
A Distributed Architecture Supporting Heuristic
and Metaheuristic Optimization Methods

Celso M. da Costa 1, Fernando L. Dotti 1, Eder N. Mathias 1, Felipe M. Müller2

1 Programa de Pós-Graduação em Ciência da Computação, Pontifícia Universidade Católica do Rio Grande do Sul
Av. Ipiranga, 668 1, Prédio 16, CEP 90619-900, Porto Alegre, RS, Brazil

celso, Adolli, mathias { @inf.pucrs.br}
2 Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Maria

Av. Roraima, Prédio 7, CEP 97 105-900, Santa Maria, RS, Brazil
{ felipe@inf.ufsm.br}

Absrracr-
This paper presents a distributed software architecture that aUows

the cooperation among research institutions in the field of Operations
Research. It has as maio aims to share existing algorithms for optimiza­
tion problems, to allow the easy testing of these algorithms with existing
instances, and to share computational power among the cooperating in­
stitutions. This is achieved respecting the autonomy and heterogeneity
of the cooperating institutions. The five functional blocks that build
the architecture are discussed here and also a study case of a Parallel
Memetic Algorithm to solve the Traveling Salesman Problem running
on this environment is analysed.

Keywords- Optimization Algorithms, Memetic Algorithm, Master­
Siave, Distributed Environment.

I. INTRODUCTION

Due to the growing competition in various sectors of the
economy, there is a well defined trend towards the optimiza­
tion of current processes in order to achieve Jower costs, bet­
ter efficiency, and higher ftexibility. Optimization techniques
are becorning almost mandatory and widely used. Optirniza­
tion problems are no rare complex, involving lots of vari­
ables, and having a combinatorial structure. Therefore, the
Operations Research scientific community is investing ef­
forts in this area. Better and new algorithms for solving opti­
rnization problems are under investigation in various research
centers. Very often, these algorithms have similar structure,
could reuse parts of the solutions, as well as use same input
data sets to be tested. Metaheuristic methods combine vari­
ous solutions in a higher levei one, whereby it is important to
easily combine executions of existing algorithms.

In order to foster the research work in this area (Operations
Research - Optirnization Algorithms), this paper presents a
distributed environment to support the cooperation among re­
searchers from different institutions.

Due to the intrinsic characteristics of distribution, auton­
omy and heterogeneity of cooperating parts (research cen­
ters, universities, enterprises, etc.), this support environment
is organized in the form of a federation of cooperating opti­
rnization centers. Each optimization center is capable o f sup­
porting the life-cycle of optimization algorithms, and may
work stand-alone or within a federation. In the context of a

172

federation, optimization centers share processing power and
cooperate to better solve the requests issued by users of that
federation. A center supports also a base o f input data sets to
test optimization algorithms that can be extended with con­
tributions from the users.

The execution of a Memetic Algorithm, which involves
various existing heuristics, may have processes spread in var­
ious nodes o f various optimizations centers o f a federation .

This text is organized as follows. In section ll we give a
brief overview of optirnization techniques. In section lU a
distributed architecture to support the cooperative environ­
ment is showed, as well as some related work. In section IV
the user interfaces for utilization through the Internet and ali
phases of a request process to solve an optimization problem
are showed. In section V we present a Parallel Memetic Al­
gorithm to solve the Traveling Salesman Problem which runs
in the architecture. Finally, in the section VI conclusions and
future works developments are outlined.

Il. ÜPTIMIZATION TECH NIQUES

Optimization methods 1 are broadly classified in exact and
heuristic. As polynomial exact methods2 to solve hard com­
binatorial optimization problems probably does not exists,
research efforts to find good solutions in reasonable compu­
tational times are important. With this objective, new heuris­
tic methods have been developed. Newell et. ai. [NEW58]
defined heuristic as "a process that solves a given prob­
lem without any guarantees about the quality of the solu­
tion found". Heuristics have thus great importance to solve
real problems with considerable dimensions in reasonable
computational times. Nevertheless, the quality of solutions
found using classic heuristics is not satisfactory to ali prob­
lem classes. Osman [OSM91] divides the heuristics in some

1The terms "optimization method" and "optimization algorithm" are
used as equivalem in this text.

