
U sing the SGI Pro64 Open Source Compiler
Infra-Structure for Teaching and Research
José Nelson Amaral; Christopher Barton, Andrew C. Macdonell, Matthew McNaughton

1 Department of Computing Science
University of Alberta, Edmonton, CA

{http://www.cs.ualberta.ca}

Abstract-
Modem optimizing compilers are complex programs that require

from tens to bundreds o f people-years to be developed. Thus professors
must use third-party compiler infra-structures to introduce students to
compiler optimizations. Until recently only infra-structures developed
at universities, research institutes, or by GNU were widely available for
teaching. However, in May 2000, SGI made public the source code for
Pro64, a higbly optirnized suite of compilers for the Intel Architecture
64 (IA-64) that is an evolution of the established MIPSPro suite of com
pilers. The use of a production-level compiler infra-structure for teach
ing is thus new. In this paper we report our experience using lhe Pro64
in a graduate compiler optimization class. We paired the study of the
Pro64 with the use of IMPACT within Trimaran, and with performance
studies conducted with the MIPSPro compilers. The students feedback
indicate that they valued working with a state-of-the-art compiler infra
structure and studying open research topics for their class projects.

Keywords- Compiler Optimization, Code Generation, IA-64, Pro64,
Trimaran, IMPACT, NUE, Ski, SUIF

I. INTRODUCTION

ln this paper we describe our experience using a produc
tion levei compiler infra-structure in a first-year graduate
class focused on compiler design and optimization. By de
sigo, this class concentrares on the optimizations that take
place either at the intermediate levei representation or at the
back end of the compiler. We assume that the front end -
the traditional parsing and lexical analysis performed at the
front end o f the compiler- is given. However, even students
with no background in compilers should be able to relate the
texto f a program source code with its intermediate represen
tations and the transformations that take place at the middle
and back-end of a compiler. Thus, in the first two weeks
o f the course we present a walk-through o f the front-end: the
transformation o f a program source code in to an abstract syn
tax tree, a three-address code representation, the formation o f
a control fiow graph, and the data dependence graph o f each
basic block.

Various compilers are available for use in a gradu
ate levei compiler course. Well known examples include
SUIF [wwwf], Impactffrimaran [Lab], and gcc [wwwa] . We
discuss these alternative compilers in Section VIl. We de
cided to use the Pro64, an infra-structure made available as

• Research supported by grants 239013-0 I and 240274-0 I from the Nat
ural Sciences and Engineering Council (NSERC), Canada.

206

an open-source development project by SGI in May o f 2000.
This decision was based on the fact that the Pro64 evolved
from the SGI MIPSPro suite of compilers, and thus it is a
production levei compiler that incorporares most o f the well
known optimization techniques implemented in compilers
in the industry. Another strong motivation is the fact that
the Pro64 targets the IA-64 architecture, a new architecture
jointly developed by Hewlett-Packard and Intel that includes
a number o f features that have direct impact on the code gen
eration process: parallelism expressed explicitly at the ma
chine code levei, organization of instructions into bundles,
predication, control and data speculation, a register stack
with a register stack engine, rotating registers, and hardware
supported software pipelining. Last, the fact that the source
code for the Pro64 is freely available for the scientific com
munity and that its developers are inviting contributions to
the infra-structure makes it a very attractive option for teach
ing and researching in an academic environment.

The very characteristics that recommend the choice of a
production compiler as an infra-structure for the lab assign
ments in a graduate class - the exposition of the students
to the structure o f a production levei tool, and the opportuni
ties to explore many optimization techniques within a single
framework - also lend to a fairly steep learning curve for
the students. Our goal when relating our experience in this
paper is to provide an approach to the daunting task of get
ting acquainted with such a complex piece o f software, while
creating opportunities for a more in depth analysis of some
o f the optimization techniques.

This paper is organized as follows. In Section li we de
scribe the Pro64 suite of compilers and discuss some tech
niques used by the students to get acquainted with the infra
structure. Section III describes the assignments in which
we use Trimaran for a comparison with the Pro64. In Sec
tion IV we describe the performance studies conducted us
ing the MIPSPro compiler suite. Section V briefiy describes
the HP Native User Environment (NUE) and Ski simulation
and emulation tools. Section VI describes the methodology
and topics for our class projects. In Section VII we survey
the tools and infra-structures used by other graduare courses
covering compiler optimization.

