Adaptive Techniques for
Home-based Software DSMs*

Lauro Whately', Raquel Pinto', Muralidharan Rangarajan?,
Liviu Iftode?, Ricardo Bianchini?, and Claudio L. Amorim'

! COPPE Systems Engineering
Federal University of Rio de Janeiro, Brazil
{whately,raquel ,amorim } @cos.ufrj.br

2 Department of Computer Science
Rutgers University
{muralir,iftode,ricardob} @cs.rutgers.edu

Abstract—

This paper proposes and evaluates Home-based Adaptive Protocol
(HAP), a software distributed shared-memory system. HAP performs
two key functions that distinguish it from most other distributed shared-
memory systems: detection of sharing patterns and behavior adap-
tation based on these patterns. Detection consists of identifying any
change in the sharing pattern of a shared page. Adaptation consists of
using a strategy that is specific to the sharing pattern detected to opti-
mize the performance of the system. More specifically, HAP uses up-
dates to maintain the coherence of single-writer pages, which fall under
the migratory and producer-consumer sharing patterns. Invalidations
are used to maintain the coherence of multiple-writer pages, which can
potentially be falsely shared. As part of HAP’s adaptation strategy, we
dynamically assign homes to pages based on their sharing patterns. We
performed preliminary experiments on an 8-node cluster of PCs. Our
results show that the current implementation of HAP substantially im-
proves the performance of single-writer applications in which shared
pages are modified in critical sections protected by locks. The results
also indicate potential improvement in the performance of applications
exhibiting other sharing patterns such as producer-consumer, single-
writer between barriers. However, the detection and adaptation tech-
niques for these patterns have to be redesigned to exploit the real per-
formance gains that can be achieved with the adaptive system.

Keywords— Software Distributed Shared Memory, Home-based Lazy
Release Consistency, Home-based Adaptive Protocol

I. INTRODUCTION

Research in the last decade has shown that software dis-
tributed shared memory (DSM) is a cost-effective method
of providing the shared memory abstraction on a network of
computers, as it requires virtually no hardware support, can
use off-the-shelf operating systems, and delivers good per-
formance for a large class of applications. However, many
applications running on software DSM systems suffer high
communication and coherence-induced overheads that limit
performance [1J99]. The most common software approach
to reducing these overheads is to employ relaxed memory
consistency models [CBZ91, KCZ92] to delay and/or restrict
communication and coherence operations as much as possi-

*This work was supported in part by Rutgers University and by Brazilian
Finep and CAPES agencies.

164

ble. Another common way of reducing communication and
coherence overheads is to employ multiple-writer coherence
protocols [CBZ91], which allow two or more processors to
modify their local copies of shared data concurrently, merg-
ing modifications only when necessary.

Home-based Lazy Release Consistency (HLRC) [ZIL96]
is an example of software DSM system that employs both re-
laxed consistency and multiple-writer coherence. In HLRC,
the modifications made locally by each node to a shared page
are propagated at certain synchronization points to a home
node for the page. Future accesses to the page require re-
trieving a copy of the page from the home node. HLRC pro-
vides good scalability by reducing the number of messages
and memory overhead compared to homeless DSM systems,
such as TreadMarks [KCZ92].

However, HLRC has some potential disadvantages
[CLHW99]: (i) the whole page is transferred on a page fault,
even if only one word of it has been modified and (ii) per-
formance can be poor for some applications, if homes are
not assigned properly. A poor assignment can significantly
increase the number of coherence actions, messages passed,
and bytes transferred. Furthermore, HLRC (as well as home-
less systems) can be optimized by dynamically adapting its
coherence protocol to the sharing patterns exhibited by appli-
cations. Such adaptation can reduce the number of required
coherence actions in software DSM systems for certain ap-
plications [MB98, ACSD*99).

