
\

I
I
I
I

Parallelizing MCP-Haskell for Evaluating
Haskell# Parallel Programming Environment

F. H. Carvalho Jr. 1
, R. D. Lins2

, R. M. F. Lima3 4

1 Centro de Informática, Universidade Federal de Pernambuco, Brasil
{ fhcj@cin.ufpe.br}

2 Departmento de Eletrônica e Sistemas, Universidade Federal de Pernambuco. Brasil
{ rdl @ee.ufpe.br}

3 Department of Computer Science, Chalmers University of Technology, Sweden
{ ricardo@cs.chalmers.se}

4 CESSAM, Associação de Ensino Superior de Olinda, Brasil
{ ricardo@cs.chalmers.se}

Absrracr-
In tbis paper, we present the parallelization o f a scquential functional

implementation of a Monte Carlo Transport Problem, called MCP
fl askell[Hammes et ai., 1995], using H askell#. This cxperimcnt gavc
us important feedback for cvaluating H askel~ fcatures, helping us to
answer some questions, like how expressive is H askel~ for represent
ing known parallel computational patterns, how easy it is to build large
scalc parallcl programs in an clegant and concisc way, and how effi
cicnt are H askell# programs. Based on our conclusions, wc suggest
ncw features to be incorporated in H askel~ to improve its expressive
ness and performance. We also present the performance figures for thc
MCP-H askell# benchmark.

Keywords- Parallel Processing, Parallel Software Engineering.

I. INTRODUCTION

H askell[Peyton Jones & Hughes, 1999] is a general pur
pose, pure functional programming language incorporating
recent innovations in programming language design. It has
now become de facto standard for the non-strict (or lazy)
functional programming community, with severa! compilers
available.

The idea of parallel functional programming dates back
to 1975 [Lins, 1996, Hammond & Michaelson, 1999] when
Burge [Burge, 1975] suggested the technique of evaluat
ing function arguments in parallel, with the possibility
of functions absorbing unevaluated arguments and per
haps also exploiting speculative evaluation. In general,
parallelism obtained from referential transparency in pure
functional languages is of too fine granularity, not yield
ing good performance. The search for ways of control
ling the degree of parallelism of functional programs by
means of automatic mechanisms, either static or dynamic,
had little success[Hudak, 1985, Peyton Jones et ai., 1987,
Kaser et ai., 1997]. Compilers that exploit implicit par
allelism have been facing difficulty to promote good
load balancing amongst processors and to keep commu
nication costs Iow. On the other hand, explicit par
allelism with annotations to control demand of evalua
tion of expressions, creation/termination of processes, se-

195

quential and parallel compositlon of tasks, and map
ping of these tasks onto specific processors have been
proposed by many authors [B urton, 1987, Hudak, 1991,
Plasmeijer & van Eekelen, 1993, Trinder et ai., 1996]. In
general, in this approach computation and communication
are interwinded, not allowing reasoning about these elements
in isolation.

H askell# [Lima et ai. , 1999] is a parallel exten
sion to H askell, based on coordination approach
[Gelernter & Carriero, 1992] and aimed at distributed
memory parallel architectures 1• lt offers process modularity
on topo f communication structure o f sequential computation
components written in standard Haskell. The structure of
the communication network is defined by H askell # coor
dination language (HCL), also used for task-to-processor
allocation. On these two leveis (coordination and computa
tion), programming can be performed at independent stages
of development process, a characteristic that tends to reduce
development costs and to increase reliability. Reusing of
existing and previously tested (or formally) verified Haskell
modules is also possible. H askell# is inspired by Occam
[Inmos, 1988], a language based on Hoare's CSP (Calculus
of Sequential Processes)[Hoare, 1985]. The decision for
following the Occam computational model had as its goal to
make possible the automatic analysis of formal properties
and, thus, to help the programmer to reason about the
application under development. An environment to analyze
formal properties of H askell # applications using Petri nets
is described in [Lima, 2000].

The structure o f this paper comprises seven sections. Sec
tion I is this introduction. Section 11 describes H askell # par
aliei programrning environment. Section IV briefty presents
Monte Carlo photon transport problem. Section V, shows
parallelization process of MCP-H askell . Section VI, dis-

1 At present, H askell# has been implemented for SP2 and CoP's (clus
lers of PC's) archilectures.

cusses proposals for improving H askell# environment, us
ing MCP-H askell# to evaluate them. Section VTI presents
the performance figure for some versions of the MCP
H askell# incorporating ideas described in Section VI. Con
clusions and !ines for further work are presented in Section
VIII.

11. Has kell# PROGRAMMING ENVIRONMENT AND

APPLICATIONS

H ask ell# provides an integrated environment for devel
oping, simulating and analyzing formal properties of parai
lei systems. Applications are structured in two leveis (pro
cess l!ierarchy). The sequential one relates to functional
modules, sequential H askell programs. The communica
tion levei "glues" together functional modules forming a net
work o f processes, I ater mapped onto physical nodes of a par
aJiel architecture. The coordination language caJied HCL
(H askell# Coordination Language) is used for that. Fig
ure I depicts the H askell# programming environment. A f
ter writing the program, there are two possibilities: either to
generate the executable code, or to translate HCL programs
into Petri nets. In the former case, the system executes in
an environment composed by distributed memory processors
(nodes). In the latter case, it is possible to analyze formal
properties of the topology of the network structure, helping
programmers to reasoning about the system.. The Petri net
model is simulated and analyzed through the computational
tool INA [Roch & Starke, 1999].

Fig. I. H ask ell# Programming Environment

In the following sections, we describe how applications
are specified on communication levei, presenting the syntax
and semantics of the HCL constructors.