li. THE PR064 ÜPEN SOURCE INFRA-STRUCTURE

The Pro64 is a suite o f optimizing compiler tools for Linux
systems running on Intel IA-64 processors. The Pro64 pro
vides compilers for the languages C, C++, and Fortran90/95,
and also supports OpenMP. It conforms to the IA-64 Linux
Application Binary Interface (ABI) and Application Pro
gramming Interface (API) standards. It is open to aJI re
searchers and developers in the commuruty. Because the
Pro64 was released before IA-64 processors were broadly
available, it is important to notice that the code generated by
the compiler can be executed under the HP Na tive User Envi
ronment (NUE) (see Section V). The intermediate represen
tation for the Pro64 is WHIRL, which provides tive leveis
o f representation. As the compilation progresses, the code is
Iowered through these leveis. Most optimization algorithms
are tied to a specific levei in the representation. 1 The use of
a common intermediate representation allows the integration
of compilers for multiple languages that generate code for
multi pie architectures. The Pro64 itself is an evolution of the
SGI MIPSPro suite of compilers.

The Pro64 performs Inter-Procedural Analysis (IPA) and
optirruzations that include alias analysis, array section, code
Iayout analysis, and fully integrated optimizations such as
inlining, cloning, dead function and variable elimination and
constant propagation. The IPA is transparent to the user and
provides information to the loop nest optimizer, the main op
timizer, and the code generator.

At the loop levei, most of the well known transforma
tions, such as loop fission, loop fusion, loop unroll and jam,
loop interchange, loop peeling, loop tiling, and vector data
prefetching are performed [WMC96]. These transformations
are applied based on a unified cost model and are integrated
with software pipelining.

Ali traditional global optimizations are implemented using
a static single assignment (SSA) form ofthe code [CCK+97].
The SSA representation is extended in the Pro64 to accom
modate uruque features of the IA-64. Some of these exten
sions include the representation of aliases and indirect mem
ory operations, the integration o f partiaJ redundancy elirnina
tion, and support for speculative code motion.

One aspect of the Pro64 that makes it suitable for the
teaching of compiler optimization techniques is the very rich
set of switches available in the compiler. These switches
allow the user to tum onloff various classes of optimiza
tions such as Ioop nest optimization, software pipelining, etc.
These switches also aJlow the user to control the behavior of
some optimizations. For instance a switch aJlows the user to

'Most of thc description of the Pro64 presented in this section is based
on the discussions that Amaral had with Jim Dehnert and Guang Gao for
the preparation of the tutorial prescnted at PACTOO [GA~TOO]. .A lar~e
numbcr of individuais contributed to organize thc informauon avatlable m
that tutorial and panly transcribcd hcre.

207

specify how aggressive the tail duplication should be in the
formation o f hyperblocks. Moreover, an extensive set of in
ternai debugging ftags can be used to commurucate the state
o f the compiler, among other things, at various stages of the
compilation process. These flags allow detailed studies of
specific optimizations.

Our approach to use the Pro64 compiler for teaching was
(1) to have the students experimenting with various optimiza
tions on SPEC benchmarks2; (2) to study a portion of the
code for a well known optirruzation - we studied software
pipelining - comparing with another compiler for a simi
lar architecture; and (3) to assign each team of two students
a project centered on an open research problem and ask the
students to either solve the problem or propose a strategy for
obtaining a solution.

Because the Pro64 was developed in an industry setting
and only !ater made available to the research community, it
Iacks a cadre of people who had a significant hand in creating
the code-base, and that can teach new people its inner work
ings. 3 Thus students working with Pro64 must use a careful
and disciplined reading of code and published papers to leam
how the compiler is constructed. Fortunately the Pro64 code
is well written and well documented. Nevertheless it does
require a great amount o f time to read and understand.

Students Ieamed to make effective use of simple tools
commonly available on Unix systems, such as f ind,
xargs, and grep to read the source code and find portions
relevant to the problem under study. When reading code, fre
quently the student will come across a symbol that seems
important to the function at hand, and will want to know
what it means. One can search the entire source tree using
the above-named tools, save the output for !ater use in a file
named after the search pattem used, and scan it for relevant
hits. One can leam about a symbol both by seeing where else
and how often it is called, and by reading its definition. For
instance, if a function is called from many places it is Iikely
to be a general utility function.

III. A WARM-UP WITH TRIMARAN

Although the combination of Pro64 with NUE forms a
strong platform for compiler research, it does not provide
an easy-to-use environment for a first exercise on advanced
compiler research. Thus for our first laboratory exercises we
used Trimaran [Lab]. The advantage of Trimaran is that it
allows the user to visualize data dependence graphs, control
ftow graphs, and to generate static and dynarruc statistics of

2we were forced to use MIPSPro, the predecessor of the Pro64 for this
assignment bccause we did not have an IA-64 machine available for the
students during this first edition of the class.