The main goal of our work is to extend HLRC to migrate
home nodes and adapt its coherence protocol dynamically,
according to sharing patterns. Thus, in this paper we propose
and evaluate Home-based Adaptive Protocol (HAP), a soft-
ware DSM system based on HLRC. HAP performs two key
functions that distinguish it from most other software DSM
systems: detection of sharing patterns and behavior adap-
tation based on these patterns. Detection consists of iden-
tifying any change in the sharing pattern of a shared page.

Adaptation consists of using a strategy that is specific to the
sharing pattern detected to optimize the performance of the
system. Both detection and adaptation in HAP are inspired
by similar features in the homeless ADSM system [MB98].

In more detail, HAP includes the following features:

e Dynamic adaptation between multiple and single-writer
coherence protocols;

e Dynamic adaptation between invalidation and update-
based coherence — updates are used for single-writer
pages, whereas invalidations are used for multiple-
writer pages; and

e Home migration of single-writer pages to the writing
node.

We currently have a preliminary implementation of HAP.
We performed experiments with this implementation on a
cluster of eight dual-processor Pentium III-based PCs. We
isolated the performance benefits of each of the adaptation
strategies and compared our results against the basic imple-
mentation of the HLRC system. The results show that the
current implementation of HAP substantially improves the
performance of single-writer applications in which shared
pages are modified in critical sections protected by locks.
The results also indicate potential improvement in the perfor-
mance of applications exhibiting other sharing patterns such
as producer-consumer, single-writer between barriers. How-
ever, the detection and adaptation techniques for these pat-
terns have to be redesigned to exploit the real performance
gains that can be achieved with the adaptive system.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of HLRC, serving as back-
ground material for the rest of the paper. Section III describes
the HAP system. Section IV presents the experimental envi-
ronment and the application workload. The results are pre-
sented in section V. Section VI discusses the related work.
Finally, section VI summarizes our work and presents our
conclusions.

II. BACKGROUND

Several software DSM systems use virtual memory protec-
tion bits to enforce coherence at the page level. To minimize
overheads these systems usually exploit relaxed consistency
models and multiple-writer coherence protocols.

One of the most popular consistency models is Lazy Re-
lease Consistency (LRC). The LRC algorithm [KCZ92] di-
vides the program execution into intervals delimited by syn-
chronization operations and computes a vector timestamp for
each interval. This vector describes a partial order between
intervals of different processors. On a lock acquire opera-
tion, the last releaser can determine the set of write notices
(descriptions of the modifications made to shared data) that
the acquiring processor needs to receive, i.e. the set of no-
tices that precede the current acquire operation in the par-

165

tial order. Upon receiving the notices, the acquirer can then
change the state of its memory accordingly.

HLRC is an LRC system that is centered around establish-
ing home nodes for shared pages. The system chooses the
first node that accesses a page as the page’s home node. In
HLRC, a write notice received represents an invalidation that
has to be applied to the corresponding page. A future access
to an invalidated page requires that the local node send a re-
quest for a copy of the page to the page’s home node, which
always has an up-to-date copy of the page. This scheme
works because nodes propagate the modifications they make
to shared pages to their corresponding home nodes at lock
release points. These modifications are determined using the
twinning and diffing mechanism as follows. A page is ini-
tially write-protected, so that on the first write to it a viola-
tion occurs. On such a violation, an exact copy of the page
(a twin) is made and the original copy of the page is made
writable. When the actual modifications are required, the
twin and the current version of the page are compared to cre-
ate a runlength encoding of the modifications (a diff).

The lock acquire operation uses a lock manager from
which the current owner of the lock is obtained, and a dis-
tributed queue where the next acquirers wait for their turn.
Barriers are implemented in a distributed way, so that a mes-
sage with local write notices is sent at a barrier operation to
every node. The barrier is completed when the messages with
the write notices of all other node are received. More details
about the original implementation of HLRC can be found in
[ZIL96], where the authors demonstrate the good scalability
of the system.

