
I
I Using Mobility and Blackboards to

Support a Multiparadigm Model
Oriented to Distributed Processing

Jorge Luis Victória Barbosa 1•
3

, Adenauer Corrêa Yaminl.3, Patrícia Kayser Vargas2
,

Débora Nice Ferrari2
, Alberto Egon Schaeffer3, Cláudio Fernando Resin Geyer3

1 Informatics Department, Catholic University of Pelotas (UCPel)
Pelotas, RS , Brazil

{barbosa, adenauer} @atlas.ucpel.tche.br

2 Informatics Department, LaSalle University Center (UNILASALLE)
Canoas, RS, Brazi l

{kayser, nice}@ lasalle.tche.br

3 Informatics Institute, Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre, RS, Brazil

{barbosa, adenauer, egon, geyer}@inf.ufrgs.br

Abstract-
Holoparadigm (Holo) is a multiparadigm model oriented to

development of paraUel and distributed programs. In this
paper we proposc the Distributed Holo (DHolo), a model to
support the distributed execution of programs developed in
Holo. DHolo is based on object mobility and blackboards. This
distributed model can be fully implcmented on Java platform.
Specifically, mobility is implemcnted using Voyager and
blackboard using Jada tuple space.

Keywords- Multiparadigm, Mobility, Blackboard and
Distributed Processing.

I. I NTRODUCI'ION

In the last years the multiparadigm theme has been
continually researched [HAN 94, MUL 95, AMA 96,
LEE 97, APT 98, PIN 99]. Researchers have proposed
models of software development through the integration of
basic paradigms (mainly: imperative, logic, functional, and
object-oriented paradigms). Using this approach, they have
been looking for two goals: (a) to overcome the specific
limitations of each paradigm and (b) to take advantage of
the most useful characteristics of each one through their
combination.

Each paradigm has sources of implicit parallelism. For
example, the exploitation of AND parallelism and OR
parallelism in logic programming [BAR 00, V AR 00].
Another example is object-oriented paradigm that allows
the exploitation of inter-object parallelism and intra-object

parallelism [NGK 95, ClA 96]. The multiparadigm
approach integrates paradigms. So, it also integrates their
parallelism sources. In this context, interest in automatic
exploitation of parallelism in multiparadigm software has
emerged. Enlargement of this approach guides the studies
to distributed systems where the mobility, the
heterogeneous hardware and the use o f networks as parallel
architectures are considered. The development of
distributed software using multiparadigm models has
received attention of the scientific community [NGK 95,
CIA 96, ROY 97, HAR 98, HAR 99].

In this context, we are creating the Holoparadigm
(Holo). Holo is a multiparadigm model oriented to
automatic exploitation of parallelism and distribution. Holo
has a coordination model based on leveis of blackboards
(called histories) encapsulated in new programming entities
called beings. A new language (Hololanguage [BAR OI])
implements the concepts proposed by the Holoparadigm.

In this paper, we propose a model that supports the
distributed execution of programs developed in Holo. This
model is called Distributed Holo (DHolo) . DHolo has a
network as physical execution environment and is based on
object mobility and blackboard. It was implemented using
Java [JAV OI] and two speciallibraries to support mobility
(Voyager [VOY OI]) and blackboards (Jada [CIP OI]).

The paper is organized as follow. The section two
presents the main concepts of Holoparadigm and describes
the principies of the Hololanguage. In the section three the

187

Distributed Holo is proposed. Experimental results are
presented and discussed in the section four. The section five
describes related works. Finally, the section six draws some
conclusions and presents directions for future works.

11. HOLOPARADIGM ANO HOLOLANGUAGE

Being is the main Holoparadigm abstraction. There are
two kinds of beings: e/ementary being (atomic being
without composition leveis) and composed being (being
composed by other beings). An elementary being is
organized in three parts: interface, behavior and history.
The interface describes the relations between beings. The
behavior contains actions, which implement functionalities.
The history is a shared storage space in a being. A
composed being (figure I a) has the same organization, but
may be .composed by others beings (component beings).

