
A Debugger Interface for Parallel Prograrns
Denise Stringhini 1 3, Philippe O. A. Navaux1, Jacques Chassin de Kergommeaux2

1 Instituto de lnfonnática
UFRGS - Universidade Federal do Rio Grande do Sul

Porto Alegre/RS, Brazil
{ string, navaux @inf.ufrgs.br}

2 Laboratoire lnfonnatique et Distribution Montbonnot Saint Martin, France
{ Jacques.Chassin-de-Kergommeaux@ imag.fr}

3 Faculdade de Infonnática
Universidade Luterana do Brasil (ULBRA)

Gravataí/RS, Brazil

Abstract-

This papcr dcscribcs the debugger interface that has been developcd
to provide a complete debugging tool for parallel application program­
mers. PADI (Parallel Debugger Interface) is a symbolic on-line debug­
ging interface whose main goal is to provide easy interaction and in­
tuitive interface for programmers. To achieve thcse goals, PADI implc­
mcnts visualization support and selection mechanism. The visualization
support helps users following thc changcs of process slatcs during the
debugging session as well as it givcs access to ali processes that are run­
ning under lhe control of the debugging environment. The selection
mechanism helps users choosing lhe processes lhey want to control and
visualize.

Keywords- parallel debugging, on-line debugging, visualization, par­
aliei programming, p/t sets

1. lNTRODUCTION

Parallel programming is undoubtedly more complex than
serial programming. The control of multiple processes and
their interactions are the main reasons for such complexity.
Despite there are some existing tools that address the devel­
opment phase of parallel programs, the complexity is often
passed on parallel tools, that is, the tools are not very easy
to use. Thus there is a need for actually easy-to-use environ­
ments and tools for parallel programming. In spite o f the ex­
istence of interesting tools, including a number of commer­
cial ones, their use remains insufficient, partly because o f the
complexity o f utilizing some o f them, partly because some o f
them are constructed for specific platforms. Therefore, there
remains a lot of room for improvements of existing tools or
development o f more supportive ones.

Probably, the most required parallel tool by programmers
is a parallel debugger. In turn, parallel debugging tools are
among the most complex to develop and this explains per­
haps why few of such tools have been commonly used so
far. This paper describes a contribution to the field of par­
aliei debugging. lt concems a debugger interface to parallel
programs - PADI, whose main goal is to provide an intuitive
and easy-to-use interface.

Parallel programs can incur basically in to four types of er­
rors: traditional serial ones, bad algorithms, deadlocks and
race conditions. According to [BUH96], the most frequent

214

ones are the serial errors, followed by the others in the pre­
sented order. Ata first moment, PADl is concemed in help to
find these most frequent types of erros in parallel programs.
Meanwhile, considering that dealocks and race conditions
are the errors most difficult to find, in the future PADI will
also offer some mechanisms to help the detection of these
kind o f errors.

PADl is an interface for a parallel on-line symbolic debug­
ger. On-Iine debugging is concerned with providing access
to program symbols, like variables and registers. On-line de­
bugging differs from off-line debugging by the interaction
mode with the program execution. On-line debugging has a
direct interaction with the application while off-line debug­
ging interacts with a trace file recorded during the original
execution of the parallel application. On-line debugging is
similar to traditional serial debugging and, consequently, eas­
ier to use for the majority of programmers. However it does
not address the non-determinism of parallel executions. Ex­
amples of on-line parallel debuggers are TotaiView [ETNO I]
and DETOP [WIS96].

Event-based debuggers mainly address this non­
determinism by permitting deterministic replay of non­
deterministic programs [MCD89, LEB87], thus allowing
cyclic debugging of such programs. On-line and event-based
debuggers are complementary: on-line debuggers can be
used alone for deterministic programs or during determin­
istic replay of non-deterministic programs [LEU92]. In
the sequei of this article we will not be concemed with the
non-determinism of some parallel executions, supposing that
we are either debugging deterministic programs or that PADl
can be used in conjunction with an event-based execution
replay tool. Examples of such tools are MAD [KRA97] and
Pajé [CHAOO] (that helps in performance analysis).

Adding a visualization element to a parallel on-line debug­
ger is a key to make it easy-to-use. Visualization is mainly
useful to show how many and which processes are under the
control of the debugger and even to show the changes in their
execution status. Visualization can also be used to access
processes and their contents.

