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Abstract-
The SCI standard was proposcd in 1992 to be a high performance 

bus for proccssor intcrconnection in multicomputers. With thc grow­
ing popularity of clustcr architcctures, the standard was implcmcnted 
in PCI cards and ofTcrcd as a flexible an ellic.icnt alternative for the 
construction of parallel systems. After some initial dilliculties, likc in­
compatibilíties with various PCI chipscts and the absence of drivcrs for 
some platrorms, the SCl-based products are alrcady mature but thc cx­
pccted brcakthrough is not yet rcached. In this paper we prescnl our 
expericncc in lhe conslruction and utilisalion of SCI cluslers and in lhe 
devclopment of supporl lools and applications for these systems. We 
~resen_t a survey of lhe obla ined results ovcr lhe last ycars in this arca, 
mcludmg our own research, and make an analysis on how the sla ndard 
and its implemenlations are performing today. 
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l. INTRODUCTION 

Since the adoption of cluster-based architectures as execu­
tion platforms for parallel and distributed applications, s tart­
ing in the middle of the 90's, the development of communi­
cation protocols and programming environments has been a 
common activity for many academic and industria l research 
groups, whose goal is to efficiently exploit the resources pro­
vided by the underlying communication networks used in 
lhis kind of architecture. The most popular example of such 
communication ne tworks today is Myrinet [BOD 95]. 

Fro m this effort, a great number of low-level communica­
tion protocols such as BIP [PRY 98] and G M [GM 99] have 
a rised with the goal of providing a set of primitives to allow 
the user to specify the communication behaviour of his ap­
plication, taking advantage of the low latency and high band­
width rates provided by the communication networks. Be­
sides, severa) implementations o f the MPI standard [MP I 94] 
on top o f these communication protocols h ave been done. 

SCI-Scalable Coherent Interface [IEE 92]-differs from 
the other communication technologies applied to cluste r 
computing due to its shared memory facilities. This feature 
stimulates a high-level communication abstraction, based on 
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shared segments and remote load/store operations; at the 
same time, it imposes some constraints on the communica­
tion protoco l as well as the applications regarding the man­
agement o f these shared segments and a lso message passing. 

In this paper we present an overview of the SCI com­
munication standard, regarding its features, constraints and 
low-level APis. Besides, we discuss its utilisation on the de­
velopment of paralle l programming environments and some 
communication protocols with message passing and DSM 
semantics currently available. 

The results presented in lhis paper 1 have been obtained 
from over 5 years of study and utilisation of SCI as a com­
munication technology for the clusters available to our re­
search groups [Á VI 99, Á VI 00] : lhe GPPD (Paralle l and 
Distributed Processing Group) from UFRGS, the CPAD­
HP (High Performance Computing Centre) from PUCRS 
and the PC2 (Paderborn Centre for Para llel Computing) 
from the University o f Paderborn, in Germany. The three 
groups are pioneers in the use o f SCI within the Brazil­
ian and German communities, having developed low-level 
software, programming environments and published severa) 
papers regarding this subject. The three Universities main­
tain, since 1999, an International Cooperation Projec t within 
the CAPES/DAAD programme on the development of tools 
for SCI. 

In this manner, our goal with this paper is to bring to the 
scientific community our knowledge using this architecture 
to lhe execution of para llel and distributed applications and 
to the development of programming environments, in which 
questions related to the management of shared segments and 
message passing must be addressed i f the goal is to provide 
the user with high performance and transparency. 

This paper is organised as follows: Section li presents an 

1 Results for DECK have been measured at the GPPDIUFRGS· resuhs 
for Yampi have bee n mcasured at the CPAD-HP/PUCRS ' 



overview on the SCI technology and its main features; Sec­
tion Ill brings a survey on many different tools available for 
SCI programming; in Section IV we present the software de­
veloped by ou r groups and some of the obtained results up to 
now; and finally Section V brings the authors' final consid­
erations. 

11. THE SCI INTERCONNECT 

The Scalable Coherent Interface (SCI) is an IEEE stan­
dard that provides computer-bus-like services to a set of 
nodes via fast unidirectional links connected in a ring. SCI 
uses a point-to-point interface between the network nodes, 
which allows severa( topologies like rings, meshes, multi­
stage networks and crossbars to be chosen. The ring topol­
ogy, however, is especially suitable since it is very simple 
and inexpensive to realize. The SCI standard specifies the 
supported interface to run at 500MHz over 16 parallel sig­
nals yielding a raw point-to-point throughput of I GB/s. 