Each being has its history. The history is encapsulated
in the being. In composed being, the history is shared by
component beings. Therefore, it is possible to exist severa!
leveis of encapsulated history. A being uses the history in a
speci fic composition levei. For example, figure I b shows
two leveis of encapsulated history in a being with three
composition leveis. Behavior and interface parts are
omitted for simplicity.

(a) Co"1JOS<Xl being structure (b) Exalr4>le of CO!llJOSÍtion (3 leveis)

Fig. I Being organization

Automatic distribution is one of the main Holoparadigm
goals. Figure 2 exemplifies a possible distribution to the
being presented in the figure I b. Besides that, the figure
presents the mobility in Holo. The being is distributed in
two nodes of the distributed architecture. The history of a
distributed being is called distributed history. This kind of
history can be implemented using DSM techniques
[PRO 99] or distributed shared spaces [CIP 94, AMB 96].

Mobility [IEE 98] is the dislocation capacity of a being.
In Holo, there are two kinds of mobility: /ogica/ mobility
(being is moved when crosses one or more borders of
beings) and physical mobi/ity (dislocation between nodes of
distributed architectures). Figure 2 exemplifies two possible
mobilities in the being initially presented in the figure I b.

188

After the dislocation, the moveable being is unable to
contact the history of the source being (figure 2, mobility
A). However, now the being is able to use the history of the
destiny being. Here, physical mobility only occurs if the
source and destiny beings are in different nodes of the
distributed architecture (it is the case in our example).
Logical and physical mobilities are independent.
Occurrence of one does not imply in the occurrence of the
other. For example, the mobility B in the figure 2 is a
physical mobility without logical mobility. In this example,
the moved being does not change its history view
(supported by the blackboard). This kind of situation could
happen if the execution environment aims to speedup
execution through locality exploitation.

Fig. 2 Distributed being and mobility

The coordination model used in Holo is based on the
blackboard architecture [NII 86] (figure 3a). This
architecture is composed by a common data area
(blackboard) shared by a collection o f programrning entities
called know/edge sources (KSs). Control is implicit in the
blackboard access operations. The read and write
operations in the blackboard are used to communication
and synchronization between KSs. This kind of control is
called implicit invocation. A composed being architecture is
similar to the blackboard architecture, since severa!
components sharing a common data area. In Holo, KSs are
beings and the blackboard is the history. By the way, there
are severa! limitations in blackboard implicit invocation.
lntroduction of explicit invocation in the coordination
model eliminates these limitations. Any direct call between
entities is called explicit invocation. In Holo, the beings
influence the others using the history, but can change
information directly too.

Figure 3b shows the Holo coordination model. History
is a logic blackboard, i.e., the information stored is a group
of logic terms. lnteraction with the history uses two kinds
of Linda-like [CAR 89] operations: a.ffirmation and

question. An affirmation puts terms in the history, like
asserts in Prolog databases. Moreover, a question permits to
consult terms from the history. A consult does a search in
the database using unification of terms. A question is
blocking or non-blocking. A blocking question only returns
when a unifying term is found. Therefore, blocking
questions synchronize beings using the implicit invocation.
In a non-blocking question, i f a unifying term is not found,
the question immediately fails. Besides that, a question is
destructive or non-destructive. A destructive question
retracts the unifying term. The non-destructive one does not
remove it.

(a) Blackboard archilcciUrc

(b) H olo coordina~ion model

}
Expllclt

lnvocatlon

)

)

lmpllclt
lnvocatlon

Blackboard

Fig. 3 Holo coordination model

Hololanguage (so-called Holo) [BAR OI] is a
programming language that implements the concepts of
Holoparadigm. A program is composed by descriptions of
beings. Figure 4 shows a description of a being using the
structure presented in the figure I a. Interface shows the
actions accessible to other beings. Behavior contains the
actions, which implement the being functionality. History is
a logic blackboard used by actions and component beings.
Initial state of history is a set of logic terms introduced by
the programmer.

