
Adaptive Techniques for 
Home-based Software DSMs* 
Lauro Whately 1, Raquel Pinto1, Muralidharan Rangarajan2, 

Liviu lftode2, Ricardo Bianchini2, and Claudio L. Amorim1 

1 COPPE Systcms Enginecring 
Federal University of Rio de Janeiro, Braz i I 

{ whately,raquel,amorim} @cos.ufrj .br 

2 Department o f Computer Science 
Rutgers University 

{ muralir,iftode,ricardob} @cs.rutgcrs.edu 

Abstract-
This paper proposes and evaluates Home-based Adaptive Protocol 

(HAP), a software distributed shared-memory system. HAP performs 
hvo key functions that distinguish it from most other distributed shared
memory systems: detection of sharing pattems and behavior adap
tation based on thesc pattems. Detection consists of idcntifying any 
change in the sharing pattern of a shared page. Adaptation consists of 
using a stratcgy that is spccific to the sharing paliem detected to opti
mize lhe performance of lhe system. More specifically, HAP uses up
dates to maintain lhe coherence of single-writer pages, which fali under 
lhe migratory and producer-consumer sharing pattems. Invalidations 
are used to maintain the cohercnce of multiple-writer pages, whicb can 
potcntially bc falsely shared. As pari of HAP's adaptation strategy, wc 
dynamically assign homes to pages based on thcir sharing patterns. We 
performed preliminary experiments on an 8-node cluster of PCs. Our 
results show that the current implemcntation of HAP substantially im
proves the performance of single-writer applicat.ions in which shared 
pages are modified in criticai scctions protccted by locks. The results 
also indicate potential improvement in the performance of applications 
exhibiting other sharing patterns such as producer-consumer, singlc
writcr between barriers. However, the dctection and adaptation tech
niques for thesc pattcms have to be redcsigned to exploit lhe real per
formance gains that can bc achieved with thc adaptive system. 

Keywords- Software Distributed Shared Memory, Home-based Lazy 
Rclcasc Consistency, Home-based Adaptivc Protocol 

I. [ NTRODUCTION 

Research in the last decade has shown that software dis
tributed shared memory (DSM) is a cost-effective method 
o f providing the shared memory abstraction on a network o f 
computers, as it requires virtually no hardware support, can 
use off-the-shelf operating systems, and delivers good per
formance for a large class of applications. However, many 
applications running on software DSM systems suffer high 
communication and coherence-induced overheads that limit 
performance [1199]. The most common software approach 
to reducing these overheads is to employ relaxed memory 
consistency models [CBZ91, KCZ92) to delay and/or restrict 
communication and coherence operations as much as possi-

-This work was supported in part by Rutgc rs University and by Brazilian 
Finep and CAPES agencies. 

164 

ble. Another common way of reducing communication and 
coherence overheads is to employ multiple-writer coherence 
protocols [CBZ91), which allow two or more processors to 
modify their local copies of shared data concurrently, merg
ing modifications only when necessary. 

Home-based Lazy Release Consistency (HLRC) [ZIL96) 
is an example o f software DSM system that employs both re
Jaxed consistency and multiple-writer coherence. In HLRC, 
the modifications made locally by each node to a shared page 
are propagated at certain synchronization points to a home 
node for the page. Future accesses to the page require re
trieving a copy of the page from the home node. HLRC pro
vides good scalability by reducing the number of messages 
and memory overhead compared to homeless DSM systems, 
such as TreadMarks [KCZ92). 

However, HLRC has some potential disadvantages 
[CLHW99): (i) the whole page is transferred on a page fau lt, 
even if only one word of it has been modified and (ii) per
formance can be poor for some applications, if homes are 
not assigned properly. A poor assignment can significantly 
increase the number of coherence actions, messages passed, 
and bytes transferred. Furthermore, HLRC (as well as home
less systems) can be optimized by dynamically adapting its 
coherence protocol to the sharing patterns exhibited by appli
cations. Such adaptation can reduce the number of required 
coherence actions in software DSM systems for certain ap
plications [MB98, ACso+99]. 

The main goal of our work is to extend HLRC to migrate 
home nodes and adapt its coherence protocol dynamically, 
according to sharing patterns. Thus, in this paper we propose 
and evaluate Home-based Adaptive Protocol (HAP), a soft
ware DSM system based on HLRC. HAP performs two key 
functions that distinguish it from most other software DSM 
systems: detection of sharing patterns and behavior adap
tation based on these patterns. Detection consists of iden
tifying any change in the sharing pattem of a shared page. 