Our current HLRC implementation uses the VI Architec-
ture [Com97] (VIA) standard for user-level communication
as its communication substrate. VIA reduces software over-
head by avoiding kernel involvement in communication op-
erations. Another important feature of VIA that is used by
HLRC is Remote DMA Write operations, which allow pages
to be fetched from homes with no data copies and diffs to be
applied at home nodes without interrupting them. Our imple-
mentation of HLRC was described and evaluated in [RI100].

III. HOME-BASED ADAPTIVE PROTOCOL

In this section we describe the sharing patterns detected by
HAP, the coherence protocol behavior associated with these
patterns, and the details of the transitions between different
detected sharing patterns. A longer description of HAP can
be found in [WhaOl].

A. Access Patterns and Protocol Behavior

The access pattern categorization of HAP is based on the
SPC (Sharing Pattern Categorization) algorithm created for
the homeless ADSM system [MB98]. Each page is cate-
gorized as multiple-writer (MW), migratory (MIG), or pro-

ducer/consumer (PC). The migratory pages are subdivided
into two groups: MIGi and MIGo. A MIGi page is modified
only inside critical sections protected by the same lock. A
MIGo page is modified outside of critical sections by only
one node in an interval bounded by two consecutive barriers.
Note that the pages classified as MIG or PC have a single
writer at a time.

A home node can detect the MIGi pattern by checking for
lock identification(s) that can come with any diffs it receives.
The lock identification specifies the critical section in which
the corresponding diffs were created.

The write-notices received at the barrier are used by all
nodes to detect the MIGo and PC patterns. Each node detects
if there was only one writer to a page, examining the write
notices. In that case, the page is categorized as MIGo. If,
in the next interval, the single writer is repeated, the page is
categorized as PC.

As a MIG or PC page is modified by a single writer, HAP
migrates the home of the page to its writer, avoiding the cre-
ation of twins and diffs at the writer. The home migration of a
MIGi page is done at a lock acquire operation. A list of MIGi
pages associated with the lock is maintained, and the lock re-
leaser determines which pages have been modified since the
last time the acquirer released the lock. The releaser sends
these pages to the acquirer as updates, transferring the home-
ship of the pages along. After that, the lock and the write
notices are sent to the acquirer. Only the releaser and the
acquirer have knowledge of the home migration, so a long
chain of page request forwards can be generated, which is a
potential problem.

The home of a MIGo page is migrated to the node which
suffers the first access fault on the page after a barrier. At the
next barrier, all nodes will detect the single writer of the page,
investigating the write notices. If the single writer matches
the first node that accessed the page, HAP has avoided the
creation of a twin and a diff. If that is not the case, the home
is migrated to the single writer and the creation of the diff at
the writer is avoided.

A PC page has only one writer (producer), which is always
the same processor, and one or more readers (consumers).
The home of a PC page is migrated to the producer, which
sends updates to the consumers at the barriers. A consumer
does not wait for the updates at the barrier, since frequently
there is enough time before the pages are actually accessed
by consumers.

The MW pages are handled just like in HLRC, using the
twinning and diffing mechanism, invalidation-based coher-
ence, and fixed home nodes.

B. State Transitions

The different page sharing patterns and transitions can be
represented by the state diagram shown in figure 1. Initially,

166

=—p- -Dynamic Home Transition
wessesepn - Static Home Transition
1,4 - Single-writer Inside
Critical Section
2,3 - single-writer between
Barriers
5 - home received diff
6 - Non-home modification
Detected at Barrier
MW - False-Sharing

MIGi- Migratory Within Lock

PC - pProducer/Consumer

Fig. 1. Page state diagram.

all pages are classified as MW. If the home of a page detects
the MIGi pattern, the page enters a transitory state. If the
home later receives a page request identified with the same
lock, the home will migrate with the page and the page will
be categorized as MIGi at the home (transition | in the fig-
ure). On the other hand, if the home receives a diff associ-
ated with another lock, the transitory state is dismissed and
the page returns to MW state. At a barrier, the MW state can
be changed to MIGo, if the nodes detect a single writer to the
page when examining the write notices (transition 2).