Combined with visualization, a selection mechanism can
add some flexibility to debugging tools. Basically, it consists
in maintaining some processes/threads sets and directing par­
aliei debugging commands to the selected set. PADI imple­
ments these mechanisms in order to provide flexibility to the
interface, since it allows users to specify the targets of each
distributed debugging command.

This paper describes the user interaction with the tool as
well as some key concepts and implementation details. First,
related work on parallel debugging is described. The section
that follows the related work presents the PADI tool and its
main design issues. After that, the basics of PADI architec­
ture are outlined. Before the conclusion, the user interaction
with PADI prototype is explained, in order to show PADI's
main characteristics.

li . R ELATED WORK

In spite o f being (at least apparently) not active any more,
the High Performance Debugging Forum (HPDF) [HPDOO]
contributed to parallel debugging with severa! important def­
initions. Created to define a standard for parallel debug­
ging, HPDF covered many areas, although nothing con­
cerned specifically with a Graphical User Interface (GUI)
was defined.

One of the most important HPDF concepts concerned with
parallelism is the processes/threads set (or p/t set) concept.
According to HPDF, it provides the foundation for extending
the semantics of serial debugger operations to a form suit­
able for parallel debuggers, allowing a debugger command
to be applied to a whole collection of processes/threads,
rather than to just one process or thread at a time. A tar­
get p/t set can be defined by selecting one, many or ali pro­
cesses/threads from the application. Considering a console
debugger (without a GUI), this set can be defined by adding
the processes/threads labels to the parallel debugger com­
mand. A default set can also be defined, that is the cur­
rent p/t set (used when the programmer does not give any
p/t label(s)). There is yet another type of p/t set, that is the
affected p/t set, which defines the p/t set that will actually
be affected by a command (it depends on the validity of the
operation). Other useful definitions concerning control pro­
gram execution and others are in the draft [HPDOO].

One of the most widely used parallel debuggers is To­
taiYiew [ETNOI]. It is a parallel symbolic on-line debug­
ger offering many useful functionalities, such as a root win­
dow containing ali the processes being debugged during a
session and a process window, allowing processes inspection
(the root window provides access to process windows). With
respect to the p/t sets defined by HPDF, Tota!View is less
ftexible since it does not allow the definition of subsets of
processes, although it implements the fle.xible breakpoints,
shared by parent processes and their children. Although it

215

uses colors to highlight some important information during
the debugging process, TotaiYiew does not provide any kind
of graphic visualization to express what is happening.

Another interesting tool is the p2d2 debugger [H0099].
Its interface consists of a single window allowing program­
mers to coordinate up to 256 processes. lt satisfies the two
main criteria addressed here which are the implementation
of p/t sets and visualization. lt has a process grid where ali
processes being debugged are located in specific positions
as icons that represents their status as defined by the user.
The only drawback of this approach is the difficulty of lo­
cating or identifying a specific process in a grid containing
a lot o f them (in spite o f a mechanism called focus column,
that highlights the selected column and displays information
about it in a specific area). With respect to p/t sets, p2d2 im­
plements the corllrol set mechanism that allows the definition
o f group o f processes that will be controlled by the debugger.
This group is highlighted in the grid, but the grid continues
to show ali processes.

Node Prism [SIS94] for Connection Machine (CM5) of­
fers a language for defining named node sets. Besides spec­
ification by lists and ranges of nodes, set membership may
be based on expressions involving program data. Using any
legal source-language expression on each node, the node be­
comes a member of the set if the result is true. There is
a window that maintains ali defined sets and the user may
choose one of them to be the current one. Regarding visual­
ization, it provides filtered textual messages about processes
states and actions and a where tree. The tree is a generaliza­
tion of a back trace for multiprocessors. It groups together
traces of processors that make calls to the same functions,
from the same point in the SPMD code. It also provides data
visualizers, that are graphical representations for arrays and
array-valued expressions.

Finally, we introduce Fiddle [CUN98] , that is the infras­
tructure levei o f PADI. Fiddle (previously named PDBG) is a
framework that supports parallel and distributed debugging.
It provides a debugging environment where clients (PADI,
in this case) can make calls to perform any kind of parai­
lei debugging command. This is achieved by coordinating
process levei debuggers and providing client communication
with them. Fiddle is an Application Program Interface (API)
and as such does not include any visualization, although it
provides a console, useful for tests. Fiddle leaves the imple­
mentation o f p/t sets to the client levei.