196

A. Instantiating Functional Processes

In H askell#, functionaJ processes are instances of func
tional modules. Each one has its own interface, linked by
communication ports allowing processes communicate with
each other. Direction attributes specify i f a port is used for in
put or output. Ports are strongly typed and of ground types,
such as basic (integer, ftoating points etc.) and structured
over basic ones (lists of integers, trees of booleans, etc.). In
HCL, functional processes are defined by module declara
tions. For instance:

moduleM

input a:: t ,, {b, c} :: t2, ll :: t3

output e :: t4 , f :: t5

instances m,, m2, m a

define the interface of functional processes m 1, m 2 and m 3 ,

instantiated from functional module M . There is a direct
correspondence between order in which ports appear in in
put/output declarations and type of main function of func
tional modules. For instance, the type of ma in function of !VI
is given by: t 1 -+ t2 -+ t3 -+ IO(t4 , t5) . In this case, the
types t1 , t2 e t 3 are mapped, respectively, onto input ports a,
(b, c), and d o f a functional processes instantiated from M.
Ports b and c are associated with the same parameter (t 2),

indicating that both ports wi ll wait for the second argument
non-deterministically.

B. Communication Channels

Similarly to Occam[lnmos, 1988], H as kell # channels are
point-to-point, unidirectional and synchronous. Strict com
munication semantics restricts values exchanged between
processes to those already evaluated. Using the HCL con
nect constructor, a channel is staticaJiy declared through the
connection o f two ports from different processes, o f the same
type and opposite direction. For instance,

connect po.a to Pt ·b

defines a channel connecting output port a of process p 0 to
input port b of the process p 1• The channel type is the type
o f the connected ports.

H as kell# neither allows dynamic channel creation nor
full-duplex communication. One could argue that this is too
restrictive. However, our emphasis is to provide a model
of channel that makes possible to analyze statically formal
properties of the process network. Besides that, strict rules
force programmers to have a better understanding o f the sys
tem and to specify precisely what they want to do.

C. Initialization, Execution, and Termination

When running a H askell# application, we define its state
at time t as a set which contains the states o f each functional
process at that time. A functional process can be in one of
four states[Carvalho Jr., 2000]:

• Wl: waiting for input in port i;
• RN: running;
• WO: waiting for output in port j;
• FN: finished;
ln Figure 2, it is presented a state diagram which shows the

possible transitions between states of functional processes.
They are detailed in Table C.