<belng ld> (<arg>) clonlng <dese>
Interface <exported actlons:>.

{ .---------,
I Actions
hlstory
{

J.---L-o-g-ic_T_e_nn_s~

}

Fig. 4 Being description

189

The behavior supports five kinds of actions: logic
actions (LA), imperative actions (IA), modular logic actions
(MLA), modular imperative actions (MIA) and
multiparadigm actions (MA). LA is a logic predicate. IA is
a group of imperative commands. MLA contains severa!
logic actions encapsulated in a module. MIA encapsulates
severa! imperative actions. MA integrates logic and
imperative actions.

Actions are composed using an Action Composition
Graph (ACG, figure Sa). Following the Peter Wegner's
opinion [WEG 93] about the impossibility of mixing logic
and imperative behaviors, we have created the Action
lnvocation Graph (AIG) presented in the figure Sb. This
graph determines the possible order of act ion calls during a
program execution. MAs, IAs and MIAs call any action.
LAs and MLAs only call LAs and MLAs. Therefore, there
are two regions of actions during an execution, namely,
imperative and logic regions (figure Sb).

If an execution flow goes in the logic region, the only
way to return to the imperative region is finishing the flow
(returning the results asked from the imperative region).
This methodology eliminates many problems, which
emerge when logic and imperative commands are mixed
(for example, distributed backtracking [BOS 96]). We
believe AIG is an important contribution to the discussion
presented by Wegner [WEG 93, WEG 97].

The language supports logical mobility (command
move), concurrency between actions of a being (command
spawn) and severa! kinds of cloning (command clone).
Besides that, the Hololanguage permits both kinds of
blackboard interaction proposed by the Holoparadigm.
Affirmation uses the symbol " !" . Moreover, there are
severa I question types. The symbol "." indicates a blocking
question and the symbol " ?" is used for non-blocking.
Besides that, there are non-destruc ti ve (default) or
destructive (symbol "/f') questions. Finally, a question can
return multiple answers. The symbols ".", "?", "lf', and "*"
(ali answers) configure the questions.

(/;:: :ê,: -~)") b-:
...... ··0 ·····:8·· .. l 1Wfi

--"<:é~~/- ---;;-
\.) :...) 1?fgiolt

(b) l'dicnl"'<ll:aaion~(AIG)

Fig. 5 Composition and invocation graphs

lll. DISTRIBUTED HOLO

Holo is oriented to development of distributed systems.
It was created to support the implicit distribution, i.e.,
automatic exploitation of distribution using mechanisms
provided by basic software (compiler and execution
environment). Looking for this, we propose a platform to
the Holoparadigm (called Holoplatform, see figure 6). Two
parts compose the Holoplatform:

• development p/atform: tools used for software
development (HoloCase, HoloJava and Java
compiler);

• execution p/atform: hardware and software used to
support the distributed execution of programs
(DHolo and distributed architecture).

Development
platform

Execution
platform

Fig. 6 Holoplatfonn

::·-··--· (l~lod:boordsin Javn)

VoyngerAPI
(Mobility in Java)

HoloCase supports visual programming based on the
abstractions proposed by Holo and generates programs in
the Hololanguage. HoloJava converts programs in Holo to
Java using a transformation policy. Severa! works indicated
that Java [JAV OI] is adequate to be used like an
intermediate Ianguage [HAJ 96, PRO O I]. On the other
hand, standard Java cannot directly support logic actions,
history and mobility. These aspects need special support to
implement the conversion. We use J/Prolog [CHI O I]
(Prolog in Java) to implement logic actions, Jada [CfP O I]
(blackboards in Java) to support the history, and Voyager
[VOY O I] (mobility in Java) to move beings. The figure 7
shows the HoloJava transformation.

Concurrent actions (spawn command) generate threads
in Java. Logic actions are converted in JIProlog methods.
Besides that, each move command can generate a moveTo
method of Voyager. Each history is equivalent to a Jada
tuple space and ali kinds of history invocations can be
directly converted in operations to spaces in Jada.