3This is in contrast with compilers developed in academic settings, such
as the SUJF at Stanford and the IMPACT at lllinois. Some of the creators of
those compilers wcnt on to bc professors in other institutions and thus are
their natural disseminators.

the code generated using a cycle levei simulator. Moreover,
because the Play-Doh architecture was used in the early stud
ies to define the IA-64 architecture, comparing the code gen
erated for these two architectures the students can Ieam about
the code generation process used in Impact and in the IA-
64 [SROO].

Trimaran is a test-bed which is comprised of three ma
jor components. First is the HPL Play-Doh architecture
from Hewlett-Packard laboratories [KSROO] . This software
is used to create descriptions of machines, which can then be
used by the simulator. The second component o f Trimaran
is Elcor, also from Hewlett-Packard Laboratories. Elcor is
an intermediate representation which is used by the compiler
when performing back-end optimizations [AKR98]. The
third component ofTrimaran is Impact, a front-end compiler
developed at the University ofillinois [ACM +98, CMC+9t].
Many ideas integrated in Trimaran and in the Explicit Parallel
lnstruction Computer (EPIC) concept were originated within
the Cydra 5 architecture developed at Cydrome [DHB89,
DT93, RYYT89]. Figure l illustrates our interpretation of
the history o f the development of Trimaran. The three com
ponents of Trimaran combine to form a machine simulator
package that allows the user to customize a machine, com
pile code for it, and simulate the code execution on the cus
tomized machine. Elcor, the intermediate representation of
Trimaran, has a textual representation called Rebel. Rebel
supports the representation of control flow and data depen
dences, and it ailows the implementation o f optimizations for
multiple programming languages [AKR98].

Krishna Palem's research group (ReaCT-ILP) produced an
easy-to-use GUI interface to integrate the components ofTri
maran [wwwc]. Using this interface students can enable and
disable optimizations in the compiler, examine the code gen
erated (including control flow graphs and data dependences),
run the code generated in the Play-Doh cycle-level simula
tor, and collect and display statistics o f the various types of
instructions executed, as well as identify hot regions of the
program. Students may then either change optimizations in
the compiler or change the architecture specification and ex
amine the effects of these changes in the simulation statistics.

One drawback of using a simulator-based infra-structure
such as Trimaran, is that we are limited to small programs
that can be analyzed with reasonable effort and that can run
under the simulator within reasonable time. Nonetheless, the
students benefited from the use of Trimaran in the first por
tion of the class. A brief description of two of our assign
ments will best illustrate our use of Trimaran as a teaching
tool:

Local Register Allocation Soon after the conventional
techniques for local register allocation- Jiveness anal
ysis, interference graphs, and graph coloring [PBT89,
CK91, Cha82, CH90] - were presented in class, the

208

students were asked to examine the lmpact source code
for register allocation and to write a brief description of
the algorithm used for register allocation in that com
piler, including the generation o f spill code.

Software Pipelining After the students were introduced
to software pipelining and rotating registers in
class [DT93, DHB89, BRRS92] they were given a sim
pie piece of code (an inner product computation) and
were asked to compile the code both in Trimaran and in
the Pro64, with software pipeline enabled and disabled.
They were then asked to hand analyze the four versions
of the code to estimate the number of cycles that each
version is expected to execute. They were also asked to
compare and find differences between the code gener
ated for the Play-Doh architecture specification by lm
pact and the code for the IA-64 generated by the Pro64.
Although time consuming, the detailed study o f a small
piece of code gave the students great insight into both
how software pipelining works, and the differences be
tween the two architectures. Finally the students were
asked to run the code on the Play-Doh simulator and un
der NUE to compare the results from their analysis with
the simulator results.

Trimaran also allows researchers to add their own code
transformations and optimizations. Although a suitable tool
for architecture research - it generates code for a config
urable architecture - Trimaran does not yet generate code
for the IA-64 and thus its use for the study of compiler opti
mizations for that architecture is limited. Moreover, our goal
from the start of the class was to use a production-level com
piler.