Although there exists some useful debugging tools like the
ones named here, there still exists the need for really intuitive
and easy-to-use parallel debuggers. The design o f PADI was
made to excel simplicity for user interaction instead of hav­
ing a great concern with scalability (that seems to be the ma in
goal of existing parallel debugging tools, e.g. Node Prism
and p2d2). Even that the scalability o f such tools is an impor-

tant feature (in fact, it is in some levei addressed by PADI),
the begginers in the art of parallel programming normally
work with few processors/processes and their main difficulty
is to understand what is happening with them. Besides, often
a program that works well with few processes will work fine
with many more, thus, in cases like this, easy-to-use char­
acteristic is more convenient then scalability. PADI intend
to address intuitiveness by some design choices explained in
this paper.

Ill. DESIGN ANO IMPLEMENTATION OF PADI

The design choices of PADI that make it easy-to-use can
be summarized as follow:

• the debugging environment is similar to the existing se­
quential ones, making it more famil iar to the users;

• the basic debugging commands are accessible directly
by buttons on the interface (small use of pop-up menus
and use of icons/tooltips instead);

• the process visualization represents processes as easy to
identify units from where users can access their con­
tents;

• only selected processes are visualized, which cleans up
the visualization area and tums debugging more intu­
itive since only visible processes will receive distributed
commands;

• PADI makes clear distinction between the two main lev­
eis o f hierarchy of a debugging tool:

- one levei for the distributed features, represented by the
main window

- and the other for the individual processes features, rep­
resented by processes' windows instances, one for each
desired process.

Parallel on-line debugging tools include mainly two lev­
eis: coordination and process levei (e.g., Fiddle/PDBG
[CUN98]). The coordination levei gives an overview of the
application being debugged as well as an access to the pro­
cess levei. The process levei in turn, provides access to the
code, variables, stack, etc., of each process. In spite of the
extra coordination levei, this structure o f parallel on-line de­
buggers is similar to what is provided by sequential debug­
gers. The coordination levei is specific to parallel debuggers
and therefore more interesting to explore while developing a
parallel debugger. PADI implements these two leveis.

The main goal o f PADI is to explore the coordination levei
in a parallel debugger interface, making it intuitive and easy­
to-use. In order to achieve this goal, PADI has its coordina­
tion levei implemented as a main window having three main
functions: distributed debugging commands interface, pro­
cess visualization and process selection. These features are
combined to provide means to select processes, to visualize
only the selected ones and to distribute required commands
only to these selected processes.

216

The process levei is similar to what is provided by sequen­
tial debuggers. In PADI, this levei provides almost the same
commands as the coordination levei. The difference lies in
the target processes. While the targets of the coordination
levei are the selected processes, in the process levei, only
the owner o f the window will receive a debugging command.
In other words, commands from the process levei in PADI
have priority over the ones originating from the coordination
levei. This was done in order to make the tool more ftexi­
ble, since the user is not forced to always use the selection
mechanism as well as he can work individually with opened
Process Views.

The programming models accepted by PADI are even
SPMD (Single Program Multiple Data) or MPMD (Multi­
pie Program Multiple Data). Threads are also allowed, even
that at the moment they have no special treatment. PADI is
being developed to work fi rst with parallel programs writen
in MPI [PAC97], PVM [GEI94] and DECK [BAROO].

IV. USER INTERACTION WITH PADI

The main idea in PADI is to separate, at least at the inter­
face levei, the distributed actions from the sequential ones.
This was done by making a clear distinction between the two
debugging leveis explained before: coordination and process
leveis. Thus, PADI provides two main interface views: the
Main View and the Process View. The fi rst one is responsi­
ble for ali actions that are distributed while the second one is
responsible for ali sequential symbolic inspections.

Since parallelism is the mainfocus of PADI and it is rep­
resented by the coordination levei, we will focus in this sec­
tion on the user interaction with the Main View. Figure I
shows the Main View interface of the PADI prototype. The
distributed debugging commands are available directly from
the interface as well as the group selection mechanism. The
Processes Area is where the parallel application processes
are presented. The currently available distributed commands
are (they are in the Commands bar that is below the Menu
bar in figure 1):

• load
• kill
• attach
• detach
• run
• step
• next
• continue
• finish
• set breakpoint
• detete breakpoint
• display variable
• undisplay variable
• set variable

(6f·~··

""nut<o
I ,,,.,1 - fi • CM!