Bolo

Concurrent action<;
(action SfX11m)

Logjcal Mobility
(action move)

HistOI)'

Holo]ava

r
a
n

f

Java

Threadsin
Java

J!Prolog trethods

V~trobility

(rrethod niOI't'To)

Jada 1uple spoce

Affinmtion 10 HistOI)' ---+----=--+-- Pul a luplc in a Jada
(synix>l "!} O tuple spoce (rrethod '"ora'}

Blocking non-destructive
question lo HistOI)' (syrrbol ··. '}

r
m

Get a tuple in Jada
using the rrethod ''read'

Blocking dcstructive
qucstion lo HistOI)' (synix>l "ti}

a

t
Ge1 a tuple in Jada

using lhe rrethod "in"

Non·blocking non-destructive -;---r·-~-~ Get a luple in Jada
qucstion lo HistOI)' (synix>l"?") :r using lhe rrethod "retld.Jib"

o
Non-blocking dcstructive

question 10 HistOI)' (~')'llix>l "?ti } , n
Get a 1uple in Jada

using lhe rrethod "iluw"

Fig. 7 HoloJava transfonnation policy

Holoparadigm abstractions are hardware independent.
However, the model is oriented to distributed architectures.
When the hardware is distributed, there are two main
characteristics to be considered:

• mobility support: it is necessary to implement the
physical mobility treatment when there is a move to
a being Iocated in another node;

• dynamic and hierarchical history support:
distribution involves data sharing between beings in
different nodes (distributed history). There are
severa! leveis of history (hierarchical history).
Besides that, access history is adapted during the
execution to support the mobility (dynamic history).

DHolo is the software layer that supports the distributed
execution of programs in Holo. lt creates support to
physical mobility and dynamic!hierarchical history in a
cluster of workstations. DHolo project is based on a
structure called Tree of Beings. This structure is used to
organize a being during its execution. For example, the
being in the figure I b has the tree shown in the figure 8a.
The tree organizes the beings in leveis. A being only can
access the history of the composed being to which it
belongs. This is equivalent to access the history of being
Iocalized in the superior levei. A logical mobility is
implemented moving a leaf (elementary being) or a tree
branch (composed being) from the source being to the
destiny being. The Jada tuple spaces are used to support the
change of context. After the mobility, the being moved has
direct access to the destiny being's space (composed
being's history).

190

I
I

(a) Tree ofbeing;

(b) DHolo architex:utc

Fig. 8 Distributed Holo

The figure 8b presents the DHolo architecture to the
being initia lly shown in the figure 2. The figure shows the
tree o f beings distributed in two nodes. The changes to both
mobilities of figure 2 are demonstrated. Each being is
implemented using an object (interface and behavior) and a
Jada space (history). DHolo installation involves the
creation of a Voyager-enab/ed program (Voyager
environment) in each node that will be used. Since Voyager
executes on the Java Virtual Machine each node will also
have a running JVM.

During the insta llation, a Table Envi ronment (TE)
indicates the nodes that will be involved by DHolo. During
a program execution, if a logical mobility results in a
physical mobility, it is realized a moveTo operation in
Voyager (mobility A, figures 2 and 8b). When a physical
mobility is realized without logical mobility (mobility B,
figures 2 and 8a), the tree of beings does not change, but a
moveTo operation in Voyager is realized. This kind of
mobility does not have any kind of relation with the
program. It is a decision of the environment to support a
specific functionality (load balancing, tolerance fault, etc).
DHolo does not support this kind of decision yet.

191

IV. EXPERIMENTALREsULTS

We have done a group of experiments using a
distributed architecture with the following goals:

• evaluate the DHolo model. This goal involves the
evaluation of logical and physical mobility control
using the distributed tree. Besides that, it is
important to evaluate the context change control
using tuple spaces;

• evaluate the technologies used to implement the
DHolo prototype, more specifically, Voyager and
Jada.

