
A Java Environment for High-Performance
Computing

Marcelo Lobosco1
, Claúdio Arnorirn1

, Orlando Loques2

1 Laboratório de Computação Paralela, Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ
Bloco 1-2000, Centro de Tecnologia, Cidade Universitária, Rio de Janeiro, Brazil

{lobosco,amorim @cos.ufrj.br}
2 Instituto de Computação, Universidade Federal Fluminense

Rua Passo da Pátria, 156, Bloco E, 32 Andar, Boa Viagem, Niterói, Brazil
{loques@ic.uff.br}

Abstract-
There has been an increasing research interest in

extending the use of Java towards high-performance
demanding systems such as scalable web servers, multimedia
applications, and large-scale scientific applications. However,
given the low performance provided by current Java
implementations, these application domains pose new
challenges to both the application designer and systems
developer. In this paper we present CoJVM (Cooperative Java
Virtual Machine), a new Java environment for high
performance computing designed to speed up Java
applications when executing on DSM based architectures
implemented on clusters of workstations. The shared memory
implementation is based on the HLRC DSM protocol and
takes advantage of ruo-time information, extracted from the
NM, to improve application performance.

Keywords-- Java, distributed-shared memory, parallel
JVM implementation, high-performance computing, cluster
computing

I. INTRODUCTION

Java [ARN 96) is an object-oriented programming
Janguage, developed by Sun Microsystems, which
incorporates features such as multithreading and primitives
for concurrent programming. One of its main objectives is
to allow the portability of programs among different
hardware and operating system platforms. This objective is
portrayed by the well-known slogan "Write once, run
everywhere". The approach taken to reach this goal was the
adoption of a standardized supporting platform called the
Java Virtual Machine (JVM). The Java compiler generates
a platform independent pseudo-code, called bytecode,
which can then be executed in any computational
environment (hardware & operating system) that supports
the Java bytecode interpreter included in the standard JVM.
The price paid for the portability, achieved through
interpretation, as one might expect, is performance.

Severa) attempts intending to improve Java execution
performance have been made, such as the addition of just
in-time compilation support and other optimizations
techniques to Java execution environments [SUN 99].

180

Recent results showed that optimized Java code performed
comparably to Fortran for some numerically-intensive
regular computations [GUP 00]. However, these
improvements were not enough to ensure that Java
performed as well as C. Nevertheless, numerous systems
for high-performance network computing developed to
support Java applications have been proposed in recent
years. The applications of these systems tend to be those of
a large-scale computational nature, potentially requiring
any combination of computers, networks, UO, and memory,
as defined by the Java Grande Forum [JGF]. Examples of
such applications include data mining, satellite image
processing, scalable web servers, and fundamental physics.
At first glance, the choice of Java seems paradoxical, since
it is an interpreted language. This single feature, however,
has not been enough to dampen the great interest in its use
in the development of high-performance computing
environments.

Then, why should we use Java for High-Performance
Computing? Besides the portability and interoperability
achieved by a standard supporting environment, other
features of the language such as its object-oriented
programming model, simplicity, robustness, multithreading
support, and automatic memory management have proved
attractive enough for the development of software projects,
especially those intended for large and complex systems.
Also, the language portability has been decisive for its
choice in projects that consider the use of idle computers,
connected to the Internet, to solve large computational
problems [BAR 98, CAP 97, FOX 96]. In addition, the
growing popularity of the language helps to explain its use
in the high-performance computing area.

In this paper we present a new Java environment for
high-performance computing called CoJVM (Cooperative
Java Virtual Machine). Its main objective is to speed up
Java applications executing on a homogeneous cluster of
workstations, our target architecture. CoJVM relies on two
key features to improve application performance: I) it uses
the HLRC DSM protocol to implement the shared memory
abstraction in the cluster [ZHO 96] and 2) it exploits

application run-time behavior by introducing a new
instrumentation mechanism to the NM. Mostly important,
the syntax and the semantics of the Java Janguage are
unaffected, allowing a programmer to write a program in
the same way as he/she would write a concurrent program
for a single Java Virtual Machine (JVM).