IV. MEASURING PERFORMA NCE WITH THE MIPSPRO
COMPILER SUITE

Although we had access to the Pro64 source code and to
the NUE/Ski simulation environment, in this edition of the
class we did not have access to a machine equipped with a
IA-64 processor. As an altemative, we had an assignment in
which each student in the class was assigned a floating point
and an integer benchmark from the SPEC2000 benchmark
suíte. The students were required to use the performance
measuring tools available in SGI systems (SpeedShop) to
obtain a detailed profile of the benchmark execution and
identify the portions of the benchmark where the code spent
most execution time [lnc99]. These measurements were per
formed in a machine equipped with a MIPS R 1 OK proces
sor, and used the MIPSPro compiler. Each student was then
asked to analyze the portion o f the code where mosto f the ex
ecution time was spent, and to select a compiler optimization
that the student expected to produce changes in the program
runtime.

The goal of this assignment is to give the student an op-

Fig. I : Evolution o f Trimaran

portunity to leam to use the perfonnance measuring tools to
study the behavior of a program, to study a compiler opti
mization o f their choice, and to be acquainted with some o f
the benchmarks in the SPEC2000 suite. Students were then
asked to present, in class, an overview of the benchmarks
that they studied, the structure of the portion of code where
these benchmarks spent considerable amounts of time, the
optimization that they studied, and their explanation for why
that optimization did or did not produced the execution time
differences that they expected.

Students remarked that this assignment consumed a Jot of
their time. An in-class discussion revealed that by and Jarge
they focused on finding an optimization that would produce
a substantial change in the program runtime. This was a
deviance from the original assignment goal. Understanding
why tuming off a given optimization, that on first examina
tion appears to be relevant for a program perfonnance, does
not produce measurable execution time changes is more in
formative and less time consuming than searching for an op
timization that does make a difference.

V. USING A COMPILER WITHOUT A PROCESSOR: THE
HP-NUE ENVIRONMENT

Studying compiler optimization on a compiler infra
structure that generates code for a processor that is not yet
available is a challenge. However we were not the only ones
facing this challenge. As a matter of fact, currently ali pro
cessor manufacturers are required to deliver an optimizing
compiler when the first processors of a new architecture be
come available. As a consequence, practitioners in the in
dustry are often generating code optimization for processors
that are not yet available for testing. Thus students should be
trained to work with estimations and indirect measurements
of perfonnance. In our case we had the Ski IA-64 Simula
tor and the Native User Environment (NUE) from HP [Co.].
Ski simulates the IA-64 architecture as a functional simula-

209

toro f the IA-64. It allows a compiler developer to debug the
code generator by following the code generated in the simu
lator environment. However because it is a functional simu
lator, it does not allow for a good approximation of the exe
cution time of the code generated. Moreover, Ski simulates
a sequential execution of the program, and thus, it cannot
reveal potential hazards created by the explicit parallelism
inserted by the compiler in the IA-64 assembly. lt will, on
the other hand, provide statistics on the number of instruc
tions of each type executed by a program. Such statistics are
valuable feedback for compiler optimization [Co.OO].

NUE is an integrated cross-compiler and emulation tool
for a Linux operating system running on an lA-64 proces
sor. It allows the testing of applications developed for IA-64
Linux systems on an IA-32 computer. Often Ski is used in
conjunction with NUE both for the development of applica
tions and for compiler development. Although these tools
were not suitable for the perfonnance studies that we car
ried out on MlPSPro!MIPS R I OK systems, they are helpful
to verify that modifications to the compiler still produce cor
rect code. NUE was also used in class assignments that were
designed to make the students more familiar with special fea
tures of the IA-64 such as rotating registers, predicate regis
ters, and instruction bundling.

VI. THE CLASS PROJECTS

An important component o f our teachinglleaming method
ology is to assign a research topic for groups of two stu
dents. 4 These research topics are then investigated in the
fonn o f a class project that runs in parallel with the other ac
tivities in the class. First we describe the methodology that
we use to manage the course projects, and then we briefly de-

4We assigned research topics to students rather than ask lhe students to
come up wilh a topic. Our reasoning is lhat in the first weeks of a graduate
course, lhe students have very little knowledge or background on compiler
research. Thus lhe instructor is in a much better position to pick topics that
are relevant and that might lead to a thesis topic later.

scribe the project assignments in the first edition o f the class.
The class projects h ave two main goals: (I) to provi de a focus
for the students to learn, in detail , one aspect o f the compiler
infra-structure; (2) to expose the students to an open research
problem that is relevant in the field.

A. Project Methodology

At the end o f the second week o f class, each student is as
signed to a team, and each team is assigned a research topic
anda short reading Iist. The project specification provided by
the instructor contains a high-level description of a research
topic and a first approximation for a problem statement. Two
weeks later there is a project interview in which the students
present a clear and concise problem statement, demonstrate
their understanding o f the problem, indicate how they intend
to attack the problem, and propose a plan of activities for the
project. During this interview the instructor has the opportu
nity to correct misconceptions, advise against overly ambi
tious proposals, and provide pointers to additional resources.