An interesting characteristic of available SCI cards is the 
native 2- and 3-d support; Figure I shows the topology of 
PSC-64, a 64-processor SCI cluster available at Paderbom. 
Notice that no switch devices are needed since the 2-d cards 
allow the construction of mesh-like topologies. In the case 
of PSC-64, there are 32 bi-processor machines connected 
in a 4 x 8 mesh, as can be seen on the Figure. Paderbom 
sti ll owns a 192-processor SCI cluster (PSC-192), forming a 
8x 12 mesh. 

SCI inserts a third type in between the Loosely coupled and 
the tightly coupled multiprocessor systems: the snugly cou­
pled system [DOL 00], characterising the cluster as a non­
uniform memory access machine (NUMA). This type of in­
terconnection network combines the benefits o f shared mem­
ory systems with the reliability advantages of the Ioosely 
coupled systems. In a snugly coupled system, each node has 
a private copy of the operating system, whereas the applica­
tion is distributed across the nodes. Node failures do not halt 
the entire system and management software can cope with 
the interruption. At the same time, the application continues 
to have access on shared memory spread across the nodes. 

A SCI cluster therefore does not only provide the facilities 
for message passing communication, but also enables parai­
lei programs to use shared memory segments. Unfortunately, 
the PCI-based implementation has, unlike the original IEEE 
standard, a major drawback: the idea of the standard is to 
have a cache coherent system which spreads over the whole 
cluster onto many nodes; the caching of remote memory is, 
however, not possible for PCI-based systems, since transac­
tions on the main bus of a local node are not visible on the 
PCI bus. Thus, a PCI-based card like the Dolphin SCI card 
used in this paper cannot take part in the coherence protocol 
on the main bus. 
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lll. AVAILABLE WORK 

In this Section we present a panorama of the available 
work on programming APis for SCI. We have divided this 
presentation in three main groups: APis following a shared­
memory model, APis following message-passing and low­
Jevel APis primarily intended for support. 

A. Shared memory 

Since the whole idea of SCI is to provide shared memory, 
it is natural to think of programming environments which 
exploit this approach. The main differences presented by 
such environments lie on the transparency levei in relation 
to shared memory, as shall be seen next. 

A.l SMI 

SMI (Shared Memory Interface) [DOR 99] is a program­
ming library for SCI developed at the RWTH, Aachen, Ger­
many, which provides primitives for the establishment and 
sharing of distributed memory segments. The application 
runs over a given number o f nodes, based on a SPMD model. 

Processes in SMI communicate with each other by map­
ping remote memory segments created on other nodes. 
Shared segments compose shared regions. Three policies for 
the placement of a region are available: undivided, which 
means that a single segment composes the region, being en­
tirely located in a single node; blocked, in which a region 
is composed of multiple segments, which in turn are uni­
formly distributed among the nodes of the application; and 
customised, in which the user if free to decide how many 
segments compose a region and where they should be placed. 

An interesting characteristic of SMI is that the user, for 
performance purposes, may decide to replicate a given seg­
ment throughout the nodes, thus avoiding remote accesses. 
Of course, it is his responsibility to guarantee that distinct 
nodes do not modify the same area, otherwise consistency 
problems may arise. Later, he may decide to turn off the 
replication mechanism, in which case SMI merges the mod­
ifications into a single copy. 

For synchronisation, SMI offers barriers, mutexes and 
progress counters. The first two follow the conventional se­
mantics; progress counters may be used by a process to in­
dicate its computational progress during execution, so that 
other processes can be aware o f this information. 

A.2 SCI-VM 

SMI follows the approach naturally enforced by SCI, 
namely that of shared-memory programmjng. But still the 
programmer is forced into executing tasks not common to 
ordinary shared-memory programming, such as the explicit 
creation of a segment to be shared. The keyword in this is­
sue is transparency; and this is the goal of SCI-VM, or SCI 



Fig. I : Example o f a 2-d sei cluster. 

Virtual Machine [SeH 99). This project is being carried out 
in Munich, Gerrnany, and consists on lhe establishment of 
a global logical address space over ali the nodes of a Sei 
cluster; in this way, it should be possible to achieve com­
pletely transparent shared memory, and a Sei cluster could 
be treated as a single SMP computer. In fact, lhe group is 
also working on a Pthread-like environment, named SISCI­
Pthreads, to run globally over the Sei nodes. 