Adaptation consists of using a strategy that is specific to the 
sharing pattern detected to optimize the performance of the 
system. Both detection and adaptation in HAP are inspired 
by similar features in the homeless ADSM system [MB98]. 

In more detail , HAP includes the following features: 
• Dynamic adaptation between multiple and single-writer 

coherence protocols; 
• Dynamic adaptation between invalidation and update

based coherence - updates are used for single-writer 
pages, whereas invalidations are used for multiple
writer pages; and 

• Home migration of single-writer pages to the writing 
node. 

We currently have a preliminary implementation of HAP. 
We performed experiments with this implementation on a 
cluster of eight dual-processar Pentium lll-based PCs. We 
isolated the performance benefits of each of the adaptation 
strategies and compared our results against the basic imple
mentation of the HLRC system. The results show that the 
current implementation of HAP substantially improves the 
performance of single-writer applications in which shared 
pages are modified in criticai sections protected by locks. 
The results also indicate potential improvement in the perfor
mance of applications exhibiting other sharing patterns such 
as producer-consumer, single-writer between barriers. How
ever, the detection and adaptation techniques for these pat
terns have to be redesigned to exploit the real performance 
gains that can be achieved with the adaptive system. 

The remainder of this paper is organized as follows. Sec
tion Il provides an overview of HLRC, serving as back
ground material for the resto f the paper. Section III describes 
the HAP system. Section IV presents the experimental envi
ronment and the application workload. The results are pre
sented in section V. Section VI discusses the related work. 
Finally, section VI summarizes our work and presents our 
conclusions. 

11. BACKGROUND 

Severa) software DSM systems use virtual memory protec
tion bits to enforce coherence at the page levei. To minimize 
overheads these systems usually exploit relaxed consistency 
models and multiple-writer coherence protocols. 

One of the most popular consistency models is Lazy Re
lease Consistency (LRC). The LRC aJgorithm [KCZ92] di
vides the program execution into intervals delimited by syn
chronization operations and computes a vector timestamp for 
each interval. This vector describes a partia) order between 
intervals of different processors. On a lock acquire opera
tion, the Iast releaser can determine the set of write notices 
(descriptions of the modifications made to shared data) that 
the acquiring processar needs to receive, i.e. the set of no
tices that precede the current acquire operation in the par-

165 

tial order. Upon receiving the notices, the acquirer can then 
change the state of its memory accordingly. 

HLRC is an LRC system that is centered around establish
ing home nodes for shared pages. The system chooses the 
first node that accesses a page as the page's home node. In 
HLRC, a write notice received represents an invalidation that 
has to be applied to the corresponding page. A future access 
to an invalidated page requires that the local node send a re
quest for a copy of the page to the page's home node, which 
always has an up-to-date copy of the page. This scheme 
works because nodes propagate the modifications they make 
to shared pages to their corresponding home nodes at Iock 
release points. These modifications are determined using the 
twinning and diffing mechanism as follows. A page is ini
tially write-protected, so that on the first write to it a viola
tion occurs. On such a violation, an exact copy of the page 
(a twin) is made and the original copy of the page is made 
writable. When the actual modifications are required, the 
twin and the current version of the page are compared to c re
ate a runlength encoding o f the modifications (a diff). 

The lock acquire operation uses a lock manager from 
which the current owner of the lock is obtained, and a dis
tributed queue where the next acquirers wait for their turn. 
Barriers are implemented in a distributed way, so that a mes
sage with local write notices is sent at a barrier operation to 
every node. The barrier is completed when the messages with 
the write notices of ali other node are received. More details 
about the original implementation o f HLRC can be found in 
[ZIL96], where the authors demonstrare the good scalability 
o f the system. 

Our current HLRC implementation uses the VI Architec
ture [Com97] (VIA) standard for user-level communication 
as its communication substrate. VIA reduces software over
head by avoiding kernel involvement in communication op
erations. Another important feature of VIA that is used by 
HLRC is Remate DMA Write operations, which allow pages 
to be fetched from homes with no data copies and diffs to be 
applied at home nodes without interrupting them. Our imple
mentation o f HLRC was described and evaluated in [RIOO]. 