I ..._.

•
,...... ~· tt......,.... .

Fig. I. PADI's Main View (coordination levei).

Figure I shows a snapshot of an execution of a
farrner/workers program written in PYM [GEI94]. A farmer
process was loaded and executed until it created six worker
processes, that were attached to PADI. The numbers inside
the icons are their ids for the PADI environment.

The attachment of processes can be done in two ways: pro­
cess by process or by executable name. In process by process
mode, the user will be presented to a list o f processes (avail­
able by a ps command) where it is possible to select the one
that will be attached. On the other way, it is possible to pro­
vide an executable name that will be used to do a multiple
attach: ali processes with that name will be automatically
attached. Another information that is necessary is the host
where the process or processes are executing. PADI uses a
host file (padiJwsts) where users can provide a list of avail­
able host names.

In order to debug a parallel application, the first thing to do
is to load its main executable and/or to attach its processes.
Once the parallel application is loaded, it is ready to be exe­
cuted. In order to be able to debug it in step-by-step mode, it
is necessary to seta breakpoint and to ruo it until this break­
point. The new processes created by the application can be
attached to the debugging environment so that they can also
be debugged in step-by-step mode. Once new processes are
attached, they also appear in the Processes area. Attached
processes start normally in stopped state. The stopped state
is the one that allows any debugging command to be executed
by any process.

At any time during the debugging session, it is possible
to select a group, using the Group Selection bar (third bar
in figure I). The pre-defined groups present in this bar are
currently related to the process states or defined by the user:

217

..
••
" •• ,
u
r: .,
~· •::
•• ..
" ~)

11
"'l

c.-.--r......-
~·~:.~~·i~~ ". 1

l•e.m.n. , •••
"l•lr-~• .-. • 11f1.. "'1oei!_ C .. ""''l \

.-~.,,...,((l...,'l•-t

n•J'~ •.:..rLfll(•;/11 J,
~li._,..,._._.., I l l
P'•..JI•,...,t .l"••l . I 1l
.... 'f •• ••
• .r , ... _, ••••
• .•, •a.c. ••• ,, ..

··~rwr fl .. uU l•• h. _, ••'Jnna••• 'I ,-,y.........r

· ~-----------------------~1 (1'!1 f.,.,

Fig. 2. Process View (process levei).

• ali
• ready (green)
• rwming (blue)
• stopped (red)
• terminated (black)
• user
• not user
• exec

The first one selects ali processes holded by PADI. The
following four groups (ready, running, stopped, terminated)
are based on the processes states when the group was se­
lected. The user selection is a little bit different. When a
user selects a process in the Processes area, it is possible
to select or unselect the process. Processes selected by the
user receive a black border, indicating that they are part of
the user group. When the user selects the User button on
the Group Selection bar (the green "U" ellipse), the marked
processes will be currently selected. On the other hand, i f the
Not-user button is selected (the black "U" ellipse), the pro­
cesses not marked will be currently selected. Even if there
exists more sophisticated mechanisms like the ones based on
attributes (implemented in Node Prism and p2d2), this one
simplifies the use of PADI, since it is possible to establish a
dual debugging operation that characterizes a great number
of parallel applications (like the farmer/workers type). Fi­
nally, the exec group contains ali processes that have a given
executable name.

Once a user selects one of these selection cri teria, only the
selected processes will appear in the Processes area and will
receive valid debugging commands. At any time, multiple
Process Yiews (figure 2) can be opened by selecting any pro­
cess from the Main View's Process Area.

The remaining debugging commands are familiar to pro­
grammers, which makes PADI very easy-to-use. Stopped
processes can be resumed by traditional sequential debug­
ging commands such as step, next, continue, finish. Ali of
them are available directly from the interface. The Process
Yiew has non-distributed versions o f the same commands as
the Main View (except load, attach and detach). lf they are
called from Main Yiew, they are applied to ali the selected
processes. Otherwise, if they are called from the Process
Yiew, they are applied only to the caller process. When
a command is about to be applied, the selected processes
change their color to gray, so it is possible to visualize at
Processes Area it this command is distributed or individual.
At the same time, the processes maintain the green color until
the command is actually performed by PADI.