B. Message passing 

Being a high-performance communication technology, it 
is natural that standard message-passing environments have 
also been implemented for SeJ-based parallel machines. 
This Section presents a representative set of such environ­
ments. 

B. l ScaMPI 

ScaMPI [HUS 99) is a MPI implementation on top of 
Sei developed by Scali AS, a Norwegian company pioneer 
in commercial high-performance systems based on Sei. A 
number of goals have been set in the implementation of 
ScaMPr: scalability, low latency, high bandwidth, fault toler­
ance, ftexibility of transport medium (e.g. to easily use sys­
tem memory instead of ser for local communication), user 
friendliness and lhread-safeness. Ali of lhese are said to be 
fu lly achieved by Scali, most of which could also be verified 
by our groups. 

Some specific features of ScaMPI are needed in order 
to carry out the desired advantages; for example, a check­
pointing mechanism is used to guarantee the atomicity of ali 
ser data transfers. User-friendliness is a result of the tool 
mpimon, a command-line application used to start and con­
trol the execution of a ScaMPr application. While the tradi­
tional mpirun is more intuitive, the use of mpimon allows 
for additional execution parameters as well as the integration 
with Scali's management software. 

In terms of performance, ScaMPI is able to deliver 
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9.4JLS latency and 76MB/s bandwidth between two Pen­
tium li 450MHz nodes, which is considered quite satisfac­
tory. Besides, ScaMPI is thread-safe, so the application can 
benefit from SMP machines by making use of additional 
threads o f control. 

8.2 Sei-MPieH 

The same research group from Aachen responsible 
for lhe implementation of SMI has also developed Sei­
MPieH [WOR 00). Normally, MPieH only demands the 
adaptation of its ADI (Abstract Device Interface) in order to 
accomplish a new port; thus, in the case of Sei-MPieH, an 
ADI for SMI has been implemented. 

To achieve good performance, sei-MPieH makes use of 
three different message exchange protocols, based on the 
payload size: short, eager and rendez-vous. This enables the 
obtention o f around 7 J.LS latency, when the pro toco! short is 
in action, and over 73M8/s bandwidth with the rendez-vous 
protocol. 

8.3 PVM-SeJ 

One o f the two available implementations o f PVM for Sei 
is PVM-Sei [FIS 99). A differential characteristic ofthis im­
plementation is that it provides two complementary commu­
nication mechanisms: conventional TeP/UDP protocols for 
sending messages from one task to another via the PVM dae­
mons, and a ad-lwc protocol which makes use of Sei when 
the PvmRouteDirec t option is set. 

The architecture o f PVM-Sei h as been kept modular to al­
low for easy adaptation to other technologies (e.g. Myrinet). 
lt initially tests for the availability of interconnect adapters; 
i f Sei is not present, the application is run on the traditional 
(usually present) Ethernet connection. 

This implementation is one of the few lhat use the Sei 
interrupt mechanism for delivery of messages. As a re­
sult, since lhis mechanism is too slow when compared to 
Sel's low latency, the performance of PVM-Sei is still poor. 



Raw measures indicate a minimal latency of about 42{ts, 
and a peak bandwidth of 14MB/s. The use of ordinary 
memcpy ( ) instead of MMX or ftoating-point instructions 
also contributes for these figures. 

B.4 SCIPVM 

Another PVM implementation for SCI is 
SCIPVM [ZOR 99]. To the difference of the previously 
presented implementation, SCIPVM offers a non-intrusive 
approach to using the SCI network: two new functions 
pvm.scisend () and pvm.scirecv () have been added, 
which expect the same arguments as those o f PVM's original 
functions. These functions take effect when direct routing is 
used. 

SCIPVM has been originally designed for SCI interfaces 
available for Suo workstations, which do not include the 
stream buffers present on PCI interfaces, so a direct compar­
ison with the other environments would not be appropriate. 
Like PVM-SCI, this implementation also makes use ofhard­
ware interrupts to signal the completion of UO operations, 
which is too slow to result in good performance. 