Overall, the main contributions of our work are: (a) to
combine efficiently a home-base software DSM with a
distributed JVM in order to build a high-performance Java
environment for clusters; (b) to use the knowledge of
application behavior at run-time, extracted from the NM,
to reduce the DSM protocol overheads. More specifically,
we show that JVM information can be used in severa!
effective ways to improve application performance, such as
to create diffs dynarnically; to vary the granularity of the
coherence unit, and to detect automatically reads and writes
to shared memory without paying the high cost of using the
virtual-memory protection mechanism. Also, we show that
further performance improvements can be achieved using
VIA [COM 97] for network communication across the
cluster.

The remainder of this paper is organized as follows.
Section 2 describes Java support for multithreading and
synchronization, and the Java memory model. Section 3
and 4 describes HLRC and the VIA standard, respectively.
In section 5, we show that the Java syntax and semantics
require no alteration in order to declare and to synchronize
objects that are used in a typical DSM environment. In
section 6, we describe the architecture and the
implementation of CoJVM and show .how the NM
instrumentation is used to optimize the HLRC protocol. In
section 7, we present related works that implement the
notion of shared memory in a Java environment. Finally, in
section 8 we draw our conclusions.

Il. JAVA

The Java language specification contains ali the
required concepts that are necessary for software DSM
implementation of Java, although compatible Java DSM
implementations are unavailable. This section describes
such concepts.

A. Multithreading and Synchronization in Java

In Java, threads programrning is simpler than in
languages such as C and C++. This happens because Java
already provides a native parallel programrning model that
includes support for multithreading. The package java.lang
offers the Thread class that supports methods to initiate, to
execute, to stop, and to verify the state o f a running thread.

In addition, Java also includes a set of synchronization
prirnitives, which are based on an adaptation of the classic
monitor model as proposed by Hoare [HOA 74]. The
standard semantics of Java allow the methods of a class to
execute concurrently. The synchronized reserved word

I X I

when associated with methods specifies that they cannot
execute concurrently. In other words, these methods can
only execute in a mutual-exclusion fashion according to the
monitor paradigm.

B. Memory Model

The JVM specifies the interaction model between
threads and the main memory, by defining an abstract
memory system, a set of memory operations, and a set of
rules for these operations. The main memory stores ali
program variables and is shared by the JVM threads (refer
to figure l). Each thread operates strictly on its local
memory, so that variables have to be copied ftrst from main
memory to the thread's local memory before any
computation can be carried out. Sirnilarly, local results
become accessible to other threads only after they are
copied back to main memory. Variables are referred to as
master or working copy depending on whether they are
located in main or local memory, respectively. The copying
between main and local memory, and vice-versa, adds a
specific overhead to thread operation.

Thread A Thread B Thread C

~~ registers §~ registers ~~ registers

Local Memory Local Memory Local Memory

llt___m::aoo ----~1~-.n Memo-cy hea-p ---.~li
Fig I. The internai architecture of the Java Virtual Machine's

Memory

The replication of variables in local memories
introduces a potential memory coherence hazard since
different threads can observe different values for the same
variable. The JVM offers two synchronization prirnitives,
called monitorenter and monitorexit to enforce memory
consistency. The prirnitives support blocks of code declared
as synchronized. In brief, the model requires that upon a
monitorexit operation, the running thread updates the
master copies with corresponding working copy values that
the thread has modified. After executing a monitorenter
operation a thread should either initialize its work copies or
assign the master values to them. The only exceptions are
variables declared as volatile, to which NM imposes the
sequential consistency model. The memory management
model is transparent to the programmer and is implemented
by the compiler, which automatically generates the code
that transfers data values between main memory and thread
local memory.

ill. Sorrw ARE DSM

A software DSM system provides a shared memory
abstraction on a cluster of computers. This illusion is often
achieved through the use of the virtual memory protection
mechanism, as proposed by Li [LI 89]. Two main
shortcornings of such an approach are (a) the occurrence of
false sharing and fragmentation phenomena due to the use
of the large virtual page as the unit of coherence, which
Jead to unnecessary communication traffic; and (b) the high
OS costs of treating page faults and crossing memory
protection boundaries.