V. THE ARCHITECTURE OF PADI

As mentioned before, PADI uses Fiddle as a low levei de­
bugging engine. Fiddle controls the distributed processes (at­
tached to process levei debuggers) and provides client com­
munication with them by sending debugging commands and
receiving/interpreting results. PADI is not justa GUI for Fid­
dle since it provides functionalities such as distributed com­
mands, visualization and process selection.

USER

INTERACflON

COMMUNICATION

SELECflON

Fig. 3. Main blocks of the PADI structure.

Figure 3 presents the basic modules of PADI. The inter­
action module captures the user requests and displays their
results after completion by the system.

The selection module controls the selection mechanism by
performing some verifications before sending a request (de­
bugging command) to the next module. The first verification
is based on selected processes and is related to HPDF current
p/t set: it defines which processes will (probably) receive the
debugging command. Thus, this logical module is responsi­
ble for maintaining information about the processes present
in the current p/t set. There are two altematives in order to
redirect a command to the processes:

• a command request originating from the coordination
levei will be sent only to the selected processes, where

2 18

this selection is the one done by the user;
• a command originating from the process levei will be

sent only to the caller process.
The second verification concems the status of the pro­

cesses and also requires some information to be maintained
by PADI. This verification is related to the HPDF affected p/t
set: the command will be sent only to the processes that are
able to perform the command. This prevents invalid com­
mands to be sent to the next leveis.

The communication module is the client of Fiddle. It in­
teracts with Fiddle by sending requests, already filtered by
the selection module, and receiving the results from Fiddle
for each sent request. The results are then passed to the in­
teraction module to be displayed to the user as well as to the
selection module, i f some status change took place.

A. lmplementation details

The implementation uses the Java language [HOR99],
which supports nicely the PADI architecture. Processes are
represented by objects that encapsulate ali the information
needed to allow the verifications described above. These ob­
jects are instances from the Proc() class, that also has meth­
ods that are invocated when an event generated by a debug­
ging process takes place. These methods are responsible to
show such events into the interface.

The Proc() class contains the status information verified
before a command is sent to Fiddle. In addition to this class,
there is a set of classes that implement the actions needed
by the commands: the XxxAction() classes, where "Xxx"
is the name of the command. Basically, there is one class
for each debugging command. These classes implement the
status/selection verification (consulting the Proc() class) and
mount a message that corresponds to the command. This
message is then sent to an object that implements the com­
munication with Fiddle (communication block in figure 3).

Another important component of the system is the pro­
cesses' server (the ProcsServer() class), that is an object that
maintains references to ali the objects representing the pro­
cesses being debugged. When a debugging event occurs,
PADI initially receives, together with the information about
the event, the Fiddle's tid ofthe process that caused the event.
Then, the server is required to send the object's reference
of the process based on that tid. After that, the appropriate
method to the event detected is invocated at the Proc() ob­
ject that represents this process in PADI context. Also, its
state is adjusted. For example, i f the process has finished its
execution, its state is changed to terminated.

B. Processing jfow in PADI

Figure 4 exemplifies the processing flow in PADI. The ob­
jects and methods were simplified, the goal is just to describe
the main algorithm. The example shows a run command in-

MainView() I RunAcLion() SendO

i f action = run
for all_procs

~ =mount_msg() do_verify()
new RunAction() ifOK ~ood_<o_i1ddl<(m) 1\

new Send(run)

•••••

~
Proc() Break() Thread_recv()

doBreak(){ Proc p: m=recv _from_fiddlc()
status = stopped p = get_in_server(tid) unpack_msg(m)
updatc_interface() p.doBrcak() iftype = breakpoint
} new Brcak()

1
Fig. 4: Example of the processing ftow in PADI: the boxes are the objects and the arrows are the relationship between them (creation or method
invocation). The superior row of objects represents the processing flow to send a command (rrm in this case) to Fiddle. The inferior row represents the
processing flow that occurs when an event from Fiddle (a breakpoint hiting in this case) is received until it is showed in PADI.

vocated by the interface and its processing ftow until it is
sent to Fiddle. The objects responsible for the interface con­
trol (MainView() or ProcView()) receive the command and
create the corresponding action object (the RunAction(), in
this case) to perform the verifications (status and selection).
For each process that passes the verification, a Send() object
will be created that mounts a message with required informa­
tion about the command (the tid of the process and the run
arguments in this case) and sends it to Fiddle.