1 (2) 1
(l)o~~
~~~ 

(7) 

(9) 

Fig. 2. State Diagram for Functional Processes 

T cs NS nlP nOP T? Action 
I WI Wl ~ 2 - - to read next input port 
2 Wl RN ~ L - - to evaluate ma in 
3 RN Wl - = 0 yes to read first input port 
4 WO Wl > L ~ 1 yes to read first input port 
5 wo RN =0 - yes to evaluate main 
6 RN wo - ~ 1 - to write first output port 
7 RN FN - = 0 no to fi nish 
8 wo wo - ~2 - to write next output port 
9 wo FN - > 1 no to finish 

T = Transition CS = Curre nt State 
NS = Next State niP = Number of input ports 
nOP = Number of output ports T? = Is it repeti tive ? 

TABLE I 

I NTERPRETATION OF THE STATE DIAGRAM IN F IGURE 2 

In the diagram, you can observe that a process can be in 
RN or WI states at the start. In the former case, called ex
plicit initialization, processes are declared using the start 

197 

declaration and start executing independently on arguments 
demanding from their input ports. In the latter case (pro
cesses not declared in some start declaration), processes 
only computes on demanding of arguments from their input 
ports. If a process declared in a start declaration has argu
ments, they can be explicitly passed using the same syntax of 
Haskell. For instance, consider the following declarations: 

start fpl 

start f p2 [I ,2,3,4] (square 20) 2.0 

In the example, fpl and fp2 are processes that must be 
initialized in the RN state. The ma in function of process fpl 
has no argument (main :: 10()), whereas the main function 
of fp2 expect three parameters (main :: [Int] ~ I nt ~ 
Double ~ IO(t1, t2, · · · , tn)). 

Haskell code can be written inside HCL code using the 
character #. For instance the function squm·e must be de
clared in the following way inside HCL Code: 
# 

# 

squar e :: lnt -t lnt 

square x = x * x 

The only exception is when declaring port types and 
arguments for functional processes in a start declaration. 
Thus, the following declarations are invalid, because it is not 
necessary to put #'s delimiting H askell code: 

input teste #::[[lntiJ# 

s tart fp I #[I ,2,3,4] (square)# 

H askell# applications terminate when ali processes have 
reached finished state (FN). Yet, dueto their synchronous se
mantics, processes terminate when ali their output values are 
consumed by other processes in the network. There are two 
types of processes: nonrepetitive and repeti tive. The former 
starts, executes some activities and terminates, while the )ater 
starts, executes some activities and retums to the initial state, 
never reaching the termination state. Repeti tive processes are 
useful for development of reactive systems [Shapiro, 1989], 
applications that does terminate, such as monitoring and con
trolling ones. Operating systems are classical examples. 

Because termination is a global property, inherited by 
ali processes in application, applications can contain either 
repeti tive or nonrepetitive processes, but never both simulta
neously. Therefore, termination behavior is declared in the 
header of the HCL program. Observe the code fragments 
which define two different termination properties for the ap
plication AppExample: 

application AppExample repetitive 

application AppExample nonrcpetitive 



The fonner declares it to be 1·epetitive, while the later 
declares it to be nonrepetitive. 

D. Mapping of Functional Processes 

The execution environment o f H askell # applications is 
a network of processing nodes, onto which functional pro
cesses are statically mapped. Programmers should allocate 
processes in groups. Processes belonging to a given group 
will execute concurrently onto the same node 

Before task allocation, environment nodes should be clas
sified based on relevant features, such as node proces
sar speed (jast or slow), amount of memory (large or 
thin) or communication speed (high or low), in the file 
node . classes. In the node. id file, each node must be 
assigned to at most one feature of each class. The main goal 
of classification is to model heterogeneity of the execution 
environment, allowing HCL Compiler to detennine best al
location o f processes to nodes. 

Functional processes remain mapped onto a node during 
all their life. The alloc constructor used to define the map
ping scheme is exemplified below: 

alloc (wide, f ast) Po. Pl, P2 

alloc (slow) P3 

Processes Po. P t , and P2 are allocated to a processor with 
features fast and wide from classes speed and memory, re
spectively, while process p 3 is mapped onto a node with fea
ture slow of class speed. There is no reference to the class 
memory, allowing a wide or thin node to be allocated for p 3 . 

D. l Performance Tuning 

Performance tuning optimises a particular H askell # ap
plication on a parallel environment. Load balancing is 
performed statically by increasing data locality, allocating 
processes connected by channels that communicate a large 
amount of data on the same processor, whenever possible. 
The use of node classification mechanism allows modelling 
of the parallel environment features and processes' needs. 
We identify two strategies for node classification, affecting 
pelformance tuning: 

I. Parallel Execution Environment Oriented. Node 
classification is performed based on the characteris
tics of the parallel environment, increasing efficiency 
but sacrificing portability, because pelformance tuning 
should be performed again whenever an application is 
ported; 

2. Application Oriented. Node classification is per
formed based on features which have a significant im
pact on the application performance, independently of 
the execution environment. Thus, when an application 

198 

is ported to a new environment, it is only necessary to 
classify its nodes based on these features. This approach 
favors portability with little impact on efficiency, bc
cause only significant features are considered for per
fonnance tuning purposes. 

We consider the second strategy more suitable than the 
first one in most of cases, because it provides portability 
without significant loss o f efficiency. Whenever perfonnance 
requirements are crucial and there is no possibility to port 
the application to a new environment or to change environ
ment features, first strategy can be adequate. In some cases, 
adoption of a hybrid strategy is useful. For example, when 
the programmer ports an application and verifies that its per
formance on the new environment can be improved by the 
introduction of some intrinsic features not predicted in the 
original node classification. 

III . H askell# COMPARED TO ÜTHERS PARALLEL 

FUNCTIONAL L ANGUAGES B ASED ON 

COORDINATION 

In the contexto f parallel functionallanguages, H askell # 
belongs to the class o f coordination based ones. Other impor
tant examples of this class are Eden[Breitinger et ai., 1997] 
and Caliban[Kelly, 1989, Taylor, 1997]. Like Haskell#, 