Severa! relaxed memory models, such as LRC [KEL
92], have been proposed to alleviate false sharing. In LRC,
shared pages are write-protected so that when a processor
attempts to write to a shared page an interrupt will occur
and a clean copy of the page, called the twin, is built and
the page is released to write. In this way, modifications to
the page, called dijfs, can be obtained at any time by
comparing current copy with its twin. LRC imposes to the
programmer the use of two explicit synchronization
primitives: acquire and release. In LRC, coherence
messages are delayed until an acquire is performed by a
processor. When an acquire operation is executed the
acquirer will receive from the last acquirer ali the write
notices, which correspond to modifications made to the
pages that the acquirer has not seen according to the
happen-before-1 partia! order [KEL 92]. The acquirer then
request copies of modified pages to the home nodes. HLRC
introduced the concept of home node, in which each node is
responsible for maintain an up-to-date copy of its pages. At
release points, diffs are computed and sent to the page's
home node, which reduces memory consumption in home
based DSM protocols and contributes to the scalability of
the HLRC protocol [ZHO 96].

IV. VIRTUAL INTERFACE ARCHITECTURE

The Virtual Interface Architecture (VIA) is a user-level
memory-mapped communication architecture developed by
the industry that aims to achieve low latency and high
bandwidth communication. The main idea is to remove the
criticai path of communication from the operating system
kemel. The operating system is called just to establish a
communication channel, after which it is up to the user to
manage ali the communication.

A virtual interface (VI) is the interface between a NIC
(Network Interface Card) and a process that allows the VI
direct access to the process' memory. The VI represents a
communication endpoint and pairs of VIs are connected to
form a bi-directional point-to-point communication
channel. VIA does not provide any multicast or broadcast
support. A VI consists of two working queues: send queue
and receive queue. To each queue there is an associated
work notification mechanism called the "doorbell" that
notifies the NIC for incorning request. The VI consumer is

182

a software process that communicates through a VI such as
an application program or a standard operating system
communication facility. The VI consumer posts requests to
the queues, in the form of descriptors, to send or receive
data. The VI provider handles asynchronously requests,
which receive proper status when are finished. The VI
Consumer looks up the status of descriptors to verify that
messages are correctly sent or received. The VI Consumer
can then remove the descriptor or reuse it to send or receive
another message. A completion queue allows VI consumers
to combine many completion events of multiple VIs into a
single queue, which helps the task of event management.

VI-Aware
Applications Programs

Applications Programs

OS Vendor API
..•.•..•.•..•...•................................... ...

IOpen/Close/Map Mcmory
VI Provider API d

Scod/RcceiftiRI)MA ~ w.

[l - ~~ - ~~ - ~~ I VI Kemel Agent I
I VI Kemellnterface I an an an

VI Hardware (Media Dependeo! Interface)

Fig. 2 VI Component lnteraclion

To directly transfer data between the VI Consumer and
NIC without copying data to temporary buffers, the
memory must be kept pinned to the same physical memory
location until the VI Consumer deregisters the memory.
This can become a problem if a program needs more
memory than the physical memory available.

VIA supports two types of data transfers: Send-Receive,
that is similar to traditional message-passing model, and
Remote Direct Memory Access (RDMA), where the source
and destination buffers are specified by the sender, and no
receiver is required. VIA defines two RDMA operations,
RDMA Write and RDMA Read. Figure 2 shows VIs
functioning between the application program and the NIC.