2Methods that solve a problem in a time witch is polinomially bounded
by the instance size (the term "instance" is used in the field of optimization
to mean lhe inpul data set for an optimization algorithm).

groups. We focus on constructive and improvement heuris­
tics and also metaheuristics.

Constructive heuristics create a solution by adding indi­
vidual components (nodes, ares, variables, etc.) step by step,
until a solution to the problem is generated. This solution
can be feasible or not [OSM91]. A feasible solution has a
good value in relation the objective function. The objective
function is the target of an optimization algorithm.

The lmprovement heuristics (local search methods) have
as input data a feasible solution. In each phase of these
heuristics, components are excluded and inserted in the so­
lution. This mechanism generates a better solution or, in the
worst case, a solution with equal quality to the input one.

Metaheuristics are methods that conduct a local search op­
erator to explore the good characteristics and new hopeful
regions of solutions [BUROO]. According to the local search
operator, the metaheuristics can be divided in two classes:

• the first class is comprised by heuristic methods that ex­
plore only one element at the neighborhood (values in
the solutions space) in each iteration. Examples are:
Simulated Annealing [KIR83], Tabu-Search [GL093]
[FIE94], GRASP (Greedy Randomized Adaptive Pro­
cedure) [FE094], Neural Networks [POT93] and Simu­
lated Jumping [AMI99];

• the second class is comprised by heuristic methods that
use a population (a set) of solutions. These heuris­
tics are known as Population Algorithms. Exaro­
pies are: Genetic Algorithms [GOL89], Memetic Al­
gorithms [MOS99], Scatter Search [GL077] and Ant
Colony Systems- ACO [STÜ99].

lll. THE ARCHITECTURE

When developing new optimization techniques is thus
very importam to publish and reuse within the scientific com­
munity; to test various methods against same input data sets;
very often it is necessary to share computational resources in
order to allow CPU intensive tests; and when working with
metaheuristics it is also desirable to be able to combine ex­
isting methods (e.g., improvement) or operators (e.g. cross­
over, mutation) in new methods.

A. Related Work

Concerning related work, three research projects can be
mentioned: NetSolve [CAS95], NEOS [CZY97] and Meta­
NEOS [MET98]. NetSolve was developed at Tennessee Uni­
versity together with the Oak Ridge National Laboratory.
NEOS (acronym for Network-Enabled Optimization System
Server) and MetaNEOS were developed by Argonne Na­
tional Laboratory. Below, architectural and functional as­
pects o f these projects are briefiy commented.

NetSolve builds a distributed environment where users can
submit requests to remote servers supporting numerical li-

173

braries. Communication modules called agents are responsi­
ble for receiving requests from the user and submitting them
to the appropriate server. This environment eases the access
to those libraries supporting their location, download and in­
stallation. After Casanova [CAS95] these are time consum­
ing tasks for the academic community.

NetSolve agents support communication among servers
and are responsible to find out the better server for a given
requisition through a load balancing policy. The architecture
developed for NetSolve allows for servers or agents to be
dynamically started and killed without compromising the in­
tegrity of the system. Fault tolerance aspects were also con­
sidered in the architecture.

NEOS is an environment developed to allow the resolu­
tion of optimization problems using the Internet. It works
following a standardized structure for input data and has a
list of registered optimization problem solvers. Through the
Internet, the user chooses the problem solver, informs the
input data set, and issues a request. At the end o f the execu­
tion, the users receives back the results and run time statis­
tics. To each registered problem solver a manager is assigned
which is responsible for the computational resources needed
by the server and for answering possible questions coming
from users. To cope with resource allocation management
(e.g. load balancing) in a distributed environment, NEOS
uses the CONDOR environment [LIT88].

The MetaNEOS project is a proposal to add functionality
to the already existing environment supported by NEOS. It
aims at solving optimization requests in a metacomputing en­
vironment. A metacomputing environment is an abstraction
to represent the computational resources existing in an in­
frastructure of loosely coupled processor nodes (e.g. the In­
ternet). The user transparently uses the computational power
of the environment without being aware of distribution as­
pects.

To build this metacomputing environment, a key module
is the MetaNEOS resource broker. This module is responsi­
ble for the global resource allocation. lt manages schedulers
defined by MetaNEOS, interacts with schedulers local to the
nodes non exclusively dedicated to MetaNEOS processing,
as well as deal with heterogeneity aspects in the environment.
MetaNEOS plans to support local resource allocation using
techniques defined in CONDOR and GLOBUS [GL097].