111. H OME-BASED ADAPTIVE PROTOCOL 

In this section we describe the sharing patterns detected by 
HAP, the coherence protocol behavior associated with these 
patterns, and the details of the transitions between different 
detected sharing patterns. A longer description of HAP can 
be found in [WhaO I]. 

A. Access Patterns and Protoco/ Behavior 

The access pattern categorization of HAP is based on the 
SPC (Sharing Pattern Categorization) algorithm created for 
the homeless ADSM system [MB98]. Each page is cate
gorized as multiple-writer (MW), migratory (MIG), or pro-



ducer/consumer (PC). The migratory pages are subdivided 
into two groups: MIGi and MIGo. A MlGi page is modified 
only inside criticai sections protected by the same Jock. A 
MIGo page is modified outside of criticai sections by only 
one node in an interval bounded by two consecutive barriers. 
Note that the pages classified as MlG or PC have a single 
wríter at a time. 

A home node can detect the MIGi pattem by checking for 
Jock identification(s) that can come with any diffs it receives. 
The lock identification specifies the criticai section in which 
the corresponding diffs were created. 

The write-notices received at the barrier are used by ali 
nodes to detect the MIGo and PC patterns. Each node detects 
if there was only one writer to a page, examining the write 
notices. In that case, the page is categorized as MlGo. If, 
in the next interval, the single writer is repeated, the page is 
categorized as PC. 

As a MIG or PC page is modified by a single writer, HAP 
migrates the home o f the page to its writer, avoiding the cre
ation o f twins and diffs at the writer. The h o me migration o f a 
MIGi page is done ata lock acquire operation. A Jist o f MlGi 
pages associated with the lock is maintained, and the lock re
Jeaser determines which pages have been modified since the 
last time the acquirer released the Jock. The releaser sends 
these pages to the acquirer as updates, transferring the home
ship of the pages along. After that, the lock and the write 
notices are sent to the acquirer. Only the releaser and the 
acquirer have knowledge of the home migration, so a long 
chain of page request forwards can be generated, which is a 
potential problem. 

The home of a MIGo page is migrated to the node which 
suffers the first access fault on the page after a barrier. At the 
next barrier, ali nodes will detect the single writer o f the page, 
investigating the write notices. If the single writer matches 
the first node that accessed the page, HAP has avoided the 
creation of a twin and a diff. I f that is not the case, the home 
is migrated to the single writer and the creation o f the diff at 
the writer is avoided. 

A PC page has only one writer (producer), which is always 
the same processor, and one or more readers (consumers). 
The home of a PC page is migrated to the producer, which 
sends updates to the consumers at the barriers. A consumer 
does not wait for the updates at the barrier, since frequently 
there is enough time before the pages are actually accessed 
by consumers. 

The MW pages are handled just like in HLRC, using the 
twinning and diffing mechanism, invalidation-based coher
ence, and fixed home nodes. 

8 . State Transitions 

The different page sharing patterns and transitions can be 
represented by the state diagram shown in figure I. lnitially, 

c: 

166 

~ -Dynami c Home Transition 
..... .. ., - Sta tic Home Transition 

1,4 - Single-writer I nside 
Critical Section 

2,3 - Sing~e-writer between 
Barr1ers 

5 - home rece i ved diff 

6 - Non-home modification 
Detected at Barrier 

MW - False -Sharing 
MIGi- Migratory Within Lock 
MIGO- Migr atory Between Barrier 
PC - Pr oducer /Consume r 

Fig. I. Page state diagram. 

ali pages are classified as MW. lf the home o f a page detects 
the MIGi pattem, the page enters a transitory state. If the 
home Jater receives a page request identified with the same 
lock, the home will migrate with the page and the page will 
be categorized as MIGi at the home (transition I in the fig
ure). On tbe other hand, if the home receives a diff associ
ated with another Jock, the transitory state is dismissed and 
the page returns to MW state. At a barrier, the MW state can 
be changed to MIGo, i f the nodes detecta single writer to the 
page when exarnining the write notices (transition 2). 

A page remains in MIGo state as long as the nodes detect 
only one writer to the page between barriers. In case the 
single writer is repeated at two consecutive barriers, the page 
is categorized as PC (transition 3). The state can change from 
MIGo to M1Gi (transition 4), when a page is modified inside 
a criticai section that is located between two barriers. 