We choose VIA to perform protocol communication
because: (a) the direct access to the NIC enables low
latency communication, which has been shown to improve
DSM performance [RAN 00] ; (b) data can be directly
transferred between the buffers of a VI Consumer and the
network without copying any data to or from intermediate
buffers, which also helps to improve performance; and (c)
the RDMA support can be used to automatically fetch and
update regions of memory from/to the page home node.

V. DECLARA TION ANO SYNCHRONIZA TION OF SHAREO
OBJECTS

In CoJVM, the declaration and synchronization of
objects in the distributed shared memory follows the Java
mode1, since the 1anguage specification already includes the
concepts required to support the DSM abstraction. This can
be exemplified by the concurrent programming model of
Java which assumes the existence of a main memory
shar~d among aH threads running on the Java Virtual
Machine [LIN 99]. Besides, the language already provides
synchronization primitives. The synchronized reserved
word permits the definition of blocks or even methods that
must be executed in mutua1 exclusion. The wait method
forces an object to wait until a state is reached. The notify
and notifyAII methods notify one or ali objects,
respectively, that some condition was changed. The
prograrnmer with the use of these primitives can easily
construct a barrier or other synchronization constructs.

Therefore in CoJVM ali declared objects are implicitly
and automatically allocated into the shared memory. This is
achieved transparently through the declaration of the entire
Java heap as a shared memory space, in a way similar to
Java/DSM [YU 97]. MultiJav [CHE 98] uses a run-time
system ana1ysis to automatically detect shared objects.
Aleph [HER 99] forces the programmer to use a library to
specify what object will be shared.

No extra synchronization primitive is added in our
environment. Other environments, such as Java// [CAR 98],
centralize synchronization in a special method for each
class, the method live. The method forbid (method,
condition) is used in Java// for an implicit synchronization,
working as a guard, impeding the access to the method
method, when the condition condition is true. Titanium
[YEL 98] introduces its own barrier instruction.

VI. ARCHITECTURE ANO IMPLEMENTATION OF DSM

There are two basic alternatives to implement the DSM
abstraction on the JVM. The first one is to implement DSM
as a library. A software Jayer is interposed between the
JVM and the applications, with the purpose of providing
the DSM support, working, therefore, as a middleware. The
great advantage of this architecture is its portability: this
middleware can be used to add to any standard JVM
implementation the DSM abstraction. Howev~r, the
performance of this architecture could turn 1ts use
prohibitive. Aleph and Charlotte [KAR 98] adopt this
alternative.

The second alternative is to implement DSM at the JVM
levei. When compared with the previous alternative, this
has the advantage of not adding another software layer to
provide the desired functionality. In general, it is expected
that the second altemative provides better performance than
the first one. The possibility of access to the JVM internai
state is also an attractive advantage of the second

183

architecture. However, this architecture is not portable, i.e.,
each host system (hardware + OS) must have a modified
JVM. We choose the second altemative to implement
software DSM in the JVM. MultiJav, cJVM [AR199a, ARI
99b], and Java/DSM also adopt this basic alternative.

To provide the shared memory abstraction, we decided
to use the HLRC (Home-based, Lazy Release Consistency)
protocol for two main reasons. First, it scales better than
homeless LRC implementations [ZHO 96]. Second, the
HLRC implementation already supports the VI Architecture
[RAN 00]. However, our implementation of HLRC differs
significantly from the base HLRC protocol since our HLRC
version does not make use of the virtual memory protection
mechanism to detect reads and writes to the shared memory
areas in a controllable way. During the bytecode
interpretation, CoJVM uses the memory access instructions
such as putfield and getfield to detect access to shared
memory areas that require coherence actions. The
advantage of this approach is that we cut off the high costs
of using the virtual-memory protection mechanism. In
addilion, CoJVM can afford HLRC to enforce coherence at
small granularity units than the page unit, contributing to
reduce or even elirninate false sharing and fragmentation.