After the sending of the run comrnand an asynchronous
event can occur, like hitting a breakpoint. This situation and
the event back ftow is also depicted in figure 4. There is a
thread (named in figure 4 as the Thread .recv() object) that re­
ceives events like the arrival of a process at a breakpoint and
creates the appropriate object to treat the event (the Break()
object in the example). Then, this class gets the object ref­
erence to the process that caused the event and invokes the
corresponding method in the Proc() class. This method (do­
Break() in the example) updates the status ofthe process (that
is stopped when arriving in a breakpoint) and also updates the
interface: change the color of the process in the Processes
Area and mark the corresponding tine at source code (i f the
Process View is opened and showing the source code).

At this point it is important to note that commands like run
can be distributed, what will create a number of Send() ob­
jects, one for each process. On the other hand, the responses
are centralized in one thread that will receive ali the asyn-

219

chronous events from Fiddle. This centralized thread is used
in order to establish a communication with Fiddle via a pipe
mechanism. Meanwhile, Fiddle is being modified to accept
Java clients, so the pipe is a temporary solution.

The PADI processes' objects (instances o f Proc()) are cre­
ated by load or attach commands. Then, when a debugging
command, except of these two, is started in the interface,
processes' objects states are verified. lf the command was
originated in a process view, that saves the tid o f the owner,
only the process' object holding this tid is verified and the
command is sent only to it. I f the command was originated
from the main view, ali processes' objects, whose references
are maintained by the server, are verified and commands will
be sent only to the tids that satisfy the conditions described
earlier. This way o f proceeding may seem heavy, but the ad­
vantage is that it is made locally. In other words, it avoids
that a command that cannot be executed by a process in any
way be sent through the network and be renegated by the tar­
get process. For example, a process whose state is terminated
cannot be stepped. A step command will be intercepted by
PADI locally, avoiding unnecessary network traffic.

VI. PRELIMINARLY RESULTS

The PADI prototype can already be used such that it is pos­
sible to formulate some parctical comparisons with some ex­
isting tools. In the present phase o f the work, the most impor­
tant characteristics to be analyzed from a practical point of

view are the interface intuitiveness, the programming mod­
els accepted and the platform. The goal of PADI isto be an
easy to use tool available to popular parallel programming li­
braries (like PVM and MPI) and platforms (Linux clusters).
Also, it will be available without costs and will be used for
further research in on-line debugging and monitoring areas.

Some considerations about other tools were already done
at the "Related work" section and are retaken in the "Con­
clusions" section. This one is more concerned in making
some kind of practical comparisons with knowed tools like
p2d2, Prism and TotalView. Unfortunately, a practical com­
parison with p2d2 is not possible, since it is not available for
download and its use is restrict to NASA (see the p2d2 site
in [H0099]). Prism was formely conceived at Thinking Ma­
chine Corporation and now is part of Sun HPC environment
[SUNO I], hence it is not available for Linux clusters. Both
accept PVM and MPI programming models.

Totalview is a commercial tool , but it has an evalua­
tion distribution for Linux clusters and others (available in
[ETNOI]). As a wide used commercial tool , TotalView is
full implemented and has a lot o f useful features. A compar­
ison, at least for while, can be made only at interface levei,
that is the primary goal of PADI.

Let's consider the same PVM farmer/workers example
presented at section "User interaction with PADI". When
debugging that example with PADI it is easy to separate the
farmer (mas ter I in figure I) and the workers (slaves) in to two
groups. This can be done by selecting the farmer as user (just
selecting its ellipse with the mouse) and choosing the User
group to select it as the current group or choosing the Not
use r to select the workers.

The notion of a group in Totalview is less ftexible. There
are only two types of groups: the contra/ group and the
share group. The control group includes the parent pro­
cess and ali related processes. The share group is the set of
processes within a control group that share the same source
code. When debugging the same example with the Totalview
defaults it is possible to experiment the effect of a control
group by stepping the program. I f the Step g roup option from
the pop-up menu is choosed, ali processes will do the step.
Thus, the step can only be done individually or by ali pro­
cesses in the control group (that are ali processes - farmer
and workers- in this case).