C. Aclive messages 

Active Messages [EIC 92] is a low-latency communica­
tion mechanism. Each active message contains the address 
of a handler function which is executed on the receiving pro­
cessar upon arrival of the message. Message handlers are 
intended to be short and execute quickly. Under the AM 
model, messages travei from user space (the send instruc­
tion) directly to user space (the message handler), avoiding 
any form of buffer management and synchronisation usu­
ally encountered in the traditional send/recv model. As a 
result, AM can achieve an order of magnitude performance 
improvement over more traditional communication mecha­
nisms. 

The SCI AM [IBE 96] is based on the Remote Queue Ab­
straction. Sending processors just enqueue their message on 
the remote queue. Ouring a poli, the receiving processor just 
checks whether something has been enqueued. If so, it re­
moves the message from the queue and processes it. This 
remote queue abstraction can be built easily on traditional 
message-passing network interfaces, because they have a sin­
gle entry point which essentially acts as a queue. lt is the re­
ceiving processor's responsibility to poli the messages from 
the network interface and process them. 

D. Low-level AP/s 

0.1 SISCI 

The SISCI API [GIA 98] is an effort from both the 
academia and the industry to establish a set o f standard prim­
itives for basic SCI programming. Oolphin, for example, en-
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BSD- Socket 

Fig. 2. Linux networking layers. 

gaged the European ESPRIT Project with the goal o f achiev­
ing an API for clustering and the SISCI API follows this stan­
dard. 

It consists of a complete shared-memory API that allows 
an application running locally to operate on remote mem­
ory segments in user space. Together with driver software, 
adapter cards and switches, SISCI enables applications to 
bypass the traditional networking protocol limitations, min­
imising time-consuming operating system calls, and heavy 
networking software overhead due to hardware support. 

Because it is strongly hardware-oriented, and therefore 
very powerful, SISCI is often used as building blocks for 
other, more user friendly API's like ScaMPI and SMI. 

0.2 CML 

CML, or Common Messaging Layer [HER 98], is a set 
of Iow-Ievel primitives especially designed to support im­
plementations of MPI and PVM. CML is being developed 
within the context of the SISCI projectjust mentioned. 

This library does not introduce any new techniques in 
terms of message passing for SCI; it tries to avoid remote 
readings and local memory copies, which are two o f the most 
inftuent issues in relation to comrnunication performance. 
An initial implementation has been able to achieve 14{ts la­
tency and around 35MB/s bandwidth. 

0.3 SCIP- Scalable Coherent Interface IP 

Instead o f replacing TCP by a user-level transpor! protocol 
to use the SCI interface, SCIP [TA~ 98] is a network driver 
which works undemeath the IP layer (Figure 2). l t is trans­
parent for socket programmers, because it keeps the socket 
semantics, i.e. ali applications work without any modifica­
tions or recompilations. 

SCIP is implemented as a Linux module. The most im­
portant advantages are the maintenance o f socket semantics, 
and the fact that it can be used by kernel services (NFS, 
routing) and it runs without problems on multiprocessar ma­
chines since the Linux kernel provides coordinated access to 
the driver. 

The main problem of SCIP, as usual for kernel-level com­
munication software for clusters, is its high overhead. The 



Fig. 3. Location of each of the presented projects within the software stack. 

lCP~P -
Fig. 4 . Yasmin, Yampi and DECK in the software stack. 

latency measurements of SCIP reveal 77 J.LS latency. Never­
theless, SCIP shows that using SCI at lhe lowest layer in the 
protocol stack works well and has lhe advantage that ali ex­
isting applications work as well. lt is conceivable to use SCIP 
as a substitute for the existing Ethernet network in SCI clus­
ters. Anolher important fact is that, although SCI does not 
guarantee correct delivery of programmed UO operations, it 
ensures that in this solution TCP/fP will correct these errors. 
This makes it possible to use the simple ring buffer without 
flow control. 

E. Summary 

In general, the projects just presented have a common ob­
jective which is to bring the SCI capabilities as best as pos­
sible to the programmer levei. While shared-memory pro­
gramming libraries do exist, one notices a stronger impact 
for message passing environments, especially MPI, which is 
sti ll the de facto standard in the field of parallel program­
ming. 

Figure 3 shows a software stack where ali the mentioned 
libraries and environments can be located in relation to user, 
kernel and hardware levei. 