A page remains in MIGo state as long as the nodes detect
only one writer to the page between barriers. In case the
single writer is repeated at two consecutive barriers, the page
is categorized as PC (transition 3). The state can change from
MIGo to MIGi (transition 4), when a page is modified inside
a critical section that is located between two barriers.

A page remains in MIGi, MIGo, or PC state provided that
it is only modified by the home. If the home receives any
diffs for such a page, its state is “weakened” to MW (transi-
tion 5 from MIGi or MIGo) or MIGo (transition 5 from PC).

It is possible for a MIGi page to become a MIGo page
(transition 6) when the write notices received at a barrier in-
dicate a single writer to the page that is not the current home.

Finally, note that HAP does not require any messages that
are not already part of HLRC either to categorize the pages’
sharing patterns or to migrate the pages’ homes.

IV. EXPERIMENTAL ENVIRONMENT

We still only have a preliminary version of HAP that con-
tains a first-cut implementation of each of the features de-
scribed in the previous section. All our experiments with this
current version of the system were performed on a cluster of

MIGO- Migratory Between Barrier

TABLE I
GIGANET VIA MICROBENCHMARKS
One-way Latency (4Bytes) 8.2 us
Bandwidth (32KBytes) 101 MB/s
PostSend (4KBytes) 2.1 pus
RegisterMem (4KBytes) 4.3 ps
TABLE II
APPLICATION CHARACTERISTICS
Appl Problem Size | Synchronization
IS 2'% keys, 300 iter. locks, barriers
SOR | 256 x 5120, 100 iter. barriers
FFT 27U elements barriers

eight SMP machines. Each machine contains two 650MHz
Pentium III processors. However, for this study, we used
only one processor at each cluster node. Each processor has
a 256KB L2 cache and each node contains 512 MB of main
memory. All nodes run Linux release 2.2.14.

Each node has a Giganet cLAN NIC, which is a 32-bit
33 MHZ PCl-based card. These nodes are connected by a
30-port Giganet cLAN switch. The performance character-
istics for our experimental platform are reported in the ta-
ble I. Latency denotes the time to transfer a 1-word packet
between two nodes using VIA. PostSend denotes the average
time taken to post a send using VIA. The last row presents the
cost of the memory registration for communication buffers in
VIA.

We use three applications in this study: IS, SOR, and FFT.
IS ranks a sequence of integer keys using bucket sort. Its
sharing pattern is characterized by migratory pages protected
by locks. IS is distributed with TreadMarks. SOR uses the
red-black successive over-relaxation method for solving par-
tial differential equations. The black and red arrays are par-
titioned into groups of rows of roughly equal size, which
are distributed among the computational nodes. Communi-
cation in SOR involves the boundary rows, which are pro-
ducer/consumer pages. SOR was developed at the University
of Rochester. FFT is essentially the transposition of a matrix
of complex numbers that generates an all-to-all, read-based
communication. FFT is from the SPLASH2 benchmark suite
[WOT*95]. Table II lists the problem size and the synchro-
nization style for each application. We chose to study these
three applications because each of them highlights a different
aspect of our system.

167

V. PRELIMINARY RESULTS

In this section we evaluate the performance benefits of
each of the main characteristics of HAP, by comparing four
versions of our system against HLRC. These versions are:
H_MI only supports home migration of MIGi pages; H MO
only supports home migration of MIGo pages; H PC only
supports home migration of PC pages with update coher-
ence; and HAP includes all the mentioned techniques. All
these versions are based on the same prototype code for our
system.

To better understand where time is currently going, we
breakdown the execution time into several categories (aver-
aged over all nodes): computation time, data transfer time,
synchronization time, protocol overhead, and time spent in
the handler thread, servicing remote requests. Protocol over-
head is comprised by diff and twin creation, diff application,
write notice handling, and remote request service. Our re-
sults are presented in the figures included below. All execu-
tion times are normalized with respect to the HLRC execu-
tion time.