8 . Ou r Architecture

The main objective o f the architecture here described is to
offer an environment to support the cooperation between per­
sons and institutions researching in the area o f combinatorial
optimization. The following features are identified:

• Distribution: the scenario is inherently distributed, as
various institutions physically dispersed may want to
cooperate;

• Autonomy and Cooperation: due to the autonomy of
the institutions, a hierarchical approach is regretted, and
a cooperative one is followed. Each institution is able
to provi de a support infrastructure configured according
to the local decisions, called an Optimization Center.
Optimization Centers may cooperate with each other to
solve optimization problems issued by their users. In
this case a group of Optirruzation Centers will build a
Federation;

• Heterogeneity: as a consequence of autonomy, the
heterogeneity of computational infrastructures must be
taken into consideration.

The architecture here described considers these features.
Each Optimization Center has tive kind of modules: Center
Manager, Center Scheduler, Node Manager, Legacy - Ex­
ecutor, and User Interfaces. Figure I depicts the whole ar­
chitecture.

r--------------------------------
1 User a Optimization Ccnter

lnlcrfaces

···~···
lrequest:

- sitc on lnlemct

ask by
resources -

solutions rc7
~

ask load

/ ! run lcgacy

Executor

_____ ~·~ 0 __ e e_-·~ ~0:~-__
Legcnd:

~ Functional Module
\.......____./ Unit o f Distribution

O Legacy

Optimization Algorithm

e Java/RMI Interface
of Communication

Communication - Use Relalionship

Fig. I. Distributed architecture to solve optimization problems.

The functional modules may have various computational
interfaces. Each moduleis a unit o f distribution, i.e. the vari­
ous modules can be allocated to different nodes in a computer
network. The computational interfaces are defined following
an object oriented methodology, as well as the information
passed between the modules. Each module of the architec­
ture is discussed next:

• lj:xecutor Modules: represent implementations of

174

available optirruzation algorithms. These implemen­
tations may be legacy modules for different computa­
tional platforms (hardware and operating system) which
are integrated in the architecture; or may also be de­
veloped having the functionality of the architecture in
mind, as the case study in section V: a Parallel Memetic
Algorithm to solve the Traveling Salesman Problem;

• Node Manager Module: The Node Manager manages
a physical node which participares in an Optimization
Center. It controls the execution of Executor Modules
registered with that node. Upon requisition for an op­
tirruzation algorithm, it triggers the appropriate Execu­
tor Module. The Node Manager has three tables: one
with instances, another of Executor Modules that it can
execute and another with undergoing requests. During
initialization, it registers with the Center Scheduler.

• Center Manager Module: The Center Manager initial­
izes a Center Scheduler of the Optirruzation Center, re­
ceives requests from User Interface and sends them to
a Node Manager supporting the specified optimization
algorithm. This Node Manager is chosen by the Cen­
ter Scheduler. When the executor finishes it works, it
sends the solution (answer to the request) to the Center
Manager, which delivers it to the appropriate user.

• Center Scheduler Module: A Center Scheduler con­
trols the load balancing of an Optirruzation Center. It
also has a table with ali Optirruzation Centers that it co­
operates with, and a table with Node Managers work­
ing in that center. When a request is subrnitted to a
Center Manager, it asks the associated Center Sched­
uler where (in which node) to execute that request. The
Center Scheduler further asks the local Node Managers
and the federating Center Schedulers.

• User Interface Module: The V ser Interface is the mod­
ule responsible for interacting with human users of an
Optimization Center. While the interface communicates
with a center, the service perceived by the user is reJa­
tive to the whole federation. The User Interfaces com­
municate with the Center Manager Module in order to
Ioad the offers (methods and instances) of the federa­
tion, as well as to request the execution of an optimiza­
tion algorithm. As optimization algorithms may have
long execution times, the interface offers the possibil­
ity for the user to receive the results in an asynchronous
manner, via e-mail. With this, the user can launch a
request and disconnect from the Center Manager. The
user may also prefer a synchronous behavior, by which
the interface is blocked until the reception o f the results
o f the preceding request.

C. Initializing Process

The Figure 2 shows the initializing process of n Optirruza­
tion Centers. In the following we discuss about each phase
o f this process.