IV. CONTRIBUTIONS FROM OUR GROUPS 

In lhis Section we present the software developed up to 
now by our research groups aiming at SCI programming. 
The lhree projects, Yasmin, DECK and Yampi also fit in 
the previously established division, namely shared memory, 
message passing and low-level APls, in that order. Fig­
ure 4 shows how ou r contribution can be added to lhe already 
shown software stack. 
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A. Yasmin 

Yasmin (Yet Another Shared Memory Inter­
face) [TA~ 98a] is a programrning environment similar 
to SMI, developed at the University of Paderborn, Germany. 
It follows the same idea as SMI, in the sense that the basis for 
communication is the explicit sharing of memory segments. 
To the difference of SMI, Yasmin does not provide the 
concept of shared regions, but presents different features 
such as collective communication. 

Yasmin proposes a mechanism of groups of processes, so 
that memory segments are shared among the processes which 
make parto f a group, and not necessarily among ali the nodes 
o f an application. This may give the programmer more flexi­
bility when different communication paths need to be estab­
lished. 

As in SMI, synchronisation is achieved by means of bar­
rier and mutex mechanisms, but Yasmin also provides sig­
na/ling objects, which act as condition variables. A sig­
nalling object is associated to the primitives wait and signal. 

Collective communication is implemented with primitives 
similar to those ofMPI (i.e. bcast, scatter, gather, and others), 
following exactly the same semantics in order to facilitate its 
understanding. 

B. DECKIS!SCI 

DECK (Distributed Execution and Communication Ker­
nel) [BAR 00, BAR OOa] is a parallel programming environ­
ment developed at the GPPD/UFRGS, intended for the pro­
gramming of clusters. Early versions of DECK have been 
implemented, first based on Unix sockets, and then on BIP 
for Myrinet [PRY 98, BAR OOb]. With the acquisition of a 
SCI cluster by the group, a SCI implementation has been pro­
vided [OU OI]. 

Communication in DECK is realised by means of two 
kinds of abstractions: messages and mail boxes. Messages 
are containers in which data can be packed and unpacked; 
mail boxes, in turn, are temporary place-holders for mes­
sages sent from one node to another. In order for two distinct 
threads to communicate, a mail box must be created by one 
o f lhem, and given a well known name. The peer thread must 
then execute a clone primitive, passing the name as an input 
parameter, and receiving a reference to the remote mail box 
when the function returns. 

The actual message exchange is performed by the two 
primitives post and retrv, semantically equivalent to tradi­
tional send and recv operations. In terms of synchronisation, 
a post is always asynchronous, while a retrv is always syn­
chronous. 

Some of DECK primitives related to communication are 
shown below: 

deck_ini t ( ) 



deck_done ( l 
deck_mbox_create(&mbox, name) 
deck_mbox_clone(&mbox , name) 
deck_mbox_post(mbox, msg) 
deck_mbox_retrv(mbox, &msg) 

B.l The SCI implementation 

Two main goals have been defined for the implementation 
o f DECK for SCI: it should keep the same API already pre­
sented on the previous implementations, and it should be able 
to exploit the maximum achievable performance of the un­
derlying network. 

The access to the SCI network is performed by using the 
SISCI API; this approach represents a balanced choice be­
tween fiexibility (and thus performance) and ease of use. 

Similarly to SCI-MPICH, DECK/SISCI aJso makes use of 
three different message-exchange protocols in order to max­
imise communication performance: 

• protocol " I" is responsible for small messages, ranging 
from O to 62 bytes; in this case, independentJy from the 
actual size o f the message, a single 64-byte SCI packet 
is sent across the network, which optimises the use of 
the stream buffers in the SCI adapter and thus results in 
optimaJ performance 

• protocol "2" covers the range o f messages from 63 bytes 
to 8KB. Each mail box is associated to a set of buffers 
where messages are stored upon arrivaJ; naturally, such 
buffers consist of shared segments which are directly 
accessible from remote nodes 

• protocol "3" is activated for large messages; in this case, 
a handshaking is used in order to obtain a zero-copy 
message transfer. This means that a post operation will 
wait for the complementary retrv to occur, in which case 
the user buffer will be known to DECK and the message 
can be transferred directly to that location. 

8 .2 Performance 

The graph on Figure 5 shows the raw performance (Ja­
tency and bandwidth) obtained with DECK/SISCI on a sim­
pie ping-pong application, run on the SCI cluster available at 
UFRGS (4 x Dual Pentium Ill500MHz). It can be observed 
that DECK is able to reach practically the full performance 
of SCI for PCI adapters, presenting a maximum bandwidth 
of over 83MB/s; the corresponding latency time for 0-byte 
messages lies in the range of 4-5ps. 