The default breakpoint semantics is different in TotalView.
When setting a breakpoint in a process it will be shared
among processes with the same source code. By default,
breakpoints follow the shared group semantics. The man­
ual explains how to change the properties of an action point,
but (at least apparently) this feature was not available in the
tested evaluation version ofTotalView (Linux x86 Tota!View
4.1.0- 1).

One o f the main design choices o f PADI is to separate the

220

interface into two different kinds of views: one for parallel
commands and other for individual commands. Such a struc­
ture clarifies the semantics of the debugger. In PADI it is
possible to visualize ali processes that will be affected by a
debugging command before it is actually sent to execution.
The PADI's Main View is the responsible for ali distributed
commands. The counterpart of this view in TotalView is the
Root window, that is a textuallist of the debugging processes
and its states. However, ali debugging commands are aval­
able by the pop-up menu from the processes views.

VII. CONCLUSION

PADI is a parallel on-line debugger interface whose main
goal is to provide intuitive parallel debugging facilities. In
order to achieve this goal, the two leveis of a parallel de­
bugger (coordination and process leveis) were defined and
implemented separately. Thus, the process levei was made
completely fami liar to programmers, since it is very similar
to traditional sequential debuggers. In addition, the coordi­
nation levei of PADI was developed to embody parallel fea­
tures, like distributed commands, selection mechanism and
parallel visualization.

The coordination levei of PADI is represented by its Main
View. Severa! design choices contribute to making PADI in­
tuitive and easy-to-use. The most important is the fact that
the Main View embodies ali the parallel commands. Other
choices contributing to the goal of intuitiveness and simplic­
ity include the fact that parallel commands, similar to tradi­
tional, sequential ones, were made directly available as but­
tons. Another interesting feature is the definition of groups
of processes, that allow programmers to select processes to
receive parallel commands. This is very useful since appli­
cations can have many processes performing different tasks
during execution. Finally, visualization of parallel processes
makes the tool very easy-to-use, since users can easily iden­
tify processes and access their process levei view (the Pro­
cess View) through their icons in the visualization area (Pro­
cesses Area o f the Ma in View).

Comparing PADI with tools already mentioned in this pa­
per, shows that existing tools inspired some important design
decisions (evento adapt some good ideas or to choose a dif­
ferent design).

The first one is the decision of separating, at user levei
(interface), the distributed commands from the serial ones.
This approach is different from TotalView's approach since
it is not possible to send any distributed debugging com­
mand from Tota!View's Main Window, but just to choose
the processes to be debugged. PADI's approach proved to
be clearer and more practical, since one window (the Main
Window) concentrates ali the distributed actions, including
the distributed debugging commands.

One o f these distributed actions is the possibility o f select-

ing processes. This feature, part of HPD standard, proved
to be useful to debug parallel programs. lt allows debug­
ging groups of processes with similar characteristics as well
as selecting processes suspected to be erroneous by the pro­
grammer. This feature was also implemented successfully in
the p2d2 and Node Prism parallel debuggers. The main dif­
ference here is the simplicity o f PADI, since selection can be
done directly from buttons in the Main View.

In conjunction with the selection mechanism is the visu­
alization of processes. Visualization has been applied in dif­
ferent areas of computer science, mainly to make interfaces
more user-friendly. p2d2 created a very smart visualization
grid, but it does not seem to scale well when lots o f processes
are being debugged (the identification of processes becomes
difficult when the number o f processes grows). The PADI ap­
proach uses the selection mechanism as a filter to processes
visual ization, clearing the Processes Area and showing just
processes being inspected. Besides, the PADI visualization
area includes information like process states (by color), pro­
cess names or pids and tids (internai ids).

Besides improving the prototype in order to prepare a ver­
sion for initial distribution, future work includes providing
different types of visualizations (currently there exists only
one) and to develop runtime system interaction, so that PADI
can receive specific information from a specific system and
show this information in the interface (e.g., process creation,
send and receive events, etc.).

REFERENCES

JBAROOJ M .BARRETO, R. ÁV ILA ANO P. NAVAUX "The MulliCluster
Modelto the lntegrated Use of Mulliple Workstation Clusters". In Pro­
ceedillgs o f tire Jrd Workslwp 011 Pet~w11al Compute r Based NetiVorks o f
Workstatio11s (PCNOW 2000). Cancun, volume 1800 of Lecture Notes
in Computer Science, pages 7 1-800. Amsterdam, The Netherlands,
2000. Springer-Verlag.

