol I", suitable for
short messages, is kept below 5 f.LS - 4.66 J..tS. When the
"protocol 2" takes place, the latency is abruptly increased to
8.56 J..tS. This was expected, since "protocol 2" sends an ad
ditional SCI packet for signaling the message transfer at the
destination node. In contrast, "protocol I" always sends only
one 64-byte SCI packet, which carries the message itself and
the signaling ftag, as stated before.

The latency of "protocol 3" begins with 9.82 J.LS. The
overhead caused by the handshaking between sender and re
ceiver has more impact in shorter messages, from 64 to I 024
bytes. From this point on, however, the latency of "proto
col 3" is lower than that of "protocol 2", as the extra copy
avoidance compensates the synchronization between sender
and receiver. From the performance perspective, messages
o f I 024 bytes represent the ideal threshold for the transition
from "protocol 2" to "protocol 3" .

Figure 5 exhibits the bandwidth reached by each proto
col. The curves of protocols 2 and 3 enforce that the zero
copy mechanism is really necessary to increase the peak
bandwidth near to the SCI limit. "Protocol 3" achieves
84. 12 Mbytes/s, whereas "protocol 2" is limited to only
62.54 Mbytes/s. This disparity lies on the fact that "proto
col 2" waits for the complete message transfer before copy
ing the message to the user buffer; in contrast, "protocol 3"
directly sends the message to the user buffer.

Figures 4 and 5 show that multi-protocol solutions are re
aH y necessary when developing high-performance communi
cation libraries for SCI, whose ma in aim is to obtain very low
latencies for short messages and high bandwidth for large
ones. This cannot be accomplished by just one protocol.

90

80

70

.. ..x '*--><--*--><--*·-)(--

/' •• :x·

,._·

~ 60
Q)

>.
.o 50
~
.J:
'õ
-~
"O c:

"' CD

40

30

20

10

o
1 2 4 8 16 32 64 256 1k 4k 16k 64k 256k 1M 4M

Message slze (bytes)

Fig. 5. Bandwidth of protocols I. 2 and 3.

A. Comparing the proposed protoco/s with ScaMPI and SCI
MPICH

We have a lso compared, in terms of latency and band
width, protocols I , 2 and 3 with the corresponding protocols
used by the MPI implementations for SCI. Figures 6 and 7
present the latency for the three communication libraries.

40r,=~~~;=====r------r------~-----r------Tl

-1
protocol 1 I

ScaMPI ---x---
35 SCI-MPICH ~-

30

~ 25
(I)

2. : .
g 20 .,..
2
~ 15 "r· .. i· .

10 t~~~~~X~~~~~~~~YX~X~y~~y~K*~~XX~~r*~J
, J()(~~~.t)(~ .. ~..,;)f)l(;;;..,..t/;-li.ff f'dfi'Ji&hfl'(1(fl(-t'i.J/r;_,,.II JII(#H'

OL------L-----J------~-----L----~~----~

o 10 20 30 40 50 60

Message size (bytes)

Fig. 6. Latcncy for short mcssages.

In figure 6, the latency for short messages is shown. It can
be seen that the "protocol I" is clearly more efficient than the
equivalent protocols of the MPI implementations. While the
minimallatency obtained by "protocol I" is 4.66 JLS, ScaMPI
and SCI-MPICH got, respectively, 6.63 and 7.26J.LS. More
over, our communication kernel is the only one to keep the
latency constant for messages ranging from O to 62 bytes.

SOr.===~~~==~r---.----,---,,---,---~
protocol 2 --+-

45 protocol 3 ---><---
ScaMPI ··· "<···

40 ~~S~C~I~-M~P~I~C~H--~o~

35

íi) 30
2.
g 25 o
Q)

§ 20
.X ,,'

ó _____ : ... ---- . ----
,.

15 / o

10;. ,
o o

5 ~----.,..--------

O L----L----L----L----L----L----L----L--~
8 16 32 64 128 256 512 1k 2k

Message size (bytes)

Fig. 7. Latcncy obtained by our protocols, SCI-MPICH and ScaMPI.