Fig. 2. lnitializing process.

• Phase 1: The Center Manager is initialized using a
name (for example, CenterManager : : PUCRS) in a
machine with an Internet address. It then starts a Center
Scheduler (for example, with name Cen terSched­
uler : : PUCRS) in the same machine. The Center
Scheduler has a table (in hard disk) listing ali other Cen­
ter Schedulers that it cooperates with. The job of the
Center Manager is to receive requests from users, find
out a node to run the request using the Center Scheduler,
and send the request to the node chosen by the Center
Scheduler;

• Phase 2: The n Node Manager can be inüialized
in any node using a name (for example, NodeMan­
ager : : 01) in a machine with Internet address. When
a Node Manager starts, it registers itself with a Cen­
ter Scheduler informing its instances and executor mod­
ules.

The result o f this initialization process is an Optirruzation
Center with one Center Manager, one Center Scheduler and
n Node Managers. The Center Scheduler knows all the in­
stances, executors and Node Managers that take part in this
Optimization Center, it also knows other Center Schedulers
in other Optimization Centers, i f the case.

IV. REQUEST PROCESS

The environment supports two user interfaces: one allows
users to request heuristic methods to be processed and an­
other one requests metaheuristic methods. Currently we have
a parallel and a sequential version of a Memetic Algorithm
for the Traveling Salesman Problem running as metaheuris­
tics in the environment.

175

~--- · · F.._a..rliiillil_• .. inii.riiíi~___:~CI.:;]
la--·-1-............ ·IITJI
~--·- -

·-·-· --- ' •IC!J] ~---llll
1~-------1 •11::01
1-oee-·:-- · lO:: I
1 ~-n oee-· 011 ·181
, .. 1111111Mt4- I·-Tl .. •11_, J]
I OOIK- [~~· ..
OU••-- L ·!EBI -T .. I •• I ~

,.,...u .. ton u O • O ut 0 411 0"1.l

Q L_!_ Jl

""rtll' """"""'' . 'rei o
~ ... ~ . :UM I ~

,_ .. 1l!J
.......

.... '14 ..-...,.._.,In H•lt.- ~

I •. I
• ~ I L ·-

, ____ ,
.,..

....... pt:lll1d-• nf •)lur ltirlhfl • • ..-r.u t ...,..,,.

__ ..,
I

~. _,. lan

!(..:.......;.,.: • ..J

Fig. 3. User Interface to Memetic Algorithms.

Figure 3 shows the user interface used to submit a Par­
aliei or Sequential Memetic Algorithm request to the envi­
ronment. This interface is a Java applet and runs with any
Internet browser. When the user starts it, the applet commu­
nicates with the Center Manager from which the applet has
been downloaded and a search process is triggered to find
instances and methods available in the whole federation (co­
operating centers). In this case, for example, Instances, Con­
structive and Improvement methods for the Traveling Sales­
man Problem.

Functions available to the user allow himlher to, for in­
stance: select the maximum execution time, select the num­
ber of times that the selected method will be applied in the
selected instance, set the reception of solutions via e-mail

(off-line execution) or in the same window (on-line execu­
tion), and if he/she wants to receive solutions each time an
execution phase ends or only when the total execution fin­
ishes.

The area Framework status enables the user to see what
is happening in each phase of execution and the area Help
shows help information about interface setups, instances and
methods. The button start execution subrnits the request to
the Center Manager and in area Solution the solution found
to the request is printed.

(Cauet~)o ... n

••. ~':a ~ ~~--- ~ ----
rtquots scan:h. g • 1<l«1 Nodes • - leaoc•cs

5C&f'Ch; (§ - inltantCS • : ~= solutiofts -~:de,
\ "'--- -~ C<nl<tScbodlllet

id m!......./ e ~ J . ehooteaNode

"'!""' . S<I«tNode

. inscrt rcquest

• Nodc that can bc

• at any Optuniution Calttr

e{ Node Monqu)

~
• ><le<INode

scnd soluuon
to stndn' of tbe

. ""l

1f Mtme"uc Paralkl Of

Constr\l('tJvc and alta
lmprovement hcunuks

a Node tha.l cu bt
at any ()pc1mitatioa Ccnter

Fig. 4. Reques1 process.