A page remains in MIGi, MIGo, or PC state provided that 
it is only modified by the home. If the home receives any 
diffs for such a page, its state is "weakened" to MW (transi
tion 5 from MIGi or MIGo) or MlGo (transition 5 from PC). 

1t is possible for a MIGi page to become a MIGo page 
(transition 6) when the write notices received at a barrier in
dicate a single writer to the page that is not the current home. 

Finally, note that HAP does not require any messages that 
are not already part of HLRC either to categorize the pages' 
sharing pattems or to migrate the pages' homes. 

IV. EXPERIMENTAL ENVIRONMENT 

We still only have a preliminary version of HAP that con
tains a first-cut implementation of each of the features de
scribed in the previous section. Ali our experiments with this 
current version o f the system were performed on a cluster o f 



TABLEI 

G IGANET V IA MICROBENCHMARKS 

One-way Latency (4Bytes) 8.2/-IS 
Bandwidth (32KBytes) 101 MB/s 

PostSend (4KBytes) 2. ]/-IS 

RegisterMem (4KBytes) 4.3/-IS 

TABLE 11 

APPLICATION CHARACTERISTICS 

Appl Problem Size Synchronization 

IS 2' 0 keys, 300 iter. locks, barriers 

SOR 256 x 5 120, I 00 i ter. barriers 

FFf 2~u elements barriers 

eight SMP machines. Each machine contains two 650MHz 
Pentium Ill processors. However, for this study, we used 
on1y one processar at each cluster node. Each processar has 
a 256KB L2 cache and each node contains 512 MB of main 
memory. Ali nodes run Linux re1ease 2.2. 14. 

Each node has a Giganet cLAN NIC, which is a 32-bit 
33 MHZ PCI-based card. These nodes are connected by a 
30-port Giganet cLAN switch. The performance character
istics for our experimental platform are reported in the ta
b1e I. Latency denotes the time to transfer a 1-word packet 
between two nodes using VIA. PostSend denotes the average 
time taken to posta send using VIA. The 1ast row presents the 
cost o f the memory registration for communication buffers in 
VIA. 

We use three app1ications in this study: IS, SOR, and FFf. 
IS ranks a sequence of integer keys using bucket sort. lts 
sharing pattern is characterized by migratory pages protected 
by 1ocks. IS is distributed with TreadMarks. SOR uses the 
red-b1ack successive over-re1axation method for so1ving par
tia! differentia1 equations. The b1ack and red arrays are par
titioned into groups of rows of rough1y equa1 size, which 
are distributed among the computationa1 nodes. Communi
cation in SOR invo1ves the boundary rows, which are pro
ducer/consumer pages. SOR was deve1oped at the University 
o f Rochester. FFf is essentially the transposition o f a matrix 
of comp1ex numbers that generates an ali-to-ali , read-based 
communication. FFf is from the SPLASH2 benchmark suite 
[WQT+95]. Tab1e 11 1ists the prob1em size and the synchro
nization sty1e for each application. We chose to study these 
three app1ications because each of them high1ights a different 
aspect o f ou r system. 

167 

V . PRELIMINARY R ESULTS 

In this section we evaluate the performance benefits of 
each of the main characteristics of HAP, by comparing four 
versions of our system against HLRC. These versions are: 
H..MI on1y supports home migration of MIGi pages; H .MO 
on1y supports home migration of MIGo pages; H .PC on1y 
supports home migration of PC pages with update coher
ence; and HAP includes ali the mentioned techniques. Ali 
these versions are based on the same prototype code for our 
system. 

To better understand where time is current1y going, we 
breakdown the execution time into severa! categories (aver
aged over ali nodes): computation time, data transfer time, 
synchronization time, protoco1 overhead, and time spent in 
the handler thread, servicing remote requests. Protocol over
head is comprised by diff and twin creation, diff app1ication, 
write notice hand1ing, and remote request service. Our re
sults are presented in the figures included be1ow. Ali execu
tion times are normalized with respect to the HLRC execu
tion time. 

We a1so instrumented our systems to collect information 
about the number of messages and bytes transferred, the 
number of memory access faults incurred, the number of 
page requests, and the number of diffs generated. These re
su1ts are presented in the tab1es included be1ow. In ali cases, 
we divide the overa11 statistics by the number o f nodes. 