These results confirm that the devised mechanisms for "pro
toco! I" make a really efficient use of the low latency capa
bilities o f the SCI technology.

Figure 7 shows the tendency o f the latency curves for pro
tocols 2 and 3 and also for the implementations of MPI, con
sidering messages up to 2048 bytes. Both proposed protocols
exhibit lower latency than that of the eager protocol of SCI
MPICH and ScaMPI, as can be seen.

Finally, figure 8 points out the bandwidth. One can notice
that the maximum achievable bandwidth by the implemen
tations of MPI is lower than that reached by our communi
cation library. With zero-copy, we can get 84 . 12 Mbytes/s,
whereas ScaMPI and SCI-MPICH obtained, respectively,
78.35 and 73.80 Mbytes/s with the rendez-vous protocol .
"Protocol 2" is also more efficient than the equivalent ea
ger protocol of the MPis, which is adopted for messages up
to 32 kbytes.

In short, we can say that ali protocols designed and imple
mented in this work have presented better performance than
the equivalent short, eager and rendez-vous used by ScaMPI
and SCI-MPICH, according to the ping-pong measures we
have done.

V. CONCLUDING REMARKS

As a lready commented, a li protocols designed in this
work are being currently used by our communication library,
named DECK/SCI. From the performance evaluation we
have done, it can be considered that DECK/SCI may repre
sent an interesting alte rnative for programming SCI clusters.
The comparison with existing MPI implementations, which
are the most efficient communication libraries for SCI devel
oped so far, has revealed that our programming environment
is able to achieve better latency and bandwidth than the men-

/ 54

90

80

70

.><)(--·>e - .. '*---* K•)(·--><- --·

_,x:··"''- ··~···: ···.
.l· o ... 6-··a·· 1!1

~ 60

'
.i o Q)

>-
.o 50
~

·"'· ."i'. ·

r;
-õ .1f
-o c

"' 11)

40

30

20

10 li!.

o/
/

/o/
:(

/ ...
,/ 0::

.-o .. ·i
• >(

512 2k Sk 32k
Message size (bytes)

128k 512k 2M

Fig. 8. Bandwidth obtained by the proposed protocols, SCI-MPICH and
ScaMPI.

tioned implementations.

SM

The gains obtained by "pro toco I I", in terms o f minimal
latency, are really expressive. "Protocol I " can reduce the
mini mal latency of ScaMPI and SCI-MPICH by 29.71 % and
35.77% respectively. Also, the proposed zero-copy protocol
achieves a peak bandwidth higher than that of the rendez
vous mechanism employed by the MPI implementations, ob
taining 95.9 % of the maximum bandwidth supported by the
SCI network, which is 87.7 1 Mbytes/s in ourcluster. ScaMPI
and SCI-MPICH have shown only 89.3 and 84.1 % respec
tively.

R EFERENCES

[BarOO] BARRETO, M. et ai. lmplementation ofthe DECK environment
with BIP. In: MYRINET USER GROUP CONFERENCE, I.,
2000. Lyon. France. Proceedings... Lyon: I NR IA Rocquen
court, 2000. p.82-88.

[Bod95] BODEN. N. et ai. Myrinet: a gigabit-per-second local-area net
work. IEEE Micro, Los Alamitos, v. l5, n. 1, p.29- 36, Feb. 1995.

[Buy99] BUYYA, Rajkumar (Ed.). High performance cluster comput
ing: architectures and systems. Upper Saddle River: Prentice
Hall PTR, 1999. 849p.

[Fis97] FISCHER, M. ; SIMON, J. Embcdding SCI into PVM. In: EU
ROPEAN PVM/MPI USERS GROUP MEETING, 4 .. 1997,
Cracow. Proceedings ... Berlin: Springer-Verlag, 1997. p. l77-
184. (Lecture Notes in Compute r Science, v. l332).

[Fis99] FISCHER. Markus; REINEFELD, Alexander. PVM for SCI
clusters. In : HELLWAGNER. Hermann: REINEFELD. Alexan
der (Eds.). SCI: Scalable Coherent Interface: architecture
and software for high-performance compute clusters. Berlin:
Springer, 1999. p.239-248. (Lecture Notes in Computer Science,
v.l734).