We also instrumented our systems to collect information
about the number of messages and bytes transferred, the
number of memory access faults incurred, the number of
page requests, and the number of diffs generated. These re-
sults are presented in the tables included below. In all cases,
we divide the overall statistics by the number of nodes.

A IS

Figure 2 shows the execution time breakdown for IS. We
run IS with HRLC, H.MI, and HAP. We do not present re-
sults for H.IMO and H_PC because this application is dom-
inated by pages protected by locks. Thus, results for these
other versions are the same as for HAP.

As shown in the figure, H.MI and HAP improve perfor-
mance with respect to HLRC by 19% and 6%, respectively.
The main reason for these gains is a significant reduction in
lock and barrier overheads (27% in H MI and 14% in HAP).
This reduction is a direct consequence of the optimizations
we perform for MIGi pages. Every shared page in IS is clas-
sified as MIGi by both H.MI and HAP. The home migration
and the update of MIGi pages decrease the coherence over-
head and the time spent in the main critical section of the
application, which in turn alleviates the serialization effect
of the lock and the following barrier.

Table III shows the main execution statistics for each node
of IS. As shown in table, H.MI reduces both the number
of messages and bytes transferred by 14% in comparison to
HLRC. These reductions come from eliminating most diff
transfers and a large number of page requests. In terms of ac-
cess faults, H.MI also behaves better (by 45%) than HLRC,
since accesses to MIGi pages do not cause page faults (re-
call that MIGi pages are transferred during the lock acquire

100 +— Handler)
B2 Overhcad
@D Barrier
B Lock
g Page Fetch
= 8o BN Computing =
& ol i
ol]

HAP

Fig. 2. Execution Time Breakdown for IS

operation) and writes by home nodes do not cause protection
violations.

HAP transfers more messages than H.MI because the
MIGi pages are detected as MIGo pages by some nodes. The
latter pattern generates more message traffic due to additional
write notices and home migration with the first page request.
The number of access faults induced by HAP is also greater
than that induced by H_MI, since our categorization algo-
rithm requires MIGo pages to be protected more frequently
than the other shared pages.

Both H.MI and HAP generate fewer diffs than HLRC be-
cause of the special treatment given to single-writer pages,
but HAP does so by a much larger margin. The reason HAP
generates fewer diffs than H_MI is that under HAP the shared
pages are categorized as MIGi by the home node and MIGo
by the other nodes. When a non-home node modifies a MIGo
page, the diff is not created if the MIGo pattern is confirmed
at the barrier point, i.e. the single writer will become the next
home node.

B. SOR

The only pages that are effectively shared by more than
one node in SOR are PC pages. As shown in figure 3, the
optimizations our systems perform for this class of pages
are able to reduce the time spent on page requests by 80%

TABLE 111
EXECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR IS
HLRC H.MI HAP
Messages (k) 14.4 12.4 14.5
Data (kbytes) 3286.0 | 2815.2 | 2697.7
Access Faults 826.4 451.0 676.0
Page Requests | 488.8 3384 3384
Diffs 262.5 74.7 374

168

Handler
Overhead -
Barrier
Lock

Page Fetch
Computing —

L VBEEN

80

40

Normalized Execution Time

20

HLRC H_PC HAP

Fig. 3. Execution Time Breakdown for SOR

(H_PC) and 83% (HAP) and the handler execution overhead
by 78% (H_PC) and 83% (HAP), always in comparison to
HLRC. Overall, H.PC and HAP outperform HLRC by 1%
and 6%, respectively. These reason why these performance
improvements are not more significant is the cost of con-
stantly trying to detect MIGo pages in our prototype. This
cost reflects itself in higher barrier overheads (H PC) and
higher protocol overheads (H PC and HAP).

Table IV shows how optimizing for PC pages affects the
main execution statistics. In comparison to HLRC, HPC
decreases the number of page requests and messages trans-
ferred by 86% and 17%, respectively. The fact that the num-
ber of bytes transferred under HLRC and H PC is roughly
the same shows that the updates sent by our system are all
useful for this application. HAP exhibits statistics that are
similar to those of H_PC.