A. IS 

Figure 2 shows the execution time breakdown for IS. We 
run IS with HRLC, H..MI, and HAP. We do not present re
su1ts for H..MO and H_pc because this application is dom
inated by pages protected by 1ocks. Thus, resu1ts for these 
other versions are the same as for HAP. 

As shown in the figure, H..MI and HAP improve perfor
mance with respect to HLRC by 19% and 6%, respective1y. 
The main reason for these gains is a significant reduction in 
1ock and barrier overheads (27% in H .MI and 14% in HAP). 
This reduction is a direct consequence of the optimizations 
we perform for MIGi pages. Every shared page in IS is clas
sified as M1Gi by both H..MI and HAP. The home rnigration 
and the update of MlGi pages decrease the coherence over
head and the time spent in the main criticai section of the 
app1ication, which in tum alleviates the seria1ization effect 
o f the 1ock and the following barrier. 

Tab1e Ill shows the main execution statistics for each node 
of IS. As shown in tab1e, H..MI reduces both the number 
of messages and bytes transferred by 14% in comparison to 
HLRC. These reductions come from e1irninating most diff 
transfers and a 1arge number o f page requests. In terms o fac
cess faults, H..MI a1so behaves better (by 45%) than HLRC, 
since accesses to MlGi pages do not cause page fau1ts (re
call that MIGi pages are transferred during the 1ock acquire 



100 - li!2l Hnndler 
t:::a Ovcrhcad 
um Bnrricr 
lllZl Loc:k 

~ 80 ISS Pnae Fetch -Computing 

.§ 
~ 

.::! 60 

] 

~ z 
40 I~ 

$. 
20 

HLRC H _ MI HAP 

Fig. 2. Execution Time Breakdown for IS 

operation) and writes by home nodes do not cause protection 
violations. 

HAP transfers more messages than H..Ml because the 
MIGi pages are detected as MIGo pages by some nodes. The 
latter pattem generates more message traffic due to additional 
write notices and home migration with the first page request. 
The number of access faults induced by HAP is also greater 
than that induced by H ..MI, since our categorization algo
rithm requires MlGo pages to be protected more frequently 
than the other shared pages. 

Both H..MI and HAP generate fewer diffs than HLRC be
cause of the special treatment given to single-writer pages, 
but HAP does so by a much larger margin. The reason HAP 
generates fewer diffs than H ..MI is that under HAP the shared 
pages are categorized as MIGi by the home node and MIGo 
by the other nodes. When a non-home node modifies a MlGo 
page, the diff is not created i f the MIGo pattem is confirmed 
at the barrier point, i.e. the single writer will become the next 
home node. 

B. SOR 

The only pages that are effectively shared by more than 
one node in SOR are PC pages. As shown in figure 3, the 
optimizations our systems perform for this class of pages 
are able to reduce the time spent on page requests by 80% 

TABLE 111 

EXECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR IS 

HLRC H.MI HAP 
Messages (k) 14.4 12.4 14.5 
Data (kbytes) 3286.0 28 15.2 2697.7 
Access Faults 826.4 451.0 676.0 
Page Requests 488.8 338.4 338.4 
Diffs 262.5 74.7 37.4 

168 

!Z! Hondlcr 
100 -

~ 
~ Ovcrhcud -
aDJ Bnrricr 
(Zõl Loc:k 

1! li:S! Pagc Fclc:h 

I= 80 - -Compuling -.. 
•I 
.::! 60f- -

1 z 
40- -

20 - -

HLRC H _PC HAP 

Fig. 3. Execution Time Breakdown for SOR 

(H_pC) and 83% (HAP) and the handler execution overhead 
by 78% (H_pC) and 83% (HAP), always in comparison to 
HLRC. Overall, H_pc and HAP outperform HLRC by I% 
and 6%, respectively. These reason why these performance 
improvements are not more significant is the cost of con
stantly trying to detect MIGo pages in our prototype. This 
cost reftects itself in higher barrier overheads (H .PC) and 
higher protocol overheads (H .PC and HAP). 