Both uses H askell for specifying computation and assume 
a static network where functional processes communicate 
via point-to-point and unidirectional channels. Caliban 
also provides annotations for specifying placement of pro
cesses, while Eden has facilities for specification of reactive 
systems[Shapiro, 1989]. Following, we discuss the most im
portant points that distinguish H askell # from other known 
parallel functionallanguages based on coordination: 

• Adoption of a configuration based2[Krammer, 1994] 
coordination language ( HCL), separating completely 
construction o f computation code (pure H askell) from 
coordination one (HCL). In Eden and Caliban, com
putation and coordination code co-exist in the same pro
gram text. The existent separation is essentially seman
tic: management of parallelism are defined by some 
special annotations. Cal iban try to make a syntactic 
separation by putting every annotation after a special 
clause, called moreover. This H askell# feature facil
itates parallelization o f sequential pre-existent H askell 
programs and induces independent specification and 
development of functional modules and coordination 
code, reducing development costs and favoring reuse o f 
parts. This ability for composing programs from parts 
also tums H askell# more suitable for large scale parai
lei applications than Eden and Caliban, following the 

2The configuration paradigm was developed in lhe context of specifica
tion of distributed systems, offering good support for parallel and distributed 
software engineering[Krammer. 1994 ]. 



ideas discussed in [DeRemer & Kron, 1976]. Another 
consequence is to stimulate coarse grain paralle/ism, 
considered more efficient on distributed memory archi
tectures, such as clusters. 

• Modelling of parallel architectures. It is known that 
generic optimal p/acement o f processes over processors 
is an NP-complete problem. Thus, automatic mecha
nisms for this purpose, dynarnic or static, are not effi
cient in aJI instances. We decided to foJlow a static and 
explicit approach in H askell#, as in Caliban. The only 
difference is that H askell# makes possible to model 
both processes needs for optimal execution and archi
tecture characteristics. The programmer is then respon
sible to find explicitly a best mapping between func
tional processes and processors using these information. 
Existing automatic tools are weJlcome, but decisions 
should be left to programmer, as discussed in Section 
li). 

• Formal property analysis using Petri nets. When devel
oping H askell#, one of our main concerns has been 
the possibility analysis of formal properties of applica
tions. A compiler that translates HCL into INA, a Petri 
net analysis tool, was developed by Lima[Lima, 2000] 

• Easy and efficient implementation. Unlike Eden and 
Caliban, H askell# does not need any run-time sys
tem support or dynamic mechanism. It can I:Íe easily 
implemented by gluing a message passing Iibrary to a 
sequential H as kell functional compiler3. Assuming 
that H askell# applications are coarse grain, we can 
take advantage of the best technology for compilation 
of sequential functional programs. Also, absence o f dy
namic mechanisms and explicit nature of communica
tion topology specification tends to reduces unnecessary 
communication. 

Despi te its argued advantages, H askell # computational 
model in its initial form is very restrictive in relation to E den 
and Caliban for expression of some parallel computational 
patterns. The reason is the inability of H askell # for specify
ing interaction (communication) offunctional processes dur
ing their computation4 • This restriction is due to ou r initial 
concern of making H askell # communication synchronous 
and to faci litare translation of H askell # applications into 
Petri nets. Caliban and Eden use the concept of streams to 
support interaction between functional processes. One o f ou r 
goal in this paper is to show how this feature can be incorpo
rated to H askell# . Support for explicit data parallelism and 
facilities for specification of large scale applications are also 
presented. MCP-H askell will be used to exemplify and to 

3we have successfully used MPI and GHC, respectively, in our imple
menlalions 

4Synchronization of functional processes are performed only before or 
after functional process execution. Thus. communication and compulalion 
cannol be inlerwinded. 

199 

motivate our proposals. 

IV. MONTE CARLO PARTICLE TRANSPORT S!MULATION 

MCNP(Monte Carlo N-Particle) is a Fortran code de
veloped over many years at Los Alamos to solve the 
particle transport simulation with Monte Carla meth
ods [Whalen et ai., 1991]. It involves simulating sta
tistical behavior of particles (photons, neutrons, e lec
trons, etc.) while they travei through objects of spec
ified shapes and materiais. In [Hammes et ai., 1995], 
two simplified functional implementations of MCNP are 
described, using Haskell[Hudak et ai., 1992](MCP-Haskell) 
and ld[Hicks et ai., 1993](MCP-ld) respectively. In this pa
per, we have developed a paraJlel version of MCP-H askell 
and caJI it MCP-H askell# 

Besides its importance, the intrinsic parallel nature of 
MCNP and the avai lability o f a simplified sequential HaskeJI 
implementation (MCP-H askell) were our main motivations 
for choosing it in evaluating H askell # . We have reused 
MCP-H askell code for reducing development costs and for 
allowing us to concentrate in parallelization process. 

V. PARALLELIZING MCP-Haskell WITH Haskell# 

To describe the paraJlelization of MCP-Haske11 5, 

we will follow the modular methodology described in 
[Carvalho Jr. , 2000], which takes advantage of the modular 
nature o f H askell# applications. The following sections 
describe each stage involved in the parallelization process. 

A. ldentification of Functional Modules 
( Functional Decomposition) 

We have identified in MCP-H askell# four funct ional 
modules:: 

• Problem Definition. lt reads the input files, where prob
lem parameters are specified, and sends them as output; 

• Tracks. Given the problem parameters anda list o f pho
tons, it tracks a photon through a series of movements 
and coJlisions with nuclei. Its output is a list of events 
for each photon and a tally of a li photon creates and 
losses, caJled totais; 

• Ta/lies. lt takes lists of events for each photon, extracts 
each tally, and reduces tally information to average and 
standard deviations so that errar estimates can be given; 

• Statistics. It receives as input the average energy of 
photons, a list o f tally entries, the totais, and the tallies 
generated by photons tracks. Statistics operations are 
processed and the result o f the simulation is presented. 

5Jn this paper we do nol presenl details aboul implementation 