Figure 4 shows the request process, comprising: the ini­
tialization the user interface, the creation and subrnission of
the request, the execution of an executor module, and finally
the solution returned to the user. In the following we discuss
about each phase o f this process:

• Phase 1: The use r interface for heuristics o r metaheuris­
tics is initialized. The "search process" is started, it
communicates with the Center Manager in an Optirniza­
tion Center to find ali instances and methods available
in the distributed environment;

• Phase 2 and 3: The Center Manager asks to the Cen­
ter ScheduJer about the instances and methods avaiJable

176

in this Optirnization Center. The Center Scheduler co­
operates (creating a new "search process") with other
Optirnization Centers to find the instances and methods
available in that centers. The Center Scheduler retums
the results of the "search process" to the Center Man­
ager that returns to the user interface;

• Phase 4: The user configures a request using the inter­
face and subrnits it to the Center Manager. The Center
Manager inserts the request in a request table and re­
tums an identification to the user. The user creates a
thread that awaits for the solution with the given identi­
fication;

• Phase 5: In the Center Manager a thread is responsible
for launching new requests in the request table. When
it detects a new request, it asks the associated Center
Scheduler ("select Node process") for the address of a
Node Manager that supports the required method (Ex­
ecutor Module);

• Phase 6: The Center Scheduler cooperates with other
Center Scheduler to find a Node Manager to handler the
request;

• Phase 7: After the search, the Center Scheduler selects
only one node using the schedulers polices and returns
its Internet address to the Center Manager thread;

• Phase 8: The Center Scheduler inserts the user request
in requests table of chosen Node Manager;

• Phase 9: A thread in the Node Manager is awakened
to treat the new request in the table. It then starts the
Executor Module that handles the request. An Executor
Module may control more than one method;

• Phase 10: I f the request is to execute a simple construc­
tive method, at the end o f execution the Executor Mod­
ule sends the solution to the Center Manager that issued
the request. The Center Manager analyses the solution
and sends it to the user by e-mail or creates a new en­
try in the solutions table with <identification,
solution> and awakens the user thread waiting for
that solution (see Phase 4);

• Phase 11: If the request is to execute a constructive
method followed by an improvement o f the achieved so­
lution, for example, the Executor Module executes the
constructive method and asks ("select Node process")
the Center Scheduler for a Node Manager that can han­
dle the improvement request. Phases 12 to 14 are exe­
cuted.

• Phase 12: The Executor Module sends the request to
the chosen Node Manager;

• Phase 13: The Node Manager detects the request in its
table o f requests and triggers the Executor Module that
handles the request;

• Phase 14 and 15: At the end of execution of the Ex­
ecutor Module, it sends the solution to the previous Ex-

ecutor Module that issued the request (see Phase 11) or
sends the solution to the Center Manager that issued the
initial request (see Phase 10).

A. Scheduler Algorithm

Currently, the scheduling of tasks (requests in Center Man­
ager) is done following a simple algorithrn based on a single
circular list o f Node Managers.

When the Center Scheduler receives request for Node
Manager selection ("select Node process"), it asks other Cen­
ter Schedulers (that it cooperates with) for a list of ali Node
Managers that can handle the request.

In this implementation, the resource management algo­
rithm has no knowledge about the state of the machines
where the Node Managers are running, for example, the
amount of general processes of the operating system, the
amount o f optirnization processes, or the current memory us­
age in the node.

V. STUDY CASE- TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem, or TSP for short, is one
o f the most classic optimization problems and it has the fol­
lowing definition[BUROO]: given a finite number of "cities"
along with the cost of travei between each pair of them, find
the cheapest way of visiting ali the cities and retuming to the
starting point. The travei costs are symmetric in the sense
that traveling from city x to city y costs just as much as trav­
eling from y to x, if this does not occur, the travei costs are
asymmetric; the "way of visiting ali the cities" is simply the
order in which the cities are visited. To put it differently,
the data consist of integer weights assigned to the edges of
a finite complete graph; the objective is to find a Hamilto­
nian cycle (that is, a cycle passing through ali the vertices)
with the minimum total weight. In this context, Hamiltonian
cycles are commonly called tours.