Note that none of the systems we study involves diff gen-
eration for SOR. HLRC uses a “first-touch” mechanism to
select the home node for a page. This mechanism is very ef-
ficient for this application, since it effectively assigns every
producer as the home for the pages it produces, thus avoid-
ing twinning and diffing overheads. HAP and H PC use the
same mechanism to assign the original homes nodes, making
migration unnecessary for SOR.

TABLE IV
EXECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR SOR

HLRC H_PC HAP
Messages (k) 4.0 3.3 33
Data (kbytes) 3770.0 | 3694.7 | 3686.2
Access Faults (k) 1.7 L7 2.0
Page Requests 875.0 120.6 148.3
Diffs 0.0 0.0 0.0

Handler

Overhead —
Barrier

Lock

Page Feich
Computing —

BZEEBS

Normalized Execution Time

HLRC H_PC H_MO HAP

Fig. 4. Execution Time Breakdown for FFT

C. FFT

We present the results for FFT as a worst-case scenario
for HAP. As we can see in figure 4, no version of our sys-
tem outperforms HLRC for FFT. H.PC, HMO, and HAP
degrade the execution time by more than 9%. (H MI results
are not presented because there are no locks in FFT.) The
versions that use updates for PC pages (H_PC and HAP) de-
grade performance because these updates are not really used
by the application. As a result, these versions do not reduce
the page fetch time and increase the protocol overhead.

Another problem for our systems is that the home assign-
ment scheme of HLRC again works perfectly for FFT. This
eliminates any benefits that could be accrued from home
node migration. In fact, the MIGo page detection in H MO
and HAP increases protocol overheads and induces an imbal-
ance that affects the barrier times.

Table V shows that the number of access faults and the
number of page requests are the same for all systems. In
terms of communication traffic, H PC transfers more mes-
sages and data than HLRC, whereas HAP transfers a little
less data than HLRC. H_PC transfers more messages and
data due to useless PC updates. The reason why HAP per-
forms better than H_PC is that in HAP, before a page be-
comes PC, it is detected as MIGo. The node that becomes
the home of a MIGo page (on its first access to the page after

TABLE V

EXECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR FFT

HLRC H.PC | HMO HAP
Messages (k) 54 T2 54 5.4
Data (kbytes) 7689.6 | 11276.5 | 7574.2 | 7588.6
Access Faults (k) 33 33 33 33
Page Requests (k) 1.8 1.8 1.8 1.8
Diffs 0.0 0.0 0.0 0.0

169

a barrier) is not considered a consumer when the page later
becomes PC. As a result, the new home will not receive up-
dates.

D. Discussion

We can see from our preliminary experiments that our
first-cut implementation of HAP is only successful at im-
proving performance for IS. The optimizations used for the
MIGi pages generate a 19% performance improvement in
comparison to HLRC. Although our current implementation
of HAP did not achieve the same success with the other ap-
plications, there is potential for improvements. For example,
our techniques decreased the communication overhead and
number of page requests in SOR by up to 83% and 86%,
respectively. These potential improvements did not trans-
late into substantial gains for the applications we studied for
two main reasons: the detection of MIGo pages generates
excessive overhead and PC pages are sometimes unneces-
sarily updated. We believe these problems can be alleviated
by replacing the distributed barrier with a centralized one,
enabling a better implementation of page categorization and
update algorithms. Centralization of the barrier should not
degrade synchronization performance for small or medium-
scale systems. The categorization algorithm itself should
also be modified to make sure that pages are only catego-
rized as PC if both the producer and the set of consumers
(not just the producer) are fixed.