of MCP- Haskell. For bener underslanding, lhe reader can consull 
(Hammes et a/., 1995). 



The functional modules described above reuse, without 
modification, the original sequential code o f MCP-H askell. 
This evidences the high degree of potential reuse provided 
by H askell# programming platform. 

B. lntegrating Functional Modules 

Fig. 3. MCP-H askell# Preliminary Nctwork 

In Figure 3, it is shown the preliminary network which de
fines semantics ofMCP-H askell#, by integrating functional 
modules identified in thefunctional decomposition. In that, 
no pattern of parallel computation can be exploited, due to 
the synchronous semantics o f channels, which demands that 
track process sends the list, for each photon, of list of events 
to the tally process only when complete list is built. Thus, 
using the preliminary network as afinal network, processes 
never run in parallel. The .finalnetwork o f processes (Figure 
4) is defined by introducing data para/lelism, using the fact 
that each particle can be tracked and tallied independently. 

We divided composition of track and tally functional pro
cesses in n. Each resulting composition must process one 
of n groups of photons. Statistics process is divided into m 
processes which calculate, each one, statistical information 
about m different tallies. In Figure 4, n = 4 and m = 2. 

C. lmplementation of Functional Modules 

Functional modules reuse original sequential code of 
MCP-H askell without any need for modification. 

D. Mapping of Functional Processes and Performance Tun
ing 

In the final network (Figure 4), processes forro four 
groups: 

200 

Fig. 4. MCP-Haskell# Final Network 

I. prob_def, tracks 1, tallies 1; 
2. tracks 2, tallies 2; 
3. tracks 3, tallies 3, stats 1; 
4. tmcks 4, tallies 4, stats 2; 

One can deduce that functional processes inside a group 
never run in parallel (data dependency). Thus, the groups 
can be allocated onto separate nodes, executing in parallel 
and having the same workload. For best load balancing, a 
homogeneous environment is suitable for running this appli
cation. The grouping of processes presented here can be ex
tended to other configurations, modifying parameters m and 
n. 

E. HCLcode 

In the original HCL code for the version of MCP
H askell# presented in figure 4, 76 ports from li functional 
processes are declared individually. Besides this, 38 con
nect declarations are necessary to create channels for con
necting them. The code cannot be parameterized, which 
means that if a programmer wants to increase m and n pa
rameters, a new code must be written. These limitations, a 
consequence of the simplicity of HCL, turns difficult to ex
press large scale parallel applications. In Section VI, we will 
introduce to HCL some syntax sugaring to overcome these 
difficult. The new HCL code o f MCP-H askell# incorporat
ing these changes is shown in figure 5. 



I 
\ 

I 
I 
\ 

1. application MCP< m,n,bl> nonrepetitive 

2. module MCPProbDef 

3. output < avg_e[ l .. m] > #broadcast# ::Double 
4. output < recip[l..m]> #broadcast# ::Double 
5. output < userJnfo[l..n]> #broadcast# ::User_spec_info 
6. output < aiLtallies.. [ l..m]> #shuf fle# ::[TaiJy_entry] 
7. output <alLtallies[l..n) > #shuf fle# :: [Tally_entry] 
8. output < panicles[ l..n]> #shu!fle# ::[(Particle,Seed)) 

9. instances probdef 

10. module Tracks 

11. input userJnfo ::User_spec_info 
12. input particles : :[(Particle,Seed)] 

13. output events ::[[Event]] 
14. output < totals[ l..m]> #shuf fle# ::[lnt] 

15. instances tracks[ l .. n] 

16. module Tallies 

17. input events ::[[Event]] 
18. input alLtallies ::[Tally_entry] 

19. output < tallies[ l..m]> #(\m --? \a--? 
((shu/ fle m).transpose) a)# ::[[Array (lnt,lnt) Double)] 

20. instances tallies[ l .. n] 

21. module Show_statistics 

22. input avg_e ::Double 
23. input recip ::Double 
24. input aiLtallies ::[Tally_entry] 
25. input > totals[l..n]< #(map.sum).transpose# ::[lnt) 
26. input > tallies( l..n] < #concat# ::[[Array (lnt,lnt) Double]) 

27. instances stats( l..m] 

28. connect probdef.panicles[i] to tracks[i].panicles 
stream bl for i = l .. n 

29. connect probdef.user_info[ij to tracks[i].user_info for i = l .. n 
30. connect probdef.alltallies[i] to tallies[i].all tallies for i = l .. n 
31. connect tracks[i].events to tallies[i].events stream bl for i= l..n 
32. connect tallies[if.talliesUl to statsU].tallies[i] for i= l..n, j = l..m 
33. connect tracks[i].totalsUJ to statsUJ.totals[i] for i= l..n,j = l..m 
34. connect probdef.alltallies.. UJ to statsUJ.all tallies for j = l .. m 
35. connect probdef.recip[j] to statsUJ.recip for j = l .. m 
36. connect probdef.avg_eUJ to statsUJ.avg.e for j = l .. m 

3 7. start probdef 

38. alloc probdef 
39. alloc tracks[i] for i= l..n 
40. alloc tallies[ij for i = l .. n 
41. alloc stats[i] for i=l..n 

Fig. 5. HCL Code for MCP- H askell# 

201 

VI. PROPOSALS FOR lMPROVING Has kell# 

H askell# is still under development. Its original pro
posai [Carvalho Jr., 2000, Lima, 2000) focused on efficiency 
and formal properties analysis using Petri nets [Lima, 2000). 
Therefore, a static, explicit and synchronous parallel com
putational model was adopted, inspired in OCCAM. We ar
gue that this approach makes difficult to exploit some parai
lei computation pattems, like pipeline and systolic computa
tion [Manber, 1999). In general, it is hard to exploit pattems 
which involve interaction between processes during compu
tation, because functional processes only communicate be
fore and/or after computation. We have made H askell # 
process semantics too restrictive to guarantee modularity of 
process hierarchy, necessary to allow the translation of ap
plications in to Petri nets. Also, dueto the simplicity o f HCL, 
it is difficult to express in a concise and elegant way large 
scale parallel programs, which involves many processes and 
interconnections. 

In what follows, we present some proposals to make 
H askell# more expressive, simpler, cleaner, and more effi
cient, as required for tuming it more suitable for general pu r
pose para/lei computing. Modifications proposed do not af
fect neither process hierarchy nor translation into Petri nets. 

A. Modifications to HCL syntax and structure 

HCL is a simple coordination language, making some pro
grams, notably large scale ones which involve a large number 
of processes and/or interconnections, difficult to express in 
an elegant and concise way. Proposals shown in this section 
overcome this difficult by introducing some syntactic sugar
ing to HCL. 

A. I Data Parallel Constructors 

Data Paralle/ism is considered the most common and effi
cient formo f parallelism, providing high sca/ability, because 
the amount of parallelism exploited depends on the amount 
of data to be processed. However, it is less general thanfunc