A. Memetic Algorithms

Memetic Algorithms (MAs) are used to identify a broad
class of metaheuristics (i.e. general purpose methods aimed
to guide an underlying heuristic) which constitutes one o f the
most successful approaches for combinatorial optimization.
They are search algorithms based on mechanics of natural
selection and natural genetics. They combine survival o f the
fittest among string structures with a structured yet random­
ized information exchange to form a search algorithm with
some of innovative ftair of human search. In every genera­
tion, a new set of artificial individuais is created using bits
and pieces of the fittest old individuais; an occasional new
partis tried for good measure [MOS99] .

MAs use a collection (or population) of solutions, from
which, using selective breeding and recombination strate-

177

gies, better and better solutions can be produced. Simple
genetic operators such as crossover and mutation are used to
construct new solutions from pieces of old ones, in such way
that for many problems the population steadily improves.
Crossover is a simple idea of how to create a new solution
(offspring) produced by combining the pieces of the original
parents, in the TSP case, the parents are two distinct tours.
Mutation is the other most comrnonly used operator, which
provides the opportunity to reach parts of the search space
which perhaps cannot be reached by crossover alone. It is
suggested that at Jeast one "parent" should always be cho­
sen on the basis of its fitness - in terrns of combinatorial
problems, this implies some monotonic function o f the objec­
tive function value [RAY89]. A key feature, present in most
MA implementation, is the use of a population-based search
which intends to use ali available knowledge about the prob­
lem. This knowledge is incorporated in form of heuristics,
approximation algorithms, local search techniques, special­
ized recombination operators, truncated exact methods, and
many other ways.

B. Para/lei Memetic Algorithm to solve TSP- PMA

The basic idea behind most of parallel problems is to di­
vide a task in small tasks and solve them at the same time
using multiple processors (nodes). This technique is known
as divide-and-conquer and can be applied in many ways in
population algorithms. The follow classification is based on
a proposition by Cantú-Paz [CAN98] to the genetic algo­
rithms. There are three main types of Parallel Memetic Al­
gorithms (PMA) in the literature: PMA with global single
population using master-slave approach, PMA with a single
population spatially structured and PMA with multiple pop­
ulations.

In a master-slave PMA there is a single population Gust as
in a sequential MA), but the fitness evaluation is distributed
among severa! processors.

The master-slave paradigm does not assume the existence
a structured computational architecture. It can be imple­
mented on environments having shared or distributed mem­
ory. On an environment with shared memory, the population
can be laid in shared memory area where each processar can
read the individuais reserved to it and write the result o f the
evaluation without confticts.

On a distributed memory environment, the population can
be laid in a specified processar. The master process is in
charge o f sending requests for population initialization, eval­
uation of individuais and other operations to the slave pro­
cess. The slave processes are on other nodes of the dis­
tributed environment.

PMA with a single population spatially structured are
suited for massively parallel computers. Selection and
matching (crossover) are restricted among ali the individu-

als. The ideal case is to have only one individual for every
processing element available.

PMA with multiple populations (or multiple-demes)
are more sophisticated, as they consist on several sub­
populations witch exchange individuais occasionally. This
exchange of individuais is called rnigration. Multiple-demes
PMA are known with different names. For example. they are
known as "distributed" PPA because they are usually imple­
mented on distributed memory MIMO computers.

Algorithm 1 Generic algorithm to PMA.
Process Manager () (

11 Parallel initialization of the population
FÓr i • O to InitialPopLen do (

SelectNode (node) ;
Create Process (node,

Executor (GENINDIVIDUAL, null));
}

11 Parallel local search for each individual
For i • O to InitialPopLen do (

ind•Wait_ individual () ;
SelectNode (node) ;
Create Process (node,

Executor (LOCALSEARCH, ind}};

Repeat (
11 Launch parallel recombinations and mutations
SelectNode (node) ;
Create Process (node,

Recombina tions
(Number_Recombinations)) ;
11 master processes and wait for their termination
SelectNode (node);
11 before next iteration
create Process (node ,

Mutations(Number_Mutations)) ;
WaitAll () ;
Pop = SelectPop (Pop);
If Pop has converged then pop = RestartPop () ;

Until Termination_Condition • True;
}

Process Recombinations (Number_Recombinations)
For i • O until Number_Recombinations) {

(indl , i nd2) • SelectToMerge {) ;
ind3 • Recombine (indl , ind2J ;
SelectNode (node} ;
Create Process (node ,

Executor(LOCALSEARCH, ind3));