VI. RELATED WORK

In this section we discuss the work related to adaptive soft-
ware DSM systems that we have not yet mentioned. In terms
of home-based systems, a few different researchers have pro-
posed home migration. JIAJIA [WST99] dynamically mi-
grates a page’s home when a single writer is detected at the
barrier. This is the same type of migration performed by
HAP for MIGo pages. But that is the only adaptation that
JIAJIA does. Chung et al. [CSPP99] and Cheung et al.
[CWW99] propose home migration to the processor that suf-
fers the first access fault on a page. All the processors are
notified about the new home location by protocol messages.
We believe that this approach is excessively aggressive for a
variety of applications. HAP is more conservative in that it
only migrates a page’s home if it has detected that the page
has been modified by a single writer. HAP’s home migra-
tion is used to avoid the creation of twins and diffs without
sending any additional messages.

Orion [NW99] does home migration for pro-
ducer/consumer pages, and also updates the consumers.
Both techniques are performed by using broadcasts. In con-
trast, HAP does home migration for other sharing patterns,
and only uses additional messages to update the consumers.

Xie and Han [XH99] proposed a new approach to handle

multiple concurrent writers in software DSM systems called
Limited Multiple Writer. It automatically distinguishes two
kinds of multiple writers (lock-based and barrier-based) and
deals with them with different policies. Lock-based accesses
use single-writer coherence and obey LRC, whereas barrier-
based accesses can use multiple-writer coherence and obey
RC. Adaptation in HAP seems more efficient than this ap-
proach, since our system more accurately detects single-
writer sharing patterns by separating them into pages mod-
ified inside and outside of critical sections.

Keleher in [Kel98] proposes a home-based system that
sends updates from a page’s producer to its set of consumers
at a barrier. This system is shown to outperform HLRC and
LRC with updates for regular applications. HAP uses this
same technique for PC pages, but also optimizes for the other
kinds of sharing patterns.

Two other recent papers have studied adaptation in home-
less systems. The Adaptive Striping technique [LYHZ00] ex-
tends TreadMarks to automatically alleviate load imbalances.
In particular, those that result from multi-paged data struc-
tures that have a single writer but multiple readers. Adaptive
Striping reduces contention at the writer by evenly distribut-
ing the modifications to the other processors at the next bar-
rier. As a result, the writer’s effort on behalf of each page
that it offloads is limited to constructing and sending the diff
to a single processor. This processor is then responsible for
servicing the requests for the page from all consumers. This
approach is similar to the one used by HAP to update the
consumers of PC pages. The principal difference is that HAP
updates all the consumers of each page, taking advantage of
the low-overhead communication provided by VIA.

Castro and Amorim proposed in [CAO1] two techniques
called FIESTA and RITMO that detect the pages’ sharing
patterns with high precision. As a result, they show that bet-
ter gains are possible by applying adaptive techniques, even
to irregular applications. HAP uses a simpler detection tech-
nique and can conceivably be improved by using FIESTA
and RITMO.

VII. CONCLUSION

This work introduced HAP, a software DSM system that
dynamically adapts to the parallel application’s sharing pat-
terns. Adaptation is based on a dynamic categorization of the
sharing pattern associated with each page. This categoriza-
tion is made by a modified SPC algorithm, introduced in the
context of the ADSM system, which efficiently categorizes
pages as migratory, producer-consumer, and multiple-writer.
Based on these sharing patterns, HAP applies the following
techniques to optimize performance:

e Dynamic adaptation between multiple and single-writer

coherence protocols;

e Dynamic adaptation between invalidation and update-

170

based coherence — updates are used for single-writer
pages, whereas invalidations are used for multiple-
writer pages; and

e Home migration of single-writer pages to the writing
node.

We still only have a preliminary implementation of our
system. With this implementation we performed experiments
an 8-node cluster of PCs. Our results show that the current
implementation of HAP performs well for certain applica-
tions, but requires modifications for others.

REFERENCES

[ACSD199] C. Amza, A. Cox, L.J. Jin S. Dwarkadas, K. Rajamani, and
Willy Zwaenepoel. Adaptive Protocols for Software Dis-
tributed Shared Memory. In Proc. of the IEEE, Special Issue
on Distributed Shared Memory, Spring 1999.