By using a bit vector in a way that each bit is associated
with a 32-bit of a primitive Java type that is located on the
heap, another optimization can be made: every time an
object enters a monitor and updates a variable, the bit
corresponding to that memory region is set. In this
situation the bit vector reflects exactly the modifications
made to 'the page, so both twin generation and di./f creation
become unnecessary. As a result, the diff is automatically
generated and corresponds to the positions marked in the bit
vector. Note that the memory overhead required for such an
approach is negligible and equal to 3% (l/32bits) since I bit
is spent to mark each 32-bit of a primitive Java type.

Application

Ray-Tracer

Euller - Size A

FFf- Size A

Alpha-Beta
Search - Size A

TABLEI
EXECUTION TIME ÜVERHEAD

JDK 1.2.2 CoJVM

(s) (s)

95,89 94,41

642,03 747,15

186,18 188,24

281,14 294,03

%
Difference

-1,54

16,37

1,10

4,58

Table I illustrates the execution time overhead to mark
the bit vector for four applications: ray-tracer, provided by
Manta [MAN], and Euller, FFf, and Alpha-Beta Search,
from JavaGrande Benchmark [JGF]. For two applications,
Ray-Tracer and FFf, the difference between JDK (Sun's
implementation of Java) and CoJVM is negligible. For
Alpha-Beta Search, the difference is under 5%. The bigger

difference occurs in Euller: 16%. We believe that this
difference can drop, since the code that sets the bit vector is
not optimized yet: it is written in C, while the JVM
interpreter is written in assembler.

••••••• • ••••••••
(a)

•••• •••• •••• • •••
(b)

Fig 3. RDMA Write. Shade squares denote modified memory
regions. To transfer the modified region in (a) using RDMA, we

will need just one message. To transfer thc modified region in (b)
using RDMA, we will need 5 distinct messages. one per modified

memory block, because there are gaps among dirty blocks.

Page transfers are done with the send-receive approach.
Diffs transfers are done using either send-receive or the
RDMA Write provided by VIA. We have to choose
between send-receive and RDMA Write because VIA does
not provi de a Scatter-and-Gather mechanism 1, which would
be useful to the di.fftransfer. A latency penalty is imposed if
exists more than a dirty contiguous segment per memory
block [RAN 00], since it will be necessary to send one
message for each memory segment. Figure 3 illustrates the
situation. Nevertheless, we can send a memory block that
contains ali the dirty blocks, minimizing the latency penalty
of multi pie messages, as figure 4 shows.

l- X-tl
(a)

•••••• •••• • ••••• l(--X+ L,g - -tl
(b)

l-----X+Lg----ll
(c)

Fig 4. Memory Modification. The latency penalty imposed to send
many message with diffs using RDMA could be overcame by

sending one message that contains ali the modifications
(illustrated in b and c). Nevertheless, sending diffs with RDMA
write is only suitable when the úme to send both data and gap is

smaller than the time to send diff with send-receive and apply it in
the home node.

1 It is possible to gather data but it is not possible to scatter
data in one RDMA write descriptor.

184

Let x be the total amount of data to be transferred; g the
gaps between two distinct blocks; tRoMA(Y) the time to
transfer y bytes using RDMA write; tsR(Y) the time to
transfer y bytes using send-receive and tA(Y) the total time
to apply y bytes in the memory. It is better to use RDMA
Write to automatically update a home node if:

The second part of the equation indicates the time: (a) to
transfer the diff from a remote node to the home node; and
(b) to apply the diff at the home node. This operation is
similar to a scatter-and-gather, so no gap among dirty block
areas is transferred.

The bit vector can also be used to choose either diffs or
RDMA Write to update the home node memory, since its
analysis permits us to know exactly the size of the gaps
among dirty memory areas.

It is worth to note that CoJVM does not modify the
standard semantics of the JVM. In fact, it provides
transparency at the programming levei, allowing a
programmer to practice concurrent programming in the
same way as it is done in a single JVM. Thus, no additional
effort is required from the programmer to use the proposed
environment.