(BUH96J P. A. BUHR ET AL, "KOB: a mulli-threaded debugger for multi­
thrcaded applications". In Symposiam 011 Parai/e/ and Distribmed
Tools. pages 80-87, Philadelphia, USA. 1996.

jCHAOOJ J. C HASStN DE KERGOMM EAUX, B. DE OLI VEIRA STEIN,
P. BERNARO, "Pajé, an interactive visualizat.ion tool for tuning multi­
threaded parallel applications", Parai/e/ Compating 26, lO, aug 2000,
p. 1253-1274 .

JCUN98J J .C. CUNHA, J . LOURENCO, J. VtElRA, B. MOSCAO, ANO
O . PER EIRA. "A Framework to Suppon Parallel and Oistributed Oe­
bugging". In Proceetlings of the lntematio11al Conjere11ce on High­
Petformallce Compati11g a11d NetiVorking (HPCN'98), volume 1401 of
Lecture Notes on Computer Science. pagcs 708-7 17. Amstcrdam. The
Nethcrlands, April 1998. Springcr-Vcrlag.

JETNO IJ Etnus Inc. TotaiVicw Oebugger. available by www in
http://www.etnus.com/products/totalview (Apr. 2001)

JGEI94J A. GEtST ET AL. " PVM: Parallel and Vinual Machine- A User's
Guide and Tutorial for Networked Parallel Computing''. London: MIT,
1994

IHOR99] C. S. HORSTMANN ANO G. CORNELL "Core Java 2". Volumes
I and 11, Sun Microsystems Press, 1999

22 1

[HPOOO] High Performance Oebugging Forurn, HPO Vers ion I Standard:
Cornmand Interface for Parallel Ocbuggers, Sept. 1998. Availablc by
www in http://www.ptools.org/hpdf/draft (in sept. 2000)

[H0099) R. Hooo. ''Thc p2d2 Project: Building a Ponable Oistributed
Oebugger". Proceedi11gs of SPDT 96: SIGMETRICS Symposiam 011
Parai/e/ a11d Distribated Tools. ACM Inc., 1996 (p2d2 sitc available by
www in: http://www.nas.nasa.gov/Groups!Tools/p2d21 - dcc. 1999)

[KRA97J 0. KRANZLMÜLLER, S. GRABNER ANO J. VOLKERT. ''Oe­
bugging with the MAO Environment". Parai/e/ Compating, v. 23, p.
199-217. Feb. 1997

jLEB87] T. LEBLANC, J. MELLOR-CRUMMEY, "Oebugging Parallel Pro­
grams with lnstant Replay", IEEETransactiolls on Compmers C-36, 4,
1987, p. 47 1-481.

ILEU92] E. LEU, A. SCHt PER, "Execution rcplay: a mechanism for inte­
grating a visualization tool with a symbolic debuggcr". in: CONPAR 92
- VAPP V, Y. Roben, L. Bougé, M. Cosnard, O. Trystrarn (ed.), LNCS,
634, Springcr-Verlag, september 1992.

[MC089J C. E. MCOOWELL, 0 . P. HELMBOLO, "Oebugging Concurrent
Prograrns", ACM Computi11g Sarveys 21, 4, Oecember 1989. p. 593-
622.

[PAC97J P. PACHECO "Parallel Programming with MPI", Morgan Kauf­
mann lnc, 1997.

[S IS94] S. StSTARE, 0 . ALLEN, R. BOWKER, K . JOUROENAIS. J . SI­
MONS ANO R . TITLE. "A Scalable Oebugger for Massively Parallel
Message-Passing Prograrns" IEEE Parai/e/ a11d Distribwed Teclmol­
ogy, v. 2, n. 2, p. 50-56. 1994

ISUNOIJ Sun HPC ClusterTools 3. 1 TM Available at
http://www.sun.com/softwarelhpc/overview.html (july 200 I)

jWIS96J R. WtSMUELLER. M. OBERHUBER, J. KRAMMER ANO 0.
HANSEN. " lnteractive debugging and performance analysis of rnas­
sively parallel applications", Parai/e/ Computing. v. 22(3). pp. 415-442.
March 1996