After the project interview the students should be in a po
sition to write a project proposa/ in which they describe the
project in more detail and spell out their plan of activities,
including intermediate milestones and any roadblocks that
they foresee. Giving feedback on this proposal enables the
instructor to once more provide guidance to the students. At
the middle o f the term the students submit a project progress
report. To avoid creating undue burden to the students, this
progress report is very informal and brief- in our class it
was an email message. Nonetheless, because of the many
pressures for time from the other activities in the class and
from other classes, this report is an important mechanism to
make sure that the students focus on the project early on.
Again the instructor can advise at this point. Because we
work on open research problems, the progress report is an op
portunity to refocus some projects. 5 Finally in the Jast week
of classes each group of students makes a project presenta
tion where they describe to the class what they Jearned with
the project. Two weeks after the presentations, teams submit
a final project report. Besides these formal mechanisms to
follow a project, at any class meeting a student can be asked
to give a water coo/er report of the project, i. e. a 3-minute
description of progress made.

8. Project Topics

There is a tradeoff on choosing a topic for a project in such
a class: one might ask the students to re-implement a known
optimization in the compiler and expect to see performance
measurements at the end o f the term. Alternately one might

5In this first edition of the class, when the progress reports were tumed
in we knew that the IA-64 hardware would not be available for perfonnance
measurements before lhe end of the term. Thus we adapted some of the
projects for limited experimentation under NUEJSki.

210

assign an unsolved open research problem and be prepared
to accept proposals for solving the problem at the end of the
term. 6 Hopefully the study of some of these problems Jead
to either Master or Ph.D. levei research topics. By and large
we opted for the latter, however we did have a project whose
goal was to compare two existing optimization techniques.

A brief description o f the projects in ou r class follows:
• To implement partia) function inlining. The idea is to

use the frequency o f execution o f the edges o f a control
ftow graph o f a procedure and select a hot portion o f the
procedure to be inlined, thus reducing the number of
function calls executed while keeping the code bloating
to an acceptable levei.

• To investigate the effectiveness of the rotating register
mechanism in software pipeline.

• To measure stride regularity in the traversal of pointer
based data structures. This project is a continuation of
the research on prefetching induction pointers imple
mented earlier in the MIPSPro [SAG +OJ].

• To compare aggressive tail duplication in the algo
rithm for hyperblock formation, as proposed by Scott
Mahlke [Mah96] with a more conservative approach
that results in less tail duplication.

The main goals of the projects - to afford the students
an opportunity for in-depth learning o f an optirnization tech
nique in the compiler infra-structure and the investigation of
an open research problem- were accomplished. The partial
inlining idea is now under pursuit as a research project.

VIl. ÜTHER COMPILER ÜPTIMIZATION TEACHING

EXPERIENCES

To put our approach of using a production levei compiler
infra-structure to teach compiler optimization at the gradu
ate levei in perspective, in this section we briefty describe
the compiler infra-structures and teaching approach in simi
lar gradua te courses taught at other universities. Most o f the
instructors surveyed are well know. Although we had some
private communications with some of them, most of the in
formation related here is from the course descriptions at the
course web-sites. In Table I we list the websites for the com
piler, simulator, and virtual machine infra-structures refered
to in the paper.

The Stanford University Intermediate Format (SUIF) com
piler is used in a number of courses covering compiler opti
mization [wwwf]. A feature that makes SUIF an appealing
research tool is the modularity o f its design. Each stage o f the
compiler is written as a separate module. This modularity ai-

6 Jn our class, although the students were told early that they were being
assigned open research problems, they assumed that they were expected to
solve the problems and to present perfonnance measurements at the end of
the tenn. Thus the re·evaluation of the goals at the progress report time was
very important.

Infra-Structures Location
Pro64 oss.sgi.com/projects!Pro64/
SUIF suif.stanford.edu/suif/suif2

Trimaran www.trimaran.org
HPF www.crpc.rice.edu/HPFF/

Gnu gcc gcc.gnu.org
IMPACT www.crhc. uiuc.edu/IMPACT/index.html
Sablevm www.sablevm.org
Jalopeno www.research.ibm.com/jalapeno/

NUE www.software.hp.com/LlA64
SimpleScalar www.cs. wisc.edu/ mscalar/simplescalar.html

TABLE 1: Websites for compilers, simulators, and virtual machine websites.

lows for new passes to be easily integrated into the compiler.
A student can create hislher own compiler by combining dif
ferent stand alone programs that communicate using files and
invoking different passes using the SUIF driver program that
operates on intermediate representations in memory. Typi
cally, passes are applied one after the other, however for ef
ficiency SUIF also allows passes to be pipelined to enable
the compilation of large programs. Moreover, the intermedi
ate representation of SUlF is extensible and allows the cre
ation of new IR objects. SUIF also includes extensions for
object-oriented programming and a browser tool, sbrowser,
for examining the internai representations. Simple-SUIF is
a simplified version of the SUIF compiler that can be more
suitable for use in compiler courses and that allows students
to develop their own compiler passes.