Our experiments are based on a specific application:
datamining. We have simulated three standard cases of
datamining in a network environment:

A) Sequellfial datamining in one node (figure 9): one miner
mines three databases (mines) in the same node. The
miner changes its levei using mobility and goes in the
first mine (mark I). lt mines the history using a specific
number of read operations to Jada space (mark 2). After
that, the miner goes out of the mine (mark 3) and writes
the data mining result (mark 4) in the history of the
most general being (called Holo). This behavior is
repeated to the others two mines;

B) Seque1ztia/ datamining in three nodes (figure 10): one
miner mines three mines localized in different nodes.
The behavior is the same o f the first situation. However,
the two last mines are located in different nodes. This
implies in two important points. First, when the miner
goes in the second and third mines (marks I), it is
necessary to use physical mobility (moveTo command
of Voyager). Second, when the miner writes the results
o f the second and third mining (marks 2), it is necessary
to use remote method invocation {RMI). Both points
result in costs that should be measured;

C) Parai/e/ datamining in three nodes (figure li): three
miners mining in parallel three mines localized in
different nodes. The situation is similar to the case B.
The unique difference is that there are three miners that
work in parallel over mines. This solution involves the
real ization of two physical mobilities (marks I) and two
RMis (marks 2).

Holoparadigm is a generic model created to be used in
any kind of distributed architecture. Following this idea,
our experiments have used heterogeneous nodes, a common
situation in a typical computers network. Table I contains
the nodes specification. Table ll shows the cost o fone basic
datamining operation at each node. Our basic operation is
one tuple read (two fields, a string and an integer) from the
mine tuple space (for example, mark 2 in figure 9). Each
node has a different cost due to heterogeneity. Table III

presents the network costs involved in our experiment.
Table IV shows the versions of software utilized.

Each case was executed using five grains (number of
mining operations). The table V contains the average of
several executions and the standard deviation. Besides,
figure 12 presents a graphic representing the results listed in
the table V. Ali times are shown in milliseconds and the
network used in the experiment h as a bandwidth o f I O
Mbps.

Considering the results, some interesting points can be
underlined. Thinking in performance, case C is the best
solution after around 2500 operations. This fact stimulates
the parallelism exploitation. Besides, case 8 overcomes the
case A after around 3750 operations. This results from the
fact that the case A was executed in the node of smaller
computational power (node I, see tables I and li). The
network costs (see table III) were overcome by the use of
more powerful nodes to work in the mines 2 and 3.
Thinking in functionality, it is also important to say that
almost ali the times the mines distribution is related to data
locality. Gening speedup is desired but not required.

Fig. 9 Sequential datamining in one node (case A)

Fig. lO Sequential datamining in three nodes (case B)

Fig. li Parallel datamining in three nodes (case C)

TABLEI
NODES SPECIFICATION

NODE SPECIFICATION
1 Suo SPARCstation 20- 128 Mbvtes RAM
2 Suo Ultra 10- 128 Mbytes RAM
3 Sun Ultra 5- 192 Mbvtes RAM

TABLE li
MINING ÜPERATION COSTS (ms)

OPERATION NODEl NODE2
Ooe read operation

0.129 0.032 (like mark 2, figure 9)

TABLE m
NETWORK COSTS (ms)

OPERATION

NODE3

0.040

COST
One remote write (like marks 2, figure 10) 193
One physical mobility (like marks I , figure 10) 594

TABLE rv
SOFTWARE VERSIONS

SOFfWARE VERSION
Operating svstem SunOS Release 5.7

Mining

Voyager Version 3.3
Java Version l.2
Jada Version 3.0 beta 7

TABLE V
DATAMINING BENCHMARKS (rns)

CASE A CASEB CASE C
operations A ver. Stdv A ver. Stdv A ver. Stdv

1000 746.4 12.4 1635.3 75.1 1298.3 66.2
2000 1273.6 8.0 1841.1 36.2 1413.6 15.4
3000 1818.5 17.2 2079.1 43.6 1605.0 85.0
4000 2409.5 16.8 2310.7 23.2 1714.8 56.6
5000 2903.9 85.8 2674.2 142.4 1874.6 88.4