tional parallelism, in which it can be easily simulated. 

H askell# essentially exploits functional parallelism. 
Data parallelism is simulated by instantiating a number of 
functional processes (data parallel tasks) from a functional 
module. Another one (distributor) is used to distribute data 
over them. In MCP-H askell#, observe that the problem def
inition process (prob..def), when distributing particles over 
track processes (data parallel tasks), is a distributor. 

The functional module from which the distributor process 
was instantiated must have a number of output ports corre
sponding to the number of data parallel tasks. Whenever 
the programmer wants to increase them, functional module 
code of the distributor process has to be modified. This is 
undesirable because it destroys the independence of parai-



lei and sequential parts of applications (process hierarchy). 
Our proposal is to add explicit data para/Lei constructors to 
HCL syntax, allowing total abstraction of data parallelism 
concems from sequential programming. The constructors 
are: 

• Distribute constructor: associates a number of output 
ports corresponding to the parallel tasks to a component 
of the tuple given as result of the ma in function of the 
functional module. A function is specified to distribute 
component data over the output ports. 

• Group constructor: associates a number o f input ports 
corresponding to the parallel tasks to an argumento f the 
ma in function of the functional module. A function is 
specified to group data received from the input ports, 
a llowing it to be passed to the argument; 

The syntax is similar to that for non-deterministic ports 
and it is the same for group and distribute constructors. In 
figure 5 (HCL code for MCP-H askell #), examples o f their 
use can be seen. Distribute constructors are applied i11 the 
context o f output port declarations (lines 3, 4, 5, 6, 7 , 8, 
14, 19), while group constructors are applied in the con
text of input ports (!ines 25, 26). For instance, in line 19, 
Tallies module declares m ports (tallies[l] to tallies[m]) 
associated with a component of the 10 tuple returned by 
its main function . The value of this component is di
vided into m groups using the func tion (\m ~ \a ~ 
((shuf fl e m).transpose) a) and sent through the m ports. 
Statistic module, in line 26, declares n ports (tallies[l] to 
tallies[n]) associated with one of its ma in arguments. Data 
received from ports is grouped using concat function and 
passed as argument. 

For simulating a broadcast, it is only necessary to use an 
appropriate distribution function to repeat output value o f the 
process over output ports, as shown in !ines 3, 4 , 5. 

A.2 lndexing and Parameterizing 

ln his work, Turner[Turner, 1982] presents some consid
erations about explicit parallel programming environments: 

"The potential performance of this kind of architecture 
is enormous, but how can they be programmed ? An idea 
that can be dismissed more or less straight away is that we 
should take some conventional language and add facilities 
for explicitly creating and co-ordinating processes. This may 
work where the number of processes is small, but when we 
are talking about thousands and tltousands of independent 
processes, this cannot possibly be under the conscious 
control o f the programmer" 

Gelernter and Carriero[Gelernter & Carriero, 1992] dis
agree o f Turner, attributing his fallacy to his supposition that 
each process in a coordination language must be created and 

202 

dealt with individually. In practice, in large scale parallel 
programs, most processes are identical and have the function 
of computing a piece of a large data structure. Turner did 
not take these aspects into consideration. There are forms of 
managing severa! processes at the same time without refer
encing them individually (quoting Gelemter:"to specify ex
plicitly does not mean to specify individually''). 

Turner's argument holds when talking about the original 
H askell# proposal, beca use it requires each process, port 
and channel to be referenced individually. Our proposal here 
is to enrich HCL syntax to allow indexed referencing of a 
parameterized number o f processes, ports and channels. Ob
serve the declaration of Track functional module of MCP
H askell# in Figure 5, where indexes are used to declarem 
totais ports and n tracks functional processes, allowing them 
to be reffered as totals[l] to totals[m] ports and as tracks[l] 
to tmcks[n] functional processes. The general format to 
declare integer indexed identifiers is id..name[i .. j], where 
id_name is the identifier name, i is the lower index, and j 
is the upper index. Another format, used for named ones, is 
id_name[i 1 , i 2 , · · · , i 11], where i 1 , ... , in are index names. 

To reference concisely a large number of processes, ports 
and channels, we propose the introduction of the for con
structor, as exemplified in the connect section of MCP
H askell# (Figure 5, I ines 28 to 36). lt can be used in any 
HCL declaration, except in a header one, declared only once. 

Observe that HCL code of MCP-H askell# uses three vari
ables (m, n, bl) to specify, respectively, the number of com
positions o f tracks and tallies processes, the number o f statis
tics processes, and the length of buffer used in stream com
munication (explained in the next section). The possibility 
o f parameterizing applications is another feature proposed in 
this paper to be introduced in H askell #. Using it, the pro
grammer provides to HCL compiler the values o f parameters 
m, n and bl, which must be declared in the header of the 
application, as shown in line I of Figure 5. 

B. Stream Channels: lnteracting Functional Processes with
out breaking Process Hierarchy 

In Section V(B), no para llel computational pattern could 
be exploited in prefiminary network of MCP-H askell#, due 
to data dependency amongst functional processes. This Jimi
tation is intrinsic to H askell#, because we know that it is 
possible to exploit pipeline pattern in MCP-Haskell if in
teraction of processes during computation was supported by 
H askell#, but process lzierarclty property does not allow it. 

A naive solution to overcome these problems is to allow 
processes to exchange messages during computation, by pro
viding explicit send and receive primitives to be used in func
tional modules. This approach is undesirable, because it de
stroys the process hierarchy property. We propose a mecha
nism to allow processes to interact during computation taking 



I 
\ 

advantage o f lazy evaluation in H askell, which allows a list 
to be constructed on demand. This property tums lazy func
tionallanguages capable to work with streams (infinite lists). 
This approach does not destroy process hierarchy property. 