C. Yampi 

Yampi (Yet Another Message Passing Interface) is a MPI 
subset that was developed to give the user a simple message 
passing interface with a performance levei close to the capa­
bilities o f the underlying SCI hardware. 

It is natural that the overall design goal was efficiency and, 
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Fig. 5. Raw perfonnance of DECK/SISCI. 

to achieve these, two subgoals were defined: 
• Efficiency: the design of Yampi is entirely done with 

SCI capabilities to achieve performance values near the 
raw memory transfer over the SCI network, between 3 
and 5 p s. The ScaMPI implementation has latency val­
ues around 12 p s in the tested platform and our goal is 
to reach values between 5 and 7 p s 

• Thread safeness: in order to ensure the correct be­
haviour of the Yampi in multi-thread environments, 
locks will be introduced. Since thread safeness is not 
an issue for some applications, this feature will be op­
tional to avoid the extra time needed for locking 

C.l Functionality 

The first version of Yampi will only implement the basic 
MPI functionality and is expected to be available on Octo­
ber 200 I. Yampi will have around I O routines. The main 
ones are listed below: 

YAMPI_Init 
YAMPI_Finalize 
YAMPI_Comm_Rank 
YAMPI_Comm_Size 
YAMPI_Send (blocking send) 
YAMPI_Recv (blocking receive) 
YAMPI_Isend (non-blocking standard send) 



YAMPI Irecv (non-blocking s t andard recei ve) 

C.2 Structure 

To make Yampi more portable it has been built on top of 
the SISCI API. lt currently supports Linux on Intel platforms 
and offers C bindings. SISCI is required to establish globally 
shared SCI memory segments mapped onto a process ' ad­
·dress space. 

C.3 lnitial results 

In this section some preliminary performance character­
istics of a point-to-point routine are presented. The tests 
are performed on a single platform: a 4-node cluster using 
high-end PCs equipped with single Pentium lli processors 
at 550MHz using 440BX/ZX chipset under Linux, directly 
connected through Dolphin PCUSCI adapters cards. One sin­
gle test has been performed: a ping-pong test to measure the 
round-trip time (two-way latency) for messages of different 
sizes. The Yampi tasks were started on two different nodes. 
Each task executes a blocking send and receive operations 
to wait for an incoming message (Yampi.Recv()) and imme­
diately responds (Yampi...Send()) once the message arrives. 
Of course, this simple tests to measure the latency and band­
width of blocking send and receive operations between two 
processes is not a complete metric for performance o f an MPI 
implementation. lt is rather used to give a performance eval­
uation o f the core functionality. 

The results are shown in Figure 6. One can notice that 
the measured latency is higher then the expected range (5-
7 J.LS). This result is due to Yampi 's early development stage. 
Among other implementation problems, this first version 
uses memory copy operations that seriously decrease the 
overall performance. This has also impact in the maximal 
obtained bandwidth (around 52MB/s). 

These preliminary results show that Yampi is at least able 
to compete in performance with the commercial message­
passing packages. However, while the software is running 
stable in our configuration (4-nodes), it is in an early stage of 
development. Ou r experience with other SCI-related projects 
(Yasmin, DECK) make us believe that there is still room for 
improvement both in latency and bandwidth. 

V. CONCLUDING REMARKS 

In this paper we presented our experiences in building 
clusters and developing tools and applications for the Scal­
able Coherent Interface. The results of severa! research 
fronts, including those of our own, are presented, what gives 
a very good picture of what has been done in the last decade 
for the SCI platform. 

SCJ was rather quietly adopted by severa! companies 
that recognised its superior concepts and protocols as well 
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Fig. 6. Yampi performance results. 

as its potential of high performance, but had no interest 
in implementing and providing SCI as an open intercon­
nect. A number of proprietary implementations and prod­
ucts therefore appeared over the years, ranging from high­
performance clusters interconnects, to shared-memory mul­
tiprocessor networks with cache coherence implemented in 
hardware, and high-speed UO subsystem interconnects. In 
particular, the CC-NUMA (Cache Coherent Non-Uni form 
Memory Architecture) machines based on SCI technology 
from HP/Convex, Sequent, and Data General turned out to 
be quite successful. 