VII. RELATED WORK

In this section we describe some systems that implement
software distributed shared memory (SDSM) on Java. A
detailed survey on Java for high performance computing,
including systems that adopt message-passing approaches,
can be found in [LOB 01].

A. MultUav

One of the main objectives of MultiJav is to maintain
the portability of the Java language, allowing its use in
heterogeneous hardware platforms. CoJVM does not
address this issue, assuming a homogeneous cluster
environment. The MultiJav's approach implements the
distributed shared-memory (DSM) model into Java by
modifying the JVM, but using standard Java concurrency
constructs, thus avoiding changing the language definition.
The approach is similar to ours. However, sharing is object
based in MultiJav, while we share the primitives Java data
types. MultiJav runtime system, through an analysis of the
load/store instructions of the bytecode being executed, can
automatically detect which objects should be shared, in
order to guarantee consistency. This technique seems to be
the main contribution of the work. Different threads are
perrnitted to access variables of a same object. Thus a
significant amount of false sharing may occur. MultiJav

uses a multiple-read I multiple-write protocol to alleviate
potential false sharing situations.

B. Java/DSM

Java/DSM under development at Rice University was
the first proposal to support a shared-memory abstraction
on top of a heterogeneous network of workstations. The
main idea behind Java/DSM is to execute an instance of
JVM in each machine that participates in the computation
by using a system that combines Java portability with
TreadMarks [KEL 94], a software DSM Jibrary, which
enables the JVM to be extended across the network.
TreadMarks uses a homeless protocol, while CoJVM
adopts a home-based DSM protocol.

Java/DSM is similar to the system presented in the last
subsection, except for the changes to Java's semantics. In
contrast to that system, the heap is allocated in the shared
memory area, which is created with the use o f TreadMarks,
and classes read by the JVM also are allocated
automatically into the shared memory. In this regard,
CoJVM adopts a similar to approach.

Java/DSM extends the Boehm and Weiser collector
[BOE 88], which is a distinguishing contribution of the
work. The garbage collector o f each machine maintains two
lists; one containing remote references for objects created
locally (export list), and other keeping references to remote
objects (import list). The lists contain an estimate of the
actual cross-machine reference set, which are used only for
garbage collection purposes. For most of the time, each
machine independently executes the garbage collection,
although some synchronization operations are required
once a while in order to take care of cyclic structures.
CoJVM uses a similar technique, but it is not necessary to
create any new structure. Again, the knowledge extracted at
run-time from both the JVM and the shared-memory
protocol is used to maintain the information necessary to
perform garbage collection. The home node must maintain
the list of remote nodes that have a copy of its memories
blocks to perform the coherence action. This information is
equivalent to the export list. The import list is the difference
between the total memory and the memory blocks that the
node is home for. The Java garbage collection algorithm is
adapted to incorporare the notion of local and remote
memory blocks.

C. cJVM

cJVM has been developed at IBM Haifa Research
Laboratory at Israel. cNM supports the idea of single
system image (SSI) in which a collection of processes can
execute in a distributed fashion with each process running
on a different node. To implement the SSI abstraction,
cJVM uses the proxy design pattem [GAM 95], in contrast
to our approach that adopts a release consistency protocol.

185

In cJVM a new object is always created in the node
where the request was executed first. Every object has one
master copy that is located in the node where the object is
created; objects from the other nodes that access this object
use a proxy.