Table IV shows how optimizing for PC pages affects the 
main execution statistics. In comparison to HLRC, H .PC 
decreases the number of page requests and messages trans
ferred by 86% and 17%, respectively. The fact that the num
ber o f bytes transferred under HLRC and H .PC is roughly 
the same shows that the updates sent by our system are ali 
useful for this application. HAP exhibits statistics that are 
similar to those of H_pc, 

Note that none of the systems we study involves diff gen
eration for SOR. HLRC uses a "first-touch" mechanism to 
select the home node for a page. This mechanism is very ef
ficient for this application, since it effectively assigns every 
producer as the home for the pages it produces, thus avoid
ing twinning and diffing overheads. HAP and H .PC use the 
same mechanism to assign the original homes nodes, making 
migration unnecessary for SOR. 

TABLEIV 

E XECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR SOR 

HLRC H_pc HAP 
Messages (k) 4.0 3.3 3.3 
Data (kbytes) 3770.0 3694.7 3686.2 
Access Faults (k) 1.7 1.7 2.0 
Page Requests 875.0 120.6 148.3 
Diffs 0.0 0.0 0.0 



Z! Hnndler 
li5l Overhead 
1111 Banier 

100 

~ Loc:k 
~ Pagc Fclch -Compuling 

~ 

O f-

O f-

HLRC H..)'C H_MO HA P 

Fig. 4. Execution Time Breakdown for FFT 

C. FFT 

We present the results for FFf as a worst-case scenario 
for HAP. As we can see in figure 4, no version of our sys
tem outperforms HLRC for FFf. H.PC, H.MO, and HAP 
degrade the execution time by more than 9%. (H .MI results 
are not presented because there are no locks in FFf.) The 
versions that use updates for PC pages (H .PC and HAP) de
grade performance because these updates are not reaJiy used 
by the application. As a result, these versions do not reduce 
the page fetch time and increase the protocol overhead. 

Another problem for our systems is that the home assign
ment scheme of HLRC again works perfectly for FFf. This 
eliminates any benefits that could be accrued from home 
node migration. In fact, the MIGo page detection in H .MO 
and HAP increases protocol overheads and induces an imbal
ance that affects the barrier times. 

Table V shows that the number of access faults and the 
number of page requests are the same for ali systems. In 
terms of communication traffic, H.PC transfers more mes
sages and data than HLRC, whereas HAP transfers a little 
less data than HLRC. H.PC transfers more messages and 
data due to useless PC updates. The reason why HAP per
forms better than H.PC is that in HAP, before a page be
comes PC, it is detected as MIGo. The node that becomes 
the home of aMIGo page (on its first access to the page after 

TABLEV 

EXECUTION STATISTICS (AVERAGE OVER ALL NODES) FOR FFT 

HLRC H ..PC H ..MO HAP 
Messages (k) 5.4 7.2 5.4 5.4 
Data (kbytes) 7689.6 11276.5 7574.2 7588.6 
Access Faults (k) 3.3 3.3 3.3 3.3 
Page Requests (k) 1.8 1.8 1.8 1.8 
Diffs 0.0 0.0 0.0 0.0 

169 

a barrier) is not considered a consumer when the page !ater 
becomes PC. As a result, the new home will not receive up
dates. 

D. Discussion 

We can see from our preliminary experiments that our 
first-cut implementation of HAP is only successful at im
proving performance for IS. The optirnizations used for the 
MIGi pages generate a 19% performance improvement in 
comparison to HLRC. Although our current implementation 
of HAP did not achieve the same success with the other ap
plications, there is potential for improvements. For example, 
our techniques decreased the communication overhead and 
number of page requests in SOR by up to 83% and 86%, 
respectively. These potential improvements did not trans
late into substantial gains for the applications we studied for 
two main reasons: the detection of MIGo pages generates 
excessive overhead and PC pages are sometimes unneces
sarily updated. We believe these problems can be alleviated 
by replacing the distributed barrier with a centralized one, 
enabling a better implementation of page categorization and 
update algorithms. Centralization of the barrier should not 
degrade synchronization performance for small or medium
scale systems. The categorization algorithm itself should 
also be modified to make sure that pages are only catego
rized as PC if both the producer and the set of consumers 
(not just the producer) are fixed. 

VI. RELATED WORK 

In this section we discuss the work related to adaptive soft
ware DSM systems that we h ave not yet mentioned. In terms 
o f home-based systems, a few different researchers have pro
posed home migration. fiAfiA [WST99] dynarnically mi
grates a page's home when a single writer is detected at the 
barrier. This is the same type of rnigration performed by 
HAP for MIGo pages. But that is the only adaptation that 
JIAnA does. Chung et ai. [CSPP99] and Cheung et ai. 
[CWW99] propose home rnigration to the processar that suf
fers the first access fault on a page. Ali the processors are 
notified about the new home location by protocol messages. 
We believe that this approach is excessively aggressive for a 
variety of applications. HAP is more conservative in that it 
only migrates a page's home if it has detected that the page 
has been modified by a single writer. HAP's home rnigra
tion is used to avoid the creation of twins and diffs without 
sending any additional messages. 