192

I
\

\

\

\

3000,0

2500,0

! 2000,0

-~
1500,0

E-- 1000,0

500,0

1000 2000 3000 4000 5000

Nwnber of Minin rat:ions
-+-Case A ----Case B ~Case C l

Fig. 12 Datamining benchmarks

V. RELATED WORKS

There are other multiparadigm implementations over
distributed environment. I+ model [NGK 95] supports the
distribution of objects, which implement methods using
functions (functional classes) and logic predicates (logic
predicates). The implementation is based on the translation
of functional classes into LML modules and translation of
logic predicates into Prolog modules. The distributed
architecture is a network of Unix workstations using 4.3
BSD sockets to implemented message passing. The run­
time environment was initially implemented using C
Ianguage, Quintus Prolog and Lazy ML (LML). In a second
phase, programs were only translated into C language. This
proposal does not focus mobility. In addition, none kind of
shared space is supported between objects.

Ciampolini et ai [CIA 96] have proposed DLO, a system
to create distributed logic objects. This proposal is based on
previous works (Shared Prolog [BRO 91], ESP [CIP 94]
and ET A [AMB 96]). The implementation is based on the
translation of DLO programs into clauses of a concurrent
logic language called Rose [BRO 90]. The support to Rose
execution is implemented on a MIMD distributed memory
parallel architecture (transputer-based Meiko Computing
Surface). The run-time environment consists of a parallel
abstract machine which is an extension o f the W AM
[AIT 91]. This proposal does not support mobility and it is
not applied in a network of workstations. DLO does not
support leveis o f spaces.

Oz multiparadigm Janguage [MUL 95] is used to create
a distributed platform called Mozart [ROY 97]. Oz uses a
constraint store similar to a blackboard and supports the use
of severa! paradigm styles [MUL 95, HEN 97]. Besides,
Mozart has special support to mobility of objects [HAR 98]
and distributed treatment of logic variables [HAR 99].
Mozart distributed architecture is a network of workstations
providing standard protocols such as TCP/IP. The run-time
environment is composed by four software layers
[ROY 97]: Oz centralized engine (Oz virtual machine
[MEH 95)}, language graph layer (distributed algorithms to

193

decide when to do a local operation or a network
communication), memory management layer (shared
communication space and distributed garbage collection)
and reliable message layer (transfer of byte sequences
between nodes). The physical mobility supported by
Mozart is completely transparent, i. e., the system decides
when to move an object. None kind of Jogical mobility is
used. The shared spaced supported by Mozart is monotonic
and stores constraints. Being's history is a non-monotonic
logic blackboard that stores logic tuples (terms). In
addition, Mozart does not provide leveis of encapsulated
contexts composed by objects accessing a shared space.

Tarau has proposed Jinni [TAR 99], a logic
programming language that supports concurrency, mobility
and distributed logic blackboards. Jinni is implemented
using BinProlog [BOS 96] a multi-threaded Prolog system
with ability to generate C/C++ code. Besides that, it has
special support to Java, such as a translator allowing
packaging of Jinni programs as Java classes. Jinni is not a
multiparadigm platform. In addition, Jinni does not work
with logical mobility and with leveis of encapsulated
blackboards.

So, Oz and Jinni have a kind of mobility. In addition,
they can be executed over network of workstations.
However, we believe that the support to hierarchy of spaces
as proposed by Holo is an innovation.

VI. CONCLUSION

We have proposed an environment to distributed
execution of a new multiparadigm language. Our main
contribution is the transparent distributed support to the
Holo programming model. DHolo automatically manages
the tree o f beings distribution.