In MCP-H askell# , a pipeline can be exploited in the pre
liminary network, because the list of events is computed 
independently for each particle. For example, the channel 
that communicates tracks and tallies functional processes for 
transmitting the list of list of events for each particle can be 
declared as a stream channel, allowing each list of events of 
the stream to be sent whenever it is available, after its corre
sponding particle was tracked. The ideais that tracks process 
systematically produces lists of events for each particle and 
the tallies process consumes them, simultaneously. 

Communication via streams requires to turn send opera
tion asynchronous. lt can be proved that this does not affect 
H ask ell# application semantics. Actually, we can simulate 
asynchronous send by using buffer processes. Asynchronous 
send is also a way to increase parallelism of applications, by 
reducing data dependency between processes. 

The interleaving of computation and communication with 
the adoption of lazy streams forces the programmer to take 
more care about control of granularity of parallelism, avoid
ing excessive communication overheads. Control of gran
ularity is one of the most important original concems of 
H askell# . In MCP-H askell#, for example, the communi
cation overhead can increase drastically i f we consider trans
mission of each individual elemento f the stream whenever it 
is available. We intend to provide the programmer the pos
sibility of configuring the number of elements of the stream 
that can be transmitted at the same time, trying to reduce 
number of communication operations and to increase the 
amount of data communicated in a single operation. With 
that, the unity o f stream communication becomes a block o f 
elements, instead of a single element. 

The only visible modification to the HCL program needed 
to allow stream communication is to declare a channel to be 
a stream, as shown in !ines 28 and 32 of Figure 5. The chan
nel declaration in line 32 creates a stream channel connecting 
events ports o f tracks and tallies functional processes. Events 
are transmitted in blocks of length bl (a parameter of the HCL 
program). I f a number was not declared after stream in con
nect declaration, the compiler assumes that stream elements 
should be sent one at a time. 

8. 1 Effects of the Adoption of Stream Channels on the 
MCP-H askell# Allocation of Processors 

In Section IV(B), mapping of processes of MCP
H as kell# over a network o f processors was presented. For 
a network with eleven processes (Figure 4),four processors 
were allocated. 

When introducing stream channels, a pipeline is intro-

203 

duced amongst processes in the network, allowing that ev
ery process run in parallel. The eleven processes now can be 
allocated individually to processors. This evidences an in
crease of the degree of parallelism in MCP-H as kell # with 
the adoption of stream channels. 

VII. PERFORMANCE RESULTS 

We have implemented synchronous versions of MCP
H askell# for running optimally over one (preliminary net
work as final network), two, three, four and eight proces
sors. For each one, we have also implemented an associated 
stream version for making performance comparison. The 
stream versions use respectively four, seven, eight, eleven 
and nineteen processors for optimal execution. The parallel 
environment used is a cluster of 8 Linux PC's (6 Pentium li 
MMX 350MHz and 2 Pentium lll 550MHz), configured as 
described in [Spector, 2000], connected through a I OOMbs 
fast ethernet network. Because of our limitation to 8 pro
cessors, it was only possible to compare the four, seven and 
eight processors version with, respectively, the synchronous 
versions for one, two and three processors. 

Our implementation of H as kell # over cluster of PC's 
uses GHC (Glasgow Haskell Compiler) [GHC Team, 1998], 
for compilation of functional modules, and MPI(Message 
Passing Library)[Dongarra et ai., n.d.], for management o f 
parallelism. 

In Figures 6, 7, 8, graphs for respectively running time, 
speedup, and efficiency6 for synchronous H as kell# version 
of MCP-H as kell (solid !ines) are compared with ideal val
ues obtained from a perfect parallelization o f this application 
(dashed !ines). For example, in Figure 7, the synchronous 
version with eight processors has a speedup of 3.9, while 
a hypothetic perfect parallel implementation could obtain a 
speedup o f 8.0. The graphs show satisfactory gains in perfor
mance o f parallel H askell# synchronous version of MCP
H askell i f compared to the performance of sequential one. 

Table li compares running time values of stream version 
to synchronous one. The gains in performance with adop
tion of streams has been very poor for MCP-H askell # • de
spi te the increase of parallelism obtained. We have investi
gated this result and we have concluded that almost ali run
ning time of the application is spent with track's functional 
processes, an initially unexpected characteristic that degen
erates our pipeline parallelism. However, adoption of stream 
communication has not been invalidated, because we have 
reached our most important goal: to allow that processes in
teract without losing process hierarchy, increasing potential 
parallelism of the application. I f computational costs of tal
lies functional processes were of the same order of magni
tude o f that in tracks ones, certainly we had obtained a better 

6 percentage of processor's time that is not wasted, i f compared to the 
sequential algorithm [Manber, 1999]. 



gain in perfonnance. 

2758.----;-------------------, 

"' g 

X 

= -g 1484 

8 
~ 

~ 1096 

~ 905 

-~ 668 

3 
Number o! Proccssors 

Fig. 6. Running time 

2584 

_, 
o ::: 
X 

~ 

12921 

% 

861 ~ 

646 -.: 

• 32) 

A. Disappointment with unboxed arrays in GHC 4.08. I 

We have tried to increase perfonnance of the MCP
H askell# application by using GHC unboxed array (UAr
ray), avoiding element by element copying o f Array elements 
to the MPI buffer. Haskell unboxed arrays are stored in a con
tiguous buffer, which can be copied directly, using primitive 
operations, into a MPI buffer. But we have verified that the 
perfonnance of the sequentiaJ version of MCP-H askell us
ing unboxed arrays executes nearly two times slower than the 
simple array version. This result was a surprise because un
boxed arrays were created for improving perfonnance of ar
rays of primitive types. We have abandoned use of unboxed 
arrays until a new version o f GHC fix this problem. 

Q. 
~ 

1l 8. 3.9 

"' 
2. 9 
2. 4 

1.7 

0.9 

• 8 

Number o! Proccssors 

Fig. 7. Speedup 

204 

"' .. 
% 

~ c 

9) . 7 

87 .I 

78.6 

71. 4 

-~ 48 .3 

a 
"' 

Numbcr o! Procoasora 

Fig. 8. Efficiency 

TABLE U 

• - Number of processors needed for the best execution. 