Orion [NW99] does home rnigration for pro
ducer/consumer pages, and also updates the consumers. 
Both techniques are performed by using broadcasts. In con
trast, HAP does home rnigration for other sharing pattems, 
and only uses additional messages to update the consumers. 

Xie and Han [XH99] proposed a new approach to handle 



multiple concurrent writers in software DSM systems called 
Limited Multiple Writer. It automaticaJly distinguishes two 
kinds of multiple writers (lock-based and barrier-based) and 
deals with them with different policies. Lock-based accesses 
use single-writer coherence and obey LRC, whereas barrier
based accesses can use multiple-writer coherence and obey 
RC. Adaptation in HAP seems more efficient than this ap
proach, since our system more accurately detects single
writer sharing pattems by separating them into pages mod
ified inside and outside of criticai sections. 

Keleher in [Kel98] proposes a home-based system that 
sends updates from a page's producer to its set of consumers 
at a barrier. This system is shown to outperform HLRC and 
LRC with updates for regular applications. HAP uses this 
same technique for PC pages, but also optimizes for the other 
kinds of sharing patterns. 

Two other recent papers have studied adaptation in home
less systems. The Adaptive Striping technique [LYHZOO] ex
tends TreadMarks to automatically aJieviate load imbalances. 
ln particular, those that result from multi-paged data struc
tures that have a single writer but multiple readers. Adaptive 
Striping reduces contention at the writer by evenly distribut
ing the modifications to the other processors at the next bar
rier. As a result, the writer's effort on behalf of each page 
that it offtoads is limited to constructing and sending the diff 
to a single processor. This processor is then responsible for 
servicing the requests for the page from ali consumers. This 
approach is similar to the one used by HAP to update the 
consumers o f PC pages. The principal difference is that HAP 
updates ali the consumers of each page, taking advantage of 
the low-overhead communication provided by VIA. 

Castro and Amorim proposed in [CAOI] two techniques 
called FIESTA and RITMO that detect the pages' sharing 
patterns with high precision. As a result, they show that bet
ter gains are possible by applying adaptive techniques, even 
to irregular applications. HAP uses a simpler detection tech
nique and can conceivably be improved by using FIESTA 
andRITMO. 

VII. C ONCLUSION 

This work introduced HAP, a software DSM system that 
dynamically adapts to the parallel application's sharing pat
terns. Adaptation is based on a dynamic categorization o f the 
sharing pattern associated with each page. This categoriza
tion is made by a modified SPC algorithm, introduced in the 
context of the ADSM system, which efficiently categorizes 
pages as migratory, producer-consumer, and multiple-writer. 
Based on these sharing patterns, HAP applies the following 
techniques to optimize performance: 

• Dynamic adaptation between multi pie and single-writer 
coherence protocols; 

• Dynarnic adaptation between invalidation and update-

170 

based coherence - updates are used for single-writer 
pages, whereas invalidations are used for multiple
writer pages; and 

• Home migration of single-writer pages to the writing 
node. 

We still only have a preliminary implementation of our 
system. With this implementation we performed experiments 
an 8-node cluster of PCs. Our results show that the current 
implementation of HAP performs well for certain applica
tions, but requires modifications for others. 

REFERENCES 

(ACSD+99I C. Amza, A. Cox, L.J. Jin S. Dwarkadas, K. Rajamani, and 
Willy Zwaenepoel. Adaptive Protocols for Software Dis
tributed Sharcd Memory. In Proc. of the IEEE, Spccial Issuc 
on Distributed Shared Mcmory, Spring 1999. 

ICAOI] M. Castro and C. Amorim. Efficicnt Categorization of 
Memory Sharing Pattems in Software DSM Systems. In 
Proc. ofthe 15th IEEE lnt'l Parai/e/ Processing Symposilrm 
(JPDPS'2001 ), April 2001. 