One important aspect of Holo is the coordination model,
which simplifies the management of mobility. For this
coordination, the Holo model uses a logic blackboard while
DHolo proposes the use of a tuple space to implement it.
Another important concept is the autonomous management
of mobility. Holo model does not deal with physical
distribution so mobility is always at logic levei, i.e, between
beings. DHolo execution environment can define what kind
of mobility is necessary: a logical or a physical one. A
logical requires changes in history sharing while physical
also involves Java objects mobility.

Our experiments have shown interesting results.
Voyager and Jada can work cooperatively. Besides, parallel
datamining has got good performance. In sequential
datamining, a surprising result was that the heterogeneous
characteristics o f nodes have overcome the network costs.

Future works will improve our proposal. One ongoing
work [Y AM 99] aims to propose a dynamic scheduling of
distributed objects, which can be directly used in DHolo.
Besides, optimizations over initial execution kernel are
under development.

REFERENCES

[AIT91] AIT-KACI, H.; Warren's Abstract Machine - A
Tutorial Reconstruction. MIT Press, 1991.

[AMA 96] AMANDI, A. ; PRICE, A. A Linguagem OW8:
Combinando Objetos e Lógica. I Simpósio Brasileiro
de Linguagens de Programação, p.305-318, 1996.

[AMB 96] AMBRIOLA, V.; CIGNONI, G. A.; SEMINI; L. A
Proposa/ to Merge Multiple Tuple Spaces, Object
Oriemation and Logic Programming . Computer
Languages, Elmsford, v.22, n.2/3, p.79-93,
July/October 1996.

[APT 98] APT, R. et ai. Alma-O: An lmperative Longuage that
Supports Declarative Programming. ACM
Transactions on Programming Languages and

.Systems, New York, v.20, September 1998.
[BAR 00] BARBOSA, J. L. V.; VARGAS, P. K.; GEYER, C ..

GRANLOG: An /ntegrated Granu/arity Analysis
Model for Parai/e/ Logic Programming. Workshop on
Parallelism and Implementation Technology
(constraint) Logic Programming, London, 2000.

[BAR OI] BARBOSA, J. L. V.; GEYER, C. F. R. Uma
Linguagem Multiparadigma Orientada do
Desenvolvimento de Software Distribuído. V Simpósio
Brasileiro de Linguagens de Programação (SBLP),
maio 200 1.

[BOS 96] BOSSCHERE, K.; TARAU, P. 8/ackboard-based
Extensions in Prolog. Software - Practice and
Experience, v.26, n. l, p.49-69, January 1996.

[BRO 90] BROGI, A. AND-parallelism without slwred
variables. Seventh lntemational Conference on Logic
Programming. MIT Press, p.306-324, 1990.

[BRO 9 1] BROGI, A.; CIANCARINI, P. The Concurrent
Language, Shared Prolog. ACM Transaction on
Programming Languages and Systems. New York,
v. l 3, n.l, p.99-123, January 1991.

[CAR 89] CARRIERO, N.; GELERNTER, O. Linda in comext.
Communications of the ACM, v.32, n.4, p.444-458,
1989.

[CHI OI] CHLRICO, U. J/Prolog - Java Internet Prolog.
www.geocities.com/jiprolog, April 200 I.

[CIA 96] CIAMPOLINI, A.; LAMMA, E.; STEFANELLI, C;
MELLO, P. Distributed Logic Objects. Computer
Languages, v.22, n.4, p.237-258, December 1996.

[CIP OI] ClANCARINI, P.; ROSSI, O. JADA: A Coordination
Toolkit for Java. www.cs.unibo.iú-rossi/jada, April
2001.

[CIP 94] CIANCARINI, P. Distributed Programming with
Logic Tuple Spaces. New Generating Computing,
Berlin, v. l2, n.3, p.251-283, 1994.

[HAJ 96] HARDWICK, J. Java as an lntermediate Language.
School of Computer Science, Camegie Mellon
University, Technical Report CMU-CS-96-161,
August 1996.

[HAN 94] HANUS, M. The lntegration of Functions into Lagic
Programming from Theory to Practice. Joumal of
Logic Programming, New Y ork, v .19/20, p.583-628,
May/July 1994.