VIII. CONCLUSIONS ANO LINES FOR FURTHER WORKS 

This paper describes the parallelization of MCP
H askell[Hammes et ai., 1995], a simplified functionaJ ver
sion of Monte Carlo N-Particle transport application 
(MCNP[WhaJen et ai., 1991 ]), for evaJuating H askell # 
programming environment. This work gave us some impor
tant experimental results in exposing H askell# virtues and 
limitations. Changes to H askell# to overcome these limi
tations were proposed. It is not intended to alter H askell # 
original properties, but to improve its expressiveness for rep
resenting parallel computational pattems and to allow it to 
support concise and elegant implementation of large scale 
parallel applications. Simplicity, efficiency, high-degree of 
modularity (sequential MCP-H askell was reused without 
modifications), and potential for formal ana/ysis are the most 
important virtues of H askell# shown in this paper. Perfor
mance benchmarking for MCP-H askell # is also presented. 

We continue building applications to evaluate H askell # 

and to propose new improvements to it. A new H askell # 
specification should be produced in the near future, incorpo
rating the ideas presented in this paper and others to come. 

R EFERENCES 

[Breitinger et a/. , 1997] Breitinger, S., Loogen, R., Ortega Mallén, Y., & 
Pena, R. (1997). The Eden Coordinmion Mode1 for Distributed Mem-



I 
I 

ory Systems. High-Level Para/lei Programming Models and Supportive 
Environments (H/PS). 

[Burge, 1975) Burge, W. H. (1975). Recursive Programming Techniques. 
Addison-Wesley Publishers Ltd. 

[Burton, 1987] Burton, F.W. ( 1987). Functional Programming for Concur
rent and Distributed Computing. Compllter Joumal, 30(5), 437-450. 

[Carvalho Jr., 2000] Carvalho Jr., F. H. 2000 (Jan.). Haske l'-#: Uma Ex
tenscio Paralela para Haske/1. M.Phil. lhesis, Centro de Informática, 
Universidade Federal de Pernambuco. 

[DeRemer & Kron, 1976] DeRemer, F., & Kron, H. H. ( 1976). 
Programming-in-lhe-Large versus Programming-in-the-small. Ieee 
transactions on software engineering, June, 80-86. 

[Dongarra et a/., n.d.] Dongarra, J., Quo, S. W., Snir, M., & Walker, D. 
Teclmical Report CS-95-274, University ofTennessee, Jan. 

[Gelernter & Carriero, 1992] Gelernter, D., & Carriero, N. (1992). Coordi
nation Languages and Their Significance. Communications ofthe ACM, 
35(2), 97-107. 

[GHC Team, 1998] GHC Team. (1998). The Glas-
gow Haskell Compiler User's Guide, Version 4.01. 
lwp:l/www.dcs.gla.ac.uklfp/software/ghc/4.01/users.. guidelusers.. guide.html. 

[Hammes et ai. , 1995] Hammes, J., Lubeck, 0 ., & Bohm, W. (1995). 
Comparing Id and Haskell in a Monte Carlo Photon Transpor! Code. 
Joumal offimctional programming, July, 283-316. 

[Hammond & Michaelson, 1999] Hammond, K., & Michaelson, G. ( 1999). 
Research Directions in Parallel Functional Programming. Springer
Verlag. 

[Hicks et a/., 1993] Hicks, J ., Chiou, 0., Ang, B. S., & Arvind. (1993). 
Performance Studies of ld on lhe Monsoon Dataflow System. Joumal of 
para/lei and distributing computing, 18, 273-300. 

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Pro
cesses. Prentice-Ha/1, C.A.R. Hoare Series Editor. 

[Hudak, 1985] Hudak, P. (1985). Serial Combinators: "Optimal" Grains of 
Parallelism. FPCA '85, Sept., 382-399. 

(Hudak, 1991] Hudak, P. (1991). Para-Funclional Programming in 
Haskell. Parai/e/ Functional Languages and Compilers, B. K. Szyman
ski, Ed. ACM Press, New York, 159-196. 

[Hudak et ai., 1992] Hudak, P., Jones, S. P. L., & Wadler, P. L. (1992). Re
port on Programming Language Haskell: a Non-Strict, Purely Functional 
Languages. Speciallssrre of SIGPLAN Notices, 16(5). 

[Inmos, 1988) lnmos. ( 1988). Occam 2 Reference Manual. Prelllice-Ha/1, 
C.A.R. Hoare Series Editor. 

[Kaser et a/., 1997] Kaser, O., Ramakrishnan, C.R., Ramakrishnan, I. V., 
& Sekar, R. C. (1997). Equals • A Fast Parallel Implementation of a 
Lazy Language. Jouma/ of Functional Programming, 7(2), 183-217. 

[Kelly, 1989] Kelly, P. (1989). Functional Programming for Loosely
coupled Multiprocessors. Research Monographs in Para/lei and Dis
tribllted Compllling, MIT Press. 

[Krammer, 1994] Krammer, J. (1994). Distributed Software Engineering. 
IEEE Computer Society Press (ed), Proc. 16th IEEE Jmemational Con· 
ference on Software. 

[Lima, 2000] Lima, R. M. F. 2000 (July). Haske/1# • uma linguagem fim· 
cional paralela • ambiellle de prognnação, implementação e otimização. 
Ph.D. thesis, Centro de Informáica, UFPE. 

[Lima et a/., 1999] Lima, R. M. F., Carvalho Jr., F. H., & Lins, R. D. 
(1999). Haskell# : A Message Passing Extension to Haskell. 
Cl.APF'99 • 3rd Latin American Conference on Functional Program
ming , Mar., 93-108. 

[Lins, 1996] Lins, R. D. (1996). Functional Programming and Parallel Pro
cessing. 2nd flllemational Conference on Vector and Parai/e/ Processing 
• VECPAR'96 • LNCS 1215 Springer-Verlag, Sept., 429-457. 

[Manber, 1999] Manber, U. (1999). /ntroductiontoA/gorithms: A Creative 
Approach. Reading, Massachusetts: Addison-Wesley. chapter 12, pages 
375-409. 

205 

[Peyton Jones & Hughes, 1999] Peyton Jones, S. L., & Hughes, J. (1999). 
Report on the Programming Language Haskell 98, A Non-strict, Purely 
Functional Language. Feb. 

[Peyton Jones et a/., 1987] Peyton Jones, S. L., Clack, C., & Salkild, J. 
( 1987). GRIP. A High-Performance Architecture for Parallel Graph Re
duction. FPCA '87: Conference on Functional Programming Languages 
and Compllter Architecture • Springer-Ver/ag LNCS 274, 98-112. 

[Plasmeijer & van Eekelen, 1993] Plasmeijer, M. J., & van Eekelen, M. 
(1993). Funclional Programming and Parallel Graph Rewriting. Addison
Wesley Publishers Ltd. 

[Roch & Starke, 1999] Roch, S., & Starke, P. (1999). Manual: Integrated 
Net Analyzer Version 2.2. Humboldt-Universitiit zu Berlin, /nstilllt ftir 
lnfomratik, Lehrstuhlftir Automaten- rmd Systemtheorie. 

[Shapiro, 1989] Shapiro, E. (1989). The family of concurrent logic pro· 
gramming languages. Acm compllling surveys, 21,413- 510. 

[Spector, 2000] Spector, H. M. (2000). Building Linux c/uster. O'Reilly. 

[Taylor, 1997] Taylor, F. (1997). Parallel Functional Programming by Par
titioning. PhD Thesis, Department of Computing, Imperial College of 
Science, Teclmology and Medicine, University of Landon, Jan. 

[Trinder eta/., 1996] Trinder, P., Hammond, K., Mattson Jr., J. S., Par
tridge, A. S., & Jones, S. P. L. ( 1996). GUM: A Portable Parallel lmple
mentation of Haskell. PW/'96 • Programming Languages Design and 
lmplemelllation, 79-88. 

[Turner, 1982] Turner, D. A. (1982). Recursion Equations as a Program
ming Language. Functional programming and its app/ications, 1-28. 

[Whalen et a/., 1991] Whalen, D. J., Hollowell, D. E., & Hendriks, J. S. 
(1991). MCNP: Photon Benchmark Prob/ems. Tech. rept. LA-12196. 
Los Alamos National Laboratory. 