Adoption of workstation clusters using SCI interconnect 
(and its DSM), is slower than expected, despite the superior 
performance characteristics of SCI cluster networks avail­
able today. The main reasons may well be that for many 
years there has been only one serious vendor o f SCI adapters 
and switches, namely Dolphin Interconnect Solutions from 
Norway, and that a direct competing product in the seg­
ment of NORMA (No Remote Memory Access) clusters, 
the Myrinet from USA, had an enormous worldwide success 
driven by the broad adoption in the North American market 
(industries, government, military and universities). 

We believe that the development o f SCI and its inftuence is 
not finished yet. Some on-going experiences show that SCI 
MPI implementations in small clusters (from 8 to 32 pro-



cessors) are able to outperform Myrinet by over 10% for 
some applications. The SCI hardware imp1ementation of a 
distributed shared memory allows the execution of shared 
memory applications in performance leveis that are not pos­
sible with the DSM software emulation in Myrinet clusters. 
This allows the efficient execution of applications that are not 
easily ported with the message passing paradigm. It also al­
lows much more choices for investigation, what is specially 
interesting for universities and research centres. Considering 
that both PCI interconnection cards cost the same (around 
US$1000 per node) the resulting SCI cluster is cheaper be­
cause no switch is needed up to 144 nodes ( 12 x 12 mesh). 
The Myrinet switch is especially expensive because it is im­
plemented with a perfect crossbar-US$6000 for a 16 port 
stackable switch. 

Based on our experience and the obtained results we 
are convinced that the Scalab1e Coherent Interface (SCI) 
is fiexible, efficient, scalable, and it has an excellent cost­
performance ratio, and therefore it should be seriously con­
sidered as an altemative for small- and mid-range cluster in­
terconnection. 

ACKNOWLEDGEMENTS 

This work has been partially supported by grants from 
CAPES, DAAD and CNPq. 

REFERENCES 

[Á VI 99] Á VILA. R. B. et ai. Modelagem e avaliação de desempenho 
de agregados conectados por tecnologia SCI. In: SBAC, 11., 
1999, Natal, RN. Proceedings ... Porto Alegre: Instituto de 
Informática da UFRGS, 1999. p. 107-112. 

[Á VI 001 Á VILA, R. B. et ai. OptiSCI: a visual environment to optimize 
the placement of shared memory segments on a SCI cluster. In: 
SBAC, 12., 2000, São Pedro, SP. Proceedings ... São Carlos: 
UFSCAR, 2000. p. l29- 135. 

[BAR 00] BARRETO, M.; Á VILA, R.; NAVAUX, P. The MultiCluster 
model to the integrated use of multiple workstation clusters. In: 
PC-NOW, 3., 2000, Cancun. Proceedings ... Berlin: Springer, 
2000. p.? l-80. (Lecture Notes in Computer Science, v.1800). 

[BAR OOal BARRETO, M. E. DECK: um ambiente para programação par­
alela em agregados de multi processadores. Porto Alegre: PPGC 
da UFRGS, 2000. Dissertação de Mestrado. 

[BAR OOb) BARRETO, M. et ai. lmplementation of the DECK environ­
ment with BIP. In: MYRINET USER GROUP CONFER­
ENCE, 1., 2000, Lyon, France. Proccedings . •• Lyon: LNRIA 
Rocquencourt, 2000. p.82-88. 

[BOD 95) BODEN, N. et ai. Myrinet: a gigabit-per-second local-arca 
network. lEEE Micro, Los Alamitos, v. l5, n.l , p.29-36, 
Feb. 1995. 

[DOL 00) DOLPHIN interconnect solutions web. Disponível por WWW 
em http://www.dolphinics.no (abr. 2000). 

[DOR 991 DORMANNS, M.; SCHOLTYSSIK, K.; BEMMERL, T. A 
shared-memory interface forSCI clusters.ln: HELLWAGNER, 
H.; REINEFELD, A. (Eds.). SCI: Scalable Coherent Interface: 
architecture and software for high-performance compute clus­
ters. Berlin: Springer, 1999. p.490. (Lccture Notes in Computer 
Science. v. 1734 ). 

163 

[EIC 921 EICKEN, T. von et ai. Active messages: a mechanism for inte­
grated communication and computation. In: ISCA. 19 .. 1992. 
Gold Coast, Australia. Proccedings .•. New York: ACM, 1992. 
p.256-266. 