[HAR 98] HARIDI, S. et ai. Programming Languages for
Distributed Applications. New Generating Computing,
v. l 6, n.3, p.223-261 , 1998.

[HAR 99] HARIDI, S. et ai. Ej]iciellt Logic Variab/es for
Distributed Computing. ACM Transactions on
Prograrnming Languages and Systems, v. 21 , n.3,
p.569-626, May 1999.

[HEN 97] HENZ. M. Objects in Oz. Saarbrüchen: Universitlit
des Saarlandes, May 1997. (PhD Thesis)

[IEE 98] IEEE Transactions on Software Engineering, v.24,
n.5, May 1998. (Speciallssue on Mobility)

[JA V O I] Java . http://www.sun.com/java, April 200 I.
[LEE 97) LEE, J. H. M.; PUN, P. K. C. Object Logic

Imegration: A Multiparadigm Design Methodology
anda Programming Language. Computer Languages.
v.23, n. l, p.25-42, April 1997.

[MEH 95) MEH, M.; SCHEIDHAUER, R.; SCHULTE, C. An
Abstract Machine for OZ. Seventh lntemational
Symposium on Programming Languages,
lmplementations, Logics and Programs (PLIP'95).
Springer-Verlag, LNCS, September 1995.

[MUL95) MULLER, M.; MULLER, T. ; ROY, P. V.
Multiparadigm Programming in Oz. Visions for the
Future of Logic Programming: Laying the
Foundations for a Modem Successor of Prolog, 1995.

[NGK 95] NG, K. W.; LUK, C. K. 1+: A Multiparadigm
Language for Object-Oriemed Declarative
Programming. Computer Languages, v.2 1, n.2, p. 81-
100, July 1995.

194

[Nll 86) NII, H. P. 8/ackboard systems: the blackboard model
of prob/em solving and the evolution of b/ackboard
architectures. AI Magazine, v.7, n.2, p.38-53, 1986.

[PIN 99] PINEDA, A.; HERMENEGILDO, M. O'CIAO: An
Object Oriented Programming Model Using CIAO
Prolog. Technical report CLIP 5/99.0 , Facultad de
Informática, UMP, July 1999.

[PRO 99] Proceedings of the IEEE, v.87, n.3, march 1999.
(Speciallssue on Distributed DSM)

[PRO OI] Programming Languages for the Java Virtual
Machine.http://grunge.cs.tu-berlin.de/-tolklvmlangua
ges .html (March 200 I)

[ROY 97) ROY, P. V. et ai. Mobile Objects in Distributed Oz.
ACM Transactions on Programming Languages and
Systems, v.l9, n.5, p.804-851 , September 1997.

[TAR 99) TARAU, P. Jinni: lmelligent Mobile Agem
Programming at the lntersection of Java and Prolog.
PAAM'9, The Practical Applications Company, 1999.

[VAR 00) VARGAS, P. K.; BARBOSA. J. L. V.; FERRAR!, 0 .;
GEYER, C. F. R. ; CHASSIN, J . Distribwed OR
Scheduling with Granu/arity lnformation. XII
Simpósio Brasileiro de Arquitetura de Computadores e
Processamento de Alto Desempenho, SBC, 2000.

[VOY OI] Voyager. http://www.objectspace.com, April 2001.
[WEG 93] WEGNER, P. Tradeo.ffs between Reasoning and

Modeling. In: Agha, G. ; Wegner, P.; Yonezawa, A.
(eds.). Research Direction in Concurrent Object­
Oriented Prograrnming. Mit Press, p.22-41 , 1993.

[WEG 97] WEGNER, P. Why imeraction is more powerfulthan
a/gorithms. Communications of the ACM, v. 40, n. 5,
p.80-91 , May 1997.

[YAM 99) YAMIN, A. C. An Execution Environmellt for
Multiparadigm Models. PPGC/UFRGS, 1999. (PHD
Proposal)