Todd Mowry (Camegie Mellon University) uses the SUIF
compiler and its internai representation as the basis for his as
signments. Besides traditional optimization techniques, his
course discusses static single assignment, software pipelin
ing, and memory hierarchy optimizations. Like our course,
he has class discussions based on research papers on topics
such as pointer analysis, profiling techniques, and dynamic
optimizations. For the assignments, he asks that the students
implement an optimization pass in SUIF. Typical assign
ments include writing an analyzer that calculates reaching
definitions, or implementing a dead code elimination pass.
Similar to ours, his course has a project. The research top
ics for the projects often center on open research problems
such as scalable pointer analysis, profi le-driven prefetching
in pointer-based structures, optimizing for access locality,
and branch prediction.

Ken Kennedy (Rice University) focuses on the back-end
of compilers. Different from ours, his course includes topics
related to vectorization and parallelization of programs. The
focus of these techniques is to uncover parallelism that can
be exploited in multiprocessar systems. Topics presented by
students include dependence analysis, code transformation,

2 11

list scheduling, and inter-procedural analysis. The course
also covers fine and coarse grained parallel code generation,
parallelism detection, and compilation for high performance
languages such as C, Verilog, Fortran 90, and HPF [wwwb].

Rajiv Gupta's course (University of Arizona) targets sev
era! architectures including superscalar, VLIW, and EPIC
style processors. Besides typical back-end issues such as
contrai and data speculation, branch prediction, load/store
disambiguation, dynamic and static instruction scheduling,
and software pipelining, he covers power issues related to
processors and caches, as well as compiling for multimedia
instruction sets. The tools used for the course project in
clude Trimaran, the SUlF compiler, the SimpleScalar simu
lator [wwwe], and FastSim simulators [SL98].

In addition to the essential topics for compiler optimiza
tion, Laurie Hendren (McGill University) also covers compi
Jation for object oriented Ianguages. Although her course in
cludes optimizations for both C and Java, the course projects
focus on Java. The main tool for the Java projects is the Soot
framework. Soot is a compiler analysis tool that is used to
analyze and modify Java class fi les by using a Java interme
diate representation, Jimple [GHO I]. The 200 I version o f the
course included the use of SableVM, a portable Java Virtual
Machine developed by Hendren's research group [wwwd].
Examples of project topics include: decompiling, obfusca
tion, space optimization, and optimizations for numerical
computing (in the Soot framework); and a profiling frame
work and generational garbage collection (in SableVM).

Tarek Abdelrahman (University of Toronto) uses the
Simple-SUIF compiler to study the usual optimization top
ics. Two of the class assignments require each student to
write a compiler pass: (I) to create the control ftow graph,
and (2) to implement a generic data ftow analysis problem
solver. A third assignment is similar in scope with a class
project and requires each student to implement severa! op
timizations in Simple-SUIF including: loop invariant code
motion, induction variable elimination, copy propagation,

Professor Course Website

Tarek Abdelrahman Not Available
José Nelson Amaral www.cs.uaJberta.ca/ amaraJ/courses/680/index.html

Guang R. Gao www.capsl.udel.edu/courses/cpeg421/200 1/
Rajiv Gupta www.cs.arizona.edu/ gupta/teaching/620/

Laurie J. Hendren www.sable.mcgill.ca/ hendren/621/main.html
Todd C. Mowry www.cs.cmu.edu/ tem
Ken Kennedy www.cs.rice.edu/ ken/comp515/

Michael D. Smith www.eecs.harvard.edu/cs253/
Mary Lou Soffa www.cs.pitt.edu/ soffa

TABLE 11: Professors and Websites o f Graduate Compiler Courses Mentioned in this Paper

and two other optimizations of the student 's own choosing
(for graduate students only).

Michael D. Smith (Harvard University) also uses SUIF for
homework and class projects. Homework includes writing
a pass for dead code elimination, and project topics in th~
2000 version of the class included static single assignment,
inlining, debugger support, common subexpression elimina
tion, loop-invariant code motion, and code instrumentation
and profiling.