[CBZ91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen
tation and Performance of Munin. In Proc. of the 13th ACM 
Symp. on Operating Systems Principies, pagcs 152- 164, Oc
tober 1991. 

[CLHW99] A.L. Cox, E. Lara, C. Hu, and W.Zwaenepoel. A Per
formance Comparison of Homeless and Home-based Lazy 
Release Consistency. In Proc. of the 5th IEEE Symp. 011 
High-Perjorma11ce Compute r Arclritecture (HPCA-5), Febru
ary 1999. 

(Com97] Compaq Corporation, Intel Corporation, and Microsoft Cor
poration. Virtual Interface Architecture Specijicatio11, Versio11 
/ .0. http://www. viarch.org 1997. 

[CSPP991 J.W. Chung, B.H. Scong, K.H. Park, and O. Park. Mov
ing Home-based Lazy Releasc Consistency for Shared Virtual 
Memory Systems. In Proc. oftlre lntematiorral Corr[ere11ce 011 
Parai/e/ Processi11g, Setembro 1999. 

(CWW99] B.W. Cheung, C. Wang, and K. Wang. A Migrating-Home 
Protocol for Implcmcnting Scopc Consistency Modcl on a 
Cluster of Workstations. In /111. Conf. 011 Parai/e/ and 
Distribmed Processing Teclmiques and App/icatio11s, Junho 
1999. 

I 1199] L. Iftode and J .P.Singh. Shared virtual memory: Progress and 
challenges. Proc. of the IEEE. Special Issue 011 distribwed 
Shared Memory, 87(3):498-507, 1999. 

[KCZ92] P. Keleher, A. L. Cox. and W. Zwaenepoel. Lazy Rei case Con
sistcncy for Software Distributed Shared Memory. In Proc. of 
the 19th An. lnt'l Symp. 011 Compute r Architecture (ISCA '92). 
pages 13-21, May 1992. · 

I Ke198] P. Keleher. Update protocols and iterativc scicntific applica
tions. In Proc. of the 12th lnt'l Parai/e/ Processing Sympo
sium (IPPS'98), pages 675-681, 1998. 

[LYHZOO] E. Lara, A. Cox Y.C. Hu, and W. Zwaenepoel. Evaluating lhe 
Effect of Contention on Page-Based Software Shared Mcm
ory Systems. In Proc. of LLmguages, Compilers, and Rrmtimes 
for Scalable Comprrti11g, May 2000. 

IMB98] L. R. Monncrat and R. Bianchini. Efficiently Adapting to 
Sharing Pattems in Software DSMs. In Proc. ofthe 4th IEEE 
Symp. 011 High-Performance Complller Architeclllre (HPCA -
4 ), pages 289- 299, February 1998. 



[NW99) M.C. Ng and W.F. Wong. Adaptive Schemes for Home-based 
DMS Systems. In First Works!Jop on Software Distributed 
S!Jared Memory, June 1999. 

[RIOO) M. Rangarajan and L. lftode. Software Distributed Shared 
Memory over Virtual Interface Architecture: Implementation 
and Performance. In Proc. of t!Je 3rd Extreme Limvr Work
s!Jop, October 2000. 

(WhaO I) L. Whately. Técnicas de Adaptação para Software DSM 
Baseado em Residência. Msc t!Jesis, COPPE/Universidade 
Federal do Rio de Janeiro, March 2001. 

[WOT+95) S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The 
SPLASH2 Programs: Characterization and Methodological 
Considerations. In Proc. oft!Je 22nd An. /nt'l Symp. on Com
puter Arc!Jitecture (ISCA '95 ), pages 24-36, May 1995. 

[WST99) W.Hu, W. Shi, and Z. Tang. Home Migration in Home-based 
Software DSMs. In First Works!Jop on Software Distribrrted 
S!Jared Memory, June 1999. 

[XH99) X. Xie and C. Han. Adjusting Single-Multiple Writer to False 
Sharing in Software DSMs. In /111. Conference on Parai
lei and Distributing Processing Tecluriques and Applications, 
June 1999. 

[ZIL96) Y. Zhou, L. Iftode, and K. Li. Performance Evaluation ofTwo 
Home-Based Lazy Release Consistency Protocols for Shared 
Memory Virtual Memory Systems. In Proc. oftlre 2nd Symp. 
on Operating Systems Design and lmplementation (OSD/'96), 
pages 75-88, October 1996. 

171 