[FIS 99] FISCHER, M.; REINEFELD. A. PVM for SCI clusters. In: 
HELLWAGNER, H.; REINEFELD, A. (Eds.). SCI: Scal­
able Coherent Interface: architecture and software for high­
performance compute clusters. Berlin: Springer, 1999. p.239-
248. (Lecture Notes in Computer Science, v.l734). 

(GIA 98) GIACOMINI, F. et ai. Low-lcvel SCI software requircments, 
analysis and prcdcsign. (S.!.): ESPRIT Project 23174- Soft­
ware lnfrastructure for SCI (SISCI), 1998. 

[GM 99) GM. Disponível por WWW em http://www.myri.com/GM 
(dez. 1999). 

[HEL 99) HELLWAGNER, H.; REINEFELD, A. (Eds.). SCI: Scal­
able Coherent Interface: architecture and software for high­
performance compute clusters. Berlin: Springer, 1999. 490p. 
(Lecture Notes in Computer Science, v.l734). 

[HER 98) HERLAND, B. G.; EBERL. M.; HELLWAGNER, H. A 
common messaging layer for MPI and PVM over SCI. In: 
HPCN, 1998, Amsterdam. Proccedings ... Berlin: Springer­
Verlag, 1998. p.576-587. (Lecture Notes in Computer Science, 
v.l401). 

[HUS 99) HUSE, L. P. et ai. ScaMPI-design and implementation. In: 
HELLWAGNER, H.; REINEFELD, A. (Eds.). SCI: Scal­
able Coherent Interface: architecture and software for high­
performance compute clusters. Berlin: Springer, 1999. p.249-
261. (Lecture Notes in Computer Science, v.l734). 

[IBE 961 I BEL, M. et ai. lmplementing Aclive Messages and Split-C for 
SCI clusters and some architectural implications. In: SCIZZL, 
6., 1996, Santa Clara, USA. Procccdings ... [S.!.: s.n.], 1996. 

[IEE 92] lNSTITUTE OF ELECTRICAL ANO ELECTRONIC EN­
GINEERS. lEEE standard for scalablc coherent interface 
(SCI). New York: [s.n. j, 1992. IEEE 1596-1992. 

JMPI 941 MPI FORUM. Thc MPI mcssage passing interface standard. 
Knoxville: University o f Tennessee, I 994. 

[OU OI] OLIVEIRA, F. A. D. de. Uma biblioteca para programação 
paralela por troca de mensagens de clusters baseados na 
tecnologia SCI. Porto Alegre: PPGC da UFRGS, 200 1. 
Dissertação de Mestrado. 

)PRY 98) PRYLLI. L.; TOURANCHEAU, B. BIP: a new protocol de­
signed for high performance networking on Myrinet. In: PC­
NOW, 1., 1998. Proceedings ... Berlim: Springer, 1998. 
p.472-485. (Lecture Notes in Computer Science, v.I388). 

[SCH 99] SCHULZ, M. SCJ-VM: a tlexible base for transparent shared 
memory programming models on clusters of PCs. In: HIPS. 
1999, San Juan, Puerto Rico. Proceedings ... Berlin: Springer, 
1999. (Lecture Notes in Computer Science, v. 1586). 

[TA~ 98] TA~KJN, H.; BUTENUTH, R.; HEISS, H.-U. SCJ for TCP/IP 
for Linux. In: SCI-EUROPE, 1998, Bordeaux, France. Pro­
cccdings ... [S.l.: s.n.], 1998. 

[TA~ 98a] TA~KJN, H. Synchronisationsoperationen für gemeinsamen 
speicher in SCI-clustem. Paderbom: Universitat GH Pader­
bom. 1998. Diplomarbeit. 

[WOR 00] WORRJNGEN, J. SCI-MPICH: the second generation. In : 
SCJ EUROPE, 3., 2000. Munich, Germany. Procccdings ... 
[S.J.: s.n.], 2000. p. I 0-20. Organizado como conference stream 
do Euro-Par'2000. 

)ZOR 99] ZORAJA, 1.; HELLWAGNER. H.; SUNDERAM, V. SCJPVM: 
parallel distributed computing on SCI workstation clusters. 
Concurrency: Practice and Experience, v. I I, n. I 3, p. I 21-
138, Mar. 1999. 