Mary Lou Soffa (University of Pittsburgh) focuses on top
ics related to compiler front-ends. The course also covers an
examination of run-time environments, including parameter
passing and garbage collection. She also covers traditional
optimization techniques such as data flow anaJysis and local
and global optimizations.

Guang R. Gao course at the University of Delaware con
centrates on the tradeoffs between software and hardware.
This class has a high concentration on register allocation,
software pipelining, and loop levei optimization.

For space constraints, we must leave out many courses and
universities, but the sample above has enough variation to
provide information about the varied approaches to teaching
compiler optimization and to the alternative infra-structures
available to offer hands-on experience to students in such a
class. We observe a balance between the foundational topics
such as control and data flow and advanced research topics in
ali the courses examined. Most of the compiler courses ex
amined use compiler infra-structures developed in academia,
with few special projects using production-level compilers.

Vlll. FINAL R EMARKS

Although challenging both for instructors and students, the
use o f a production-level compiler infra-structure, such as the
Pro64, in a graduate class provides the opportunity to tackle
state-of-the-art research problems. The students aJso wel
comed the opportunity to analyze the organization of such a
mature compiler and to learn from the experience o f studying
such a complex piece o f software. The experience o f working

212

with this infra-structure is very similar to the situation that
they will encounter when joining a compiler development
group in industry. Moreover they will be acquainted with an
infra-structure that can be re-targeted, with reasonable effort,
to produce code for different processors/architectures. When
they change a single aspect of the compiler they are able to
measure the effect of such change along with ali the stan
dard optimizations aJready implemented in the production
level compiler.

IX . A C KNOWLEOGEMENTS

This course could not have been organized around the use
of the Pro64 without the help of many friends, including
Guang R. Gao, Hongbo Yang, and Alban Douillet at the Uni
versity of Delaware. James Dehnert and Sun Chan (formerly
with SGI), were kind enough to provide advice throughout
the class. Shin-Ming Liu is continuously advising us on the
continuation of the partia! inlining work, now as a research
project. Richard Shapiro guided our study of the implemen
tation of hyperblocks in Pro64. We also would like to thank
John Anvik, Nathan Bullock, Ling Zhao, and Peng Zhao for
the many discussions throughout the class.

R EFERENC ES

(ACM+ 98] O. I. August, O. A . Connors, S. A. Mahlke, J. W. Sias, K. M.
Crozier, 8 .-C. Cheng. P. R. Eaton, Q. B. Olaniran, and W.
M. H. Hwu. lntegrated predicated and speculative execution
in the IMPACT EPIC architecture . In 25th llllematiollal Sym
posium 011 Compmer Architecture, pages 227- 237, Toronto.
Canada, July 1998.

[AKR98(S. Aditya, V. Kathail, and B. R. Rau. Elcor's machine de
scription system: Version 3.0. Technical Report HPL-98-128,
Hewlett-Packard Laboratories, Paio Alto, CA, July 1998.

(BRRS92(P. P. Tirumalai B. R. Rau, M. Lee and M. S. Schlansker. Reg
ister allocation for software pipelined loops. In Proceedi11gs of
lhe SIGPLAN '89 Co11jere11ce 011 Programmi11g la11guage de
sigll a11d implemelllatioll . pages 283-29, San Francisco, CA.
June 1992.

[CCK+ 97] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu.
A new algorithm for partia! redundancy elimination based on
SSA form. In Proc. of SIGPLAN 97 Co11jere11ce 011 Program-

ming Language Deisng and lmp/eme/1/alion, pages 273-286,
May 1997.

[CH90) F. C. Chow and J. L. Hennessy. The priority-based coloring ap
proach to register allocation. ACM Tra11sac1ions on Program
ming Languages a11d Syslems, 12(4):501-536, October 1990.

[Cha82] G. J. Chaitin. Register allocation and spilling via graph color
ing. In Proceedi11gs oflhe S/GPU.N '82 Symposium 011 Com
piler Conslrttclion, pages 98-105, June 1982.

[CK91] O. Callahan and B. Koblenz. Register allocation via hierarchi
cal graph coloring. In Proceedi11gs oflhe S/GPU.N '89 Con
ferellce on Programming language design and implemell/alion,
pages 192-203, Toronto, Canada, J une 1991.

[CMC+ 91] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Walter,
and W.-M. H. Hwu. IMPACT: An architectural framework
for muhiple-instruction-issue processors. In 18/h lnlema
lional Symposium on Compll/er Archileclltre, pages 266-275,
Toronto, Canada, May 199 1.