Process Executor (TYPEOFEXECUTION , individual)
If TYPEOFEXECUTION = a GENINDIVIDUAL
Then i nd • Geraindividual {) ;
Else ind • LocalSearch {individual) ;
Evaluate { ind) ;
AddinPopulation {ind};

Process Hutations (Number_Mutations)
For i ~ O until Number_Mutations}

indl • SelectTol1utate {) ;
ind2 • Mutate (indl);
SelectNode (node);
Create Process (node,

Executor(LOCALSEARCH, ind2)) ;

We propose a Parallel Memetic Algorithm to solve the
TSP problem. 1t has a global single population using master-

178

slave approach. This approach was chosen because the ar­
chitecture showed in section III follows this paradigm, what
makes it simple to map the PMA to the existing architecture.

A pseudo code for the PMA is showed in Algorithm I.
The process manager controls the execution o f the algorithm
until its terrnination. During the initialization of the popula­
tion, a parallel process is created to generate each individual.
The individuais generated are inserted in a population, which
is global and stored in the node where the process manager
is executing. For each new individual inserted in the popu­
lation, the process manager creates a new parallel process to
perform the local search with that individual. The recombi­
nation and mutations processes work as masters. After the
selection of individuais of the population (for mutation or
recombination), a parallel process is created to perform the
local search algorithm with each individual.

Therefore, n parallel processes are created for each of re­
combination and mutations processes, where n represents the
number of iterations. Fitness evaluation and insertion in the
population are performed by the executor process. Another
important aspect to mention is the use of a global Joad bal­
ancing algorithm to achieve an homogeneous load distribu­
tion on the environment.

B. l Mapping of the PMA under the architecture

The PMA is an Executor Module called Paral­
lelMemeticAlgori thm. When an execution request ar­
rived to the Node Manager that has this module, its execu­
tion is started (Phases 8 and 9 of Figure 4). The fist phase
of a PMA is to create the population. Suppose that the pop­
ulation size is of 13 solutions (individuais), the constructive
method to create each individual need to be executed thirteen
times. When the PMA wants to create an individual, it asks
the Center Scheduler to select a node to execute it (Phases
11 , 6 and 7 o f Figure 4). Then it sends a new request to the
chosen Node Manager to execute the constructive algorithm
and awaits for the solution (Phases 12, 13 and 14 of Figure
4). When a solution (individual) is available, a new processes
for Local Search is created. This has the same behavior as in
the constructive phase, i. e. the Executor Module asks to Cen­
ter Scheduler for a Node Manager to execute the local search
method.

At least a crossover phase is applied on the population.
As the crossover and mutation operators are not CPU-bound,
it would be not cost effective to execute them in parallel.
Crossover and mutation are then executed in the same node
ofthe Executor Module ParallelMemeticAlgori thm.

Each phase of the PMA produces partia! solutions, they
are sent to the Center Manager that issued the request and
the user can get it. When the execution is finished, it sends
the Iast solution (Phase I O o f Figure 4) and exits.

VI. CONCLUSIONS AND FUTURE WORKS

This paper showed an architecture to support the exe­
cution of classical heuristics and metaheuristics. A Par­
aliei Memetic Algorithm was showed to execute over
an environment that supports the cooperation among two
universities (PUCRS and UFSM). The system is opera­
tional and can be found on http://code.ladd.pucrs.br or
http://glover. ce.ufsm.br/mathias. The algorithm presented
here is being implemented using Java/RMI as programming
language and communication mechanism.

We are about to weight the cost of the different phases of
the distributed execution in order to better analyse the perfor­
mance. Following to this, a scheduling policys for the existly
environment will be choosen, and its impact on the perfor­
mance o f the system measured.

We ared now undergoing a performance evaluation phase
where we compare sequential and parallel Memetic Algo­
rithms.

REFERENCES

[AMI99) AMIN, S. Simulated Jumping. Operations Research, EUA, p.
23-38, 1999.

(BUROO] BURION, Luciana Salete. Algoritmo Memético para o Problema
do Caixeiro Viajante Assimétrico como parte de um Framework para
Algoritmos Evolutivos. Master Thesis, Universidade Estadual de
Campinas, Faculdade de Engenharia Elétrica e de Computação, São
Paulo, Brazil, 2000.