Aiming at performance optimization, during class
loading, the associate methods are classified according to
the way they access the object fields. Thereafter, the
classification helps to choose the most efficient proxy
implementation for each method. Three proxy types are
supported: (a) standard proxy that transfers ali the
operations to the master copy; (b) read-only proxy that
applies the operations locally, based on the fact that it is
guaranteed to access only fields that never change, so the
proxy can replicate and maintain these fields; and (c) proxy
that locally invokes methods without state, since these are
methods that do not access object fields. Although this
classification is done dynamically, at class loading time, the
information it uses is static. So another difference between
CoJVM and cJVM is that we use data available at run-time
in theJVM.

cJVM modified the semantics of the new opcode,
allowing the creation of threads in remote nodes. CoJVM
does not modify the semantics nor the syntax of any Java
opcode. I f the parameter for the new opcode is a class that
implements Runnable, then the new bytecode is rewritten,
as the pseudo bytecode remote new. This pseudo bytecode,
when executed, determines the best node to create a new
Runnable object. A pluggable load balancing function
makes the choice of the best node. We do not treat load
balancing for two reasons: (a) scientific applications usually
executes in a exclusive fashion, in a way that the CPU is
not shared with other applications; so load balancing is not
necessary; and (b) for commercial applications, we think
that a good designer or initial configuration is more
effective in improving performance than dynamic load
balancing.

VIII. CONCLUSION

In this work we introduce CoJVM, a cooperative JVM
that addresses in a novel way severa! performance aspects
related to the implementation of distributed shared memory
in Java. We showed that CoJVM complies with the Java
language specification while supporting the shared memory
abstraction as implemented by our customized version of
HLRC, a home-based software DSM protocol. The main
difference between CoJVM and current DSM-based Java
implementations is that it takes advantage of the run-time
application behavior, extracted from the JVM, to reduce the
overheads of the coherence protocol. More specifically, a
specialized run-time JVM machinery (data and support
mechanisms) is used to create diffs dynamically, to allow
the use of smaler data coherence units, and to detect
automatically reads and writes to the shared memory,

without using the time-expensive virtual-memory
protection mechanism. Moreover, CoJVM uses VIA as its
communication protocol aurung to improve Java
application performance even further.

REFERENCES

[ARI 99a] ARIDOR, Y.; FACTOR, M.; TEPERMAN, A. cJVM:
a Single System /mage of a JVM on a Cluster.
International Conference on Parallel Processing 99
(!CPP 99), September 1999.

[ARI 99b] ARIDOR, Y. ; FACTOR, M.; TEPERMAN, A. cJVM:
a .Giuster Aware JVM. Proceedings o f the First Annual
Workshop on Java for High-Performance Computing
in conjunction with Lhe 1999 ACM International
Conference on Supercomputing (ICS), Rhodes,
Greece, June 1999.

[ARN 96] ARNOLD, K.; GOSLING, J. The Java programming
/anguage, First Edition. Addison-Wesley, 1996.

[BAR 98] BARATLOO, A.; KARAUL, M.; KARL, H;
KEDEM, Z. An lnfi'astructurefor Network Computing
with Java Applets. In Proceedings of the ACM 1998
Workshop on Java for High Performance Network
Computing; Pato Alto, California, USA, February
1998.

[BOE 88] BOEHM, H.; WEISER, M. Garbage Co/lection in an
Uncooperative Environment. Software: Practice and
Experience 1988; 18(9):807-820.

[CAP 97] CAPPELLO P.; CHRISTIANSEN 8.; IONESCU M.;
NEARY M.; SCHAUSER K.; WU, D. Javelin:
lnternet-Based Parai/e/ Computing Using Java.
Concurrency: Practice and Experience 1997;
9(11): 11 39-11 60.

[CAR 98] CAROMEL D.; KLAUSER W.; VA YSSIRE J.
Towards Seamless Computing and Metacomputing in
Java. Concurrency: Practice and Experience 1998;
10(11 - 13): 1043- 106.

[CHE 98] CHEN, X.; ALLAN, V. MultiJav: A Distributed
Shared Memory System Based on Multiple Java
Virtual Machines. The 1998 lnternational Conference
on Paralle1 and Distributed Processing Technique and
Applications (PDPTA'98), Las Vegas, Nevada, USA,
Ju1y 1998.