[Co.] Hewleu-Packard Co. ia-64 Iinux developer tools.
hllp://www.software.hp.com/LIA64.

[Co.OO] Hewleu-Packard Co. Ski /A-64 Simulalor Reference Manual,
rev. 1.01 edilion, April 2000.

[OHB89] J. C. Oehnert. P. H.-T. Hsu, and J. P. Brau. Overlapped loop
support in the cydra 5. In Proceedi11gs of lhe Third [11/ema
liona/ Conference on Archileclltral Supporl for Programming
Languages and Operaling Syslems (ASPLOS), pages 26-38,
Boston. MA, April 1989.

[OT93] J. C. Oehnert and R. A. Towle. Compiling for cydra 5. The
Joumal of Supercompllling, (7): 18 1-227, 1993.

[GAOTOO] G. R. Gao, J. N. Amaral, J. Oehnert, and R. Towle. The SGI
pro64 compiler infrastructure: A tutorial. Tutorial presented
at the Intemalional Conference on Parallel Architecture and

[GHOI]

[lnc99]

[KSROO]

[Lab]

Compilation Techniques (PACT2000), October 2000.

E. Gagnon and L. Hendren. SableVM: A research framework
for the efficient execution of java bytecode. In Java Virtual
Machi11e Research and Teclmology Symposium, Monterey. CA.
April2001.

Silicon Graphics Inc. SpeedShop user's guide. Technical Re
port 007-33 11 -006, Mountain View, CA, 1999. available at
hllp://techpubs.sgi.comllibrary.

V. Kathail, M. S. Schlansker, and B. R. Rau. HPL-PO archi
tecture specification: Version 1.1. Technical Report HPL-93-
80(R. I), Hewlell Packard, Paio Alto, CA, FEb. 2000.

ReaCT-ILP Laboratory. Trimaran: An infrastruc-
ture for research in instruction-level parallelism.
hllp://www.trimaran.org.

[Mah96) S. A. Mahlke. E.rploiting lnstruction Leve/ Parallelism in the
Presence of Conditional Branches. PhO thesis, University of
lllinois at Urbana-Champaign, 1996.

[PBT89j K. Kennedy P. Briggs, K. O. Cooper and L. Torczon. Coloring
heuristics for register allocalion. In Proceedi11gs of the SIG
PU.N '89 Collference 011 Programming /anguage design and
imp/eme/1/ation, pages 275 - 284, Portland, OR, June 1989.

[RYYT89] B. R. Rau, O. W. L. Yen, W. Yen, and R. A. Towle. The cydra 5
departmental supercomputer - design philosophies, decisions,
and trade-offs. IEEE Computer, pages 12-35, January 1989.

[SAG+OI) A. Stoutchinin, J. N. Amaral, G. R. Gao, S. Jain J. Oehnert,
and A. Oouillet. Speculative pointer prefetching of induction
pointers. In Reinhard Wilhelm, editor, Compiler Constmction
2001 - European Joint Conferences 011 Theory and Practice
of Software, Lecture Notes in Computer Science, pages 289-
303, Genova, haly, April 2001. Springer-Verlang.

[SL98] E. Schnarr and J. R. Larus. Fast out-of-order processar simu
lation using memoization. In 8th intemational collference on

2 13

[SROO]

[WMC96]

[wwwa]

[wwwb]

[wwwc]

[wwwd[

[wwwe)

[wwwf]

Architeclltral support for programming languages and operat
ing syslems, pages 283-294, San Jose, CA, October 1998.

M. S. Schlansker and B. R. Rau. EPIC: Explicitly parallel in
struction computing. Compuler, 33(2):37-45, Feb 2000.

M. E. Wolf, O. E. Maydan, and 0.-K. Chen. Combining loop
transformations considering caches and scheduling. In Pro
ceedings of lhe 29111 amwa/IEEEIACM imemational sympo
sium 011 Microarchileclltre , pages 274-286, Paris, France, Oe
cember 1996.

GNU compiler collection. hllp://gcc.gnu.org.

High performance fortran
hllp://www.crpc.rice.edu/HPFF/.

(HPF).

Real time compilation technology and instruction levei paral
lelism. hup://www.cs.nyu.edu/react-ilp/. New York University.

SableVM: A bytecode interpreter. hllp://www.sablevm.org.

The simplescalar architectural research tool set, version 2.0.
http://www.cs.wisc.edu/ mscalar/simplescalar.html. University
of Wisconsin.

The SUIF 2 compiler system.
hup://suif.stanford.edu/suif/suif2.