[CAN98] CANTÚ-PAZ, E. A Survey of Parallel Genetic Algorilhms. Cal­
culateurs Paralleles, Reseaux et Systems Repartics. Paris, v. 10, n.
2. p. 141-171, 1998.

[CAS95) CASANOVA, H.; DONGARRA, J. NetSolve: A Network server
for solving computacional science problems. Technical Report CS-
95-313, University ofTennessee, Knoxville, Tennessee, 1995.

[CZY97] CZYZYK, J.; MESNIER, M. P.; MORE, J. J. The Network­
Enabled Optimization System (NEOS) Server, Preprint MCS-P615-
1096, Argonne National Laboratory, Argonne, lllinois, 1997.

[FE094) FEO, T.; REZENDE. A greed randomized adaptative search pro-
cedure for maximum independent set. Operations Research, EUA,
ed.42,p.860--879, 1994.

[FIE94(FIECHTER, C. N. A Parallel Tabu Search Algorilhm for Large
Traveling Salesman Problems. Discrete Applied Malhematics,
EUA, p. 243-267, 1994.

[GL097) GLOBUS RESOURCE MANAGER SPECIFICATION. Globus
working note, available at http://www.globus.org, 1997.

[GL077] GLOVER, F. Heuristics for lnteger Programming Using Surro­
gate Constraints. Decision Scienccs, EUA, ed. 8, p. 156-166, 1977.

(GL093] GLOVER, F.; LAGUNA, M. Tabu Search. Modem Heuristic
Techniques, Blackwell Scientific Publications, Oxford, EUA, p. 70-
150, 1993.

[GOL89) GOLDBERG, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, EUA, 1989.

[KIR83) KJRKPATRJCK, S.; GELATT, C. D.; VECCHl, M. P. Optimiza­
tion by Simulated Annealing. Science, EUA, ed. 220, p. 67 1-{)79,
1983.

[LIT88) LITZKOW, M. J.; LIVNY, M.; MUTKA, M. W. Condor- A hunter
for idle workstations. In Proceedings ofthe 8th lnternational Con­
ference on Distributed Computing Systems, Whashington, District
o f Columbia, IEEE Computer Society Press, p. I 08- 111 , 1988

179

[MET98] METANEOS: METACOMPUTING ENVIRON-
MENTS FOR OPTIMIZATION, propose available at
http://www.mcs.anl.gov/metaneos, 1998.

[MOS99) MOSCATO, Pablo. Memetic Algorilhms: A Shon lntroduction.
New Ideas in Optimization, McGraw-Hill, Washington, EUA, cap.
2, 1999.

[NEW58] NEWELL, A.; SHAW, J. C.; SfMON, H. A. Empírica! explo­
rations wilh Lhe logic Lheory machine. Western Joint Computer
Conference, EUA, p. 218-239, 1958.

[OMGOI] OMG-Document. Common Object Request Broker Architec­
ture, http://www.omg.org, 2001.

[OSM91] OSMAN, lbrahim. Heuristics for Combinatorial Optimization
Problems: Developments and New Directions. In Proceedings of
lhe first seminar on lnformation Technology and Applications,
Marfield Conference Center, EUA, Sep. 1991.

[POT93) POTVIN, J. Y. The Traveling Salesman Problem: A Neural Net­
work Perspective. ORSA Journal on Computing, EUA, ed. 5, p.
338-348, 1993.

[RAY89) RAYWARD-SMITH, V. J.; OSMAN, I. H.; REEVES, C. R.;
SMITH, G. D. Genetic Algorilhms in Search, optimization and Ma­
chine Learning. Addison-Wesley, EUA, 1989.

[ST Ü99] STÜTZLE, T.; DORJGO, M. ACO Algorilhms for Lhe Travel­
ing Salesman Problem. Evolutionary Algorithms in Engineering
and Computer Science: Recent Advances in Genetic Algorithms,
Evolution Strategies, Evolutionary Programming, Genetic Pro­
gramming and Industrial Applications, EUA, 1999.

[VIN97] VINOSKJ, S. CORBA: lntegrating Diverse Applications Within
Distributed Heterogeneous Environments, IEEE Communications
Magazine, 1997.

[VIN98] VINOSKJ, S. New Features for CORBA 3.0, Communications
o f lhe ACM, vol 4 1, no I O, October 1998.