[COM 97] Compaq Corporation, Intel Corporation, and Microsoft
Corporation. Virtual Interface Architecture
Specification, Version 1.0. http://www.viarch.org.
Accessed on December, 25.

[FOX 96] FOX, G.; FURMANSKI, W. Towards Web!Java
Based High Performance Distributed Computing - an
Evolving Virtual Machine. ln Proceedings of the 5 Lh .
IEEE Symposium on High Performance Distributed
Computing; 1996.

[JGF] Java Grande Forum. http://www.javagrande.org.
Accessed on December, 25.

[GAM 95] GAMMA, E.; HELM, R.; JOHNSON, R.;
VLISSIDES, J.; BOOCH, G. Design Patterns -
E/ements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GUPOO] GUPTA, M.; MIDKI, S.; MOREIRA, J. High
Performance Numerical Computing in Java:
Compi/er. Language and App/ication Solutions.

[HER 99]

[HOA 74]

[KAR 98]

[KEL92]

[KEL94]

[LI 89]

[LIN 99]

[LOBO!]

186

LMAN]
[RAN 00]

[SUN 99]

[ZHO 96]

[YEL 98]

[YU 97]

Tutorial at Lhe ACM I lEEE Supercomputing; Dallas,
USA, November 2000.
HERLIHY, M. ; WARRES, M. A Ta/e of Two
Directories: lmplementing Distributed Shared Objects
in Java. In ACM 1999 Java Grande Conference, Pato
Alto, California, USA, June 1999.
HOARE, C. Monitors: An Operating System
Structuring Concept, Communications of lhe ACM,
12(10), October 1974.
KARL, H. Bridging the Gap Between Distributed
Shared Memory and Message Passing. In ACM 1998
Workshop on Java for High Performance Network
Computing. Paio Alto, California, USA, February
1998.
KELEHER, P.; COX, A.; ZWAENEPOEL, W. Lazy
re/ease consistency for software distributed shared
memory. Proceedings of the Nineteenth lnternational
Symposium on Computer Architecture, pages 13-2 1,
May 1992.
KELEHER, P .; DW ARKADAS, A.; COX, A.;
ZWAENEPOEL, W. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating
Systems. Proceedings of Lhe 1994 Winter Usenix
Conference, pp.115-131, January 1994.
LI, K.; HUDAK, P. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321--359, November 1989.
UNDHOLM, T .; Yellin, F. The Java Virtual Machine
Specification. Second edition. Addison-Wesley, 1999.
LOBOSCO, M.; AMORIM, C.; LOQUES, O. Java for
High-Performance Computing. Technical Repor! RT-
01/01. Available at http://www.caa.uff.br/reltec.html.
Manta: Fast Paralle1 Java. http://www.cs.vu.nUmanta/.
RANGARAJAN M.; lFTODE L. Software Distributed
Shared Memory over Virtual Interface Architecture:
lmplementation and Performance. In Proceedings of
the 4th Annua1 Linux Showcase and Conference,
Atlanta, October 10- 14,2000, Atlanta, Georgia, USA.
Sun Microsystems. The Java Hotspot TM
Performance Engine Architecwre.
http://java.sun.com/products/hotspotlwhitepaper.htm1.
Accessed on December, 25.
ZHOU, Y.; IFTODE, L. ; LI , K. Performance
eva/uation of two home-based /azy re/ease consistency
protocols for shared virtual mem01y systems.
Proceedings of the 2nd Symposium on Operating
Systems Design and lmp1ementation, October 1996.
YELICK, K. et ai. Titanium: A High-Performance
Java Dia/ect. In ACM 1998 Workshop on Java for
High-Performance Network Computing, Stanford,
California, February 1998.
YU, W.; COX, A. Java/DSM: a Platform for
Heterogeneous Computing. ACM 1997 Workshop on
Java for Science and Engineering Computation, June
1997.