[CAO1] M. Castro and C. Amorim. Efficient Categorization of
Memory Sharing Patterns in Software DSM Systems. In
Proc. of the 15th IEEE Int'l Parallel Processing Symposium

(IPDPS’2001), April 2001.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-
tation and Performance of Munin. In Proc. of the 13th ACM
Symp. on Operating Systems Principles, pages 152-164, Oc-
tober 1991.

AL. Cox, E. Lara, C. Hu, and W.Zwaenepoel. A Per-
formance Comparison of Homeless and Home-based Lazy
Release Consistency. In Proc. of the 5th IEEE Symp. on
High-Performance Computer Architecture (HPCA-5), Febru-
ary 1999.

Compagq Corporation, Intel Corporation, and Microsoft Cor-
poration. Virtual Interface Architecture Specification, Version
1.0, http://www.viarch.org 1997.

L.W. Chung, B.H. Seong, K.H. Park, and D. Park. Mov-
ing Home-based Lazy Release Consistency for Shared Virtual
Memory Systems. In Proc. of the International Conference on
Parallel Processing, Setembro 1999.

B.W. Cheung, C. Wang, and K. Wang. A Migrating-Home
Protocol for Implementing Scope Consistency Model on a
Cluster of Workstations. In Int. Conf. on Parallel and
Distributed Processing Techniques and Applications, Junho
1999.

L. Iftode and J.P.Singh. Shared virtual memory: Progress and
challenges. Proc. of the IEEE, Special Issue on distributed
Shared Memory, 87(3):498-507, 1999.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Con-
sistency for Software Distributed Shared Memory. In Proc. of
the 19th An. Int’l Symp. on Computer Architecture (ISCA'92),
pages 13-21, May 1992.

P. Keleher. Update protocols and iterative scientific applica-
tions. In Proc. of the 12th Int'l Parallel Processing Sympo-
sium (IPPS’98), pages 675 - 681, 1998,

E. Lara, A. Cox Y.C. Hu, and W. Zwaenepoel. Evaluating the
Effect of Contention on Page-Based Software Shared Mem-
ory Systems. In Proc. of Languages, Compilers, and Runtimes
for Scalable Computing, May 2000.

L. R. Monnerat and R. Bianchini. Efficiently Adapting to
Sharing Patterns in Software DSMs. In Proc. of the 4th IEEE
Symp. on High-Performance Computer Architecture (HPCA-
4), pages 289 — 299, February 1998.

[CBZ91]

[CLHW99]

[Com97]

[CSPP99)

[CWW99]

[1J99]

[KCZ92]

[Kel98]

[LYHZ00]

[MB98]

[NW99]

[RIOO]

[WhaO1]

[WOT95]

[WST99]

[XH99]

[ZIL96]

M.C. Ng and W.F. Wong. Adaptive Schemes for Home-based
DMS Systems. In First Workshop on Software Distributed
Shared Memory, June 1999.

M. Rangarajan and L. Iftode. Software Distributed Shared
Memory over Virtual Interface Architecture: Implementation
and Performance. In Proc. of the 3rd Extreme Linux Work-
shop, October 2000.

L. Whately. Técnicas de Adaptagdo para Software DSM
Baseado em Residéncia. Msc thesis, COPPE/Universidade
Federal do Rio de Janeiro, March 2001.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH2 Programs: Characterization and Methodological
Considerations. In Proc. of the 22nd An. Int'l Symp. on Com-
puter Architecture (ISCA'95), pages 24-36, May 1995.
W.Hu, W. Shi, and Z. Tang. Home Migration in Home-based
Software DSMs. In First Workshop on Software Distributed
Shared Memory, June 1999.

X. Xie and C. Han. Adjusting Single-Multiple Writer to False
Sharing in Software DSMs. In Int. Conference on Paral-
lel and Distributing Processing Techniques and Applications,
June 1999.

Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two
Home-Based Lazy Release Consistency Protocols for Shared
Memory Virtual Memory Systems. In Proc. of the 2nd Symp.
on Operating Systems Design and Implementation (OSDI'96),
pages 75-88, October 1996.

171