[Gei94] GEIST, AI et ai. PVM: parallel virtual machine. Cambridge.
USA: MIT Press. 1994.

[Gia981 G IACOMIN1, F. et ai. Low-level SCI software requirements,
a nalysis and predesign. (S .I.]: ESPRIT Project 23 I 74 - Soft
ware 1nfrastructure for SCI (SISCI), I 998.

155

(Gil961 G!LLET, R. Memory Channel Network for PC!. IEEE Micro,
v. l6, n. l. p.12-18, Feb. 1996 .

[Hei991 HELLWAGNER, Hermann; REINEFELD, A1exander (Eds.).
SCI: Scalable Coherent Interface: architecture and software
for high-performance compute clusters. Berlin: Springer. 1999.
490p. (Lecture Notes in Compu ter Scie nce, v. l734).

[Her98) HERLAND, B. G.; EBERL, M.; HELLWAGNER, H. A com
mon messaging layer for MPI and PVM over SCI. In: HIGH
PERFORMANCE COMPUTING ANO NETWORKING, 1998.
Amsterdam. Proceedings... Berlin: Springer-Verlag. 1998.
p.576-587. (Lecture Notes in Computer Science, v. l401).

[Hus99] HUSE. L. P. et ai. ScaMPI-design and implementation. In:
HELLWAGNER. Hem1ann: REINEFELD, Alexander (Eds.).
SCI: Scalable Coherent Interface: architecture and software
for high-performance compute clusters. Berlin: Springer. 1999 .
p.249-261. (Lecture Notes in Computer Science, v. l734).

[IEE92] INSTITUTE OF ELECTRICAL ANO ELECTRONIC EN
GINEERS. IEEE standard for scalable coherent interface
(SCI). New York: (s.n. j. 1992. IEEE 1596-1992.

(MP194] MPI FORUM. The MPI message passing interface standard.
Knoxville: University of Tennessee. 1994.

(OiiO I] OLIVEIRA, Fábio Abreu Dias de. Uma biblioteca para
programação paralela por troca de mensagens de clusters
baseados na tecnologia SCI. Porto Alegre: PPGC da UFRGS,
2001. Master 's Thesis. (In Portuguese).

(Oma97] OMANG. Knut. Synchronization support in 1/0 adapter based
SCI.In: INTERNATIONAL WORKSHOP ON COMMUNICA
T ION ANO ARCHITECTURAL SUPPORT FOR NETWORK
BASED PARALLEL COMPUTING. 1.. 1997. San Antonio.
Texas. Proceedings... Berlin: Springer-Verlag. 1997. p. l58-
172. (Lecture Notes in Compu ter Science, v. ll99).

(Rya96] RYAN. Stein Jorgen; GJESSING, Stein; LIAAEN, Marius.
Cluster cornrnunication using a PC I to SCI interface. In:
INTERNATIONAL CONFERENCE ON PARALLEL ANO
DISTRIBUTED COMPUTING ANO SYSTEMS. 8 .. 1996.
Chicago. Proceedings . . . [S. I.: s.n.]. 1996.

[Wor99] WORRINGEN. Joachim: BEMMERL. Thornas. MPICH for
SCI-connected clusters. In: SCI-EUROPE. 1999, Toulouse.
France. Proccedings ... [S.I.: s.n.]. 1999. p.3- 11.

(WorOO) WORRINGEN, Joachirn. SCI-MPICH: the second generation.
In: SCI EUROPE, 3., 2000, Munich, Germany. Proceedings ...
[S.I.: s.n.], 2000. p. I0-20. Organizado como conference stream
do Euro-Par'2000.

[Zor99] ZORAJA, Ivan; HELLWAGNER, Herrmann; SUNDERAM.
Vaidy. SCIPVM: parallel distributed cornputing on SCI work
station clusters. Concurrency: Practice and Experience. v. I I .
n.l3, p. l2 1- 138, Mar. 1999.

