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Abstract-
Thís article presents thc developmcnt, implemcntation, 

and applications of the CYMP parallel programming tool for 
image processing and computer vision. Running on Borland 
Delphi and C++ BuiJdcr, this simple and easy-to-use tool 
incorporates visual programming and object orientcd 
capabilities, having already allowed a series of applications 
and results, which are also outlined. 
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I. INTRODUCTION 

Although parallel computing is posed to enhance image 
processing, computer vision and related areas, some 
obstacles have constrained its effective and broad 
application. One of the principal problems is the difficulty 
to implement concurrent programs, a consequence of the 
fact that most development tools for parallel programming 
are destined to experts in this area [BRU OOa] . This 
difficulty is aggravated by the existing variety of available 
programming environments and languages, each with its 
specific tools and parallel structures. As an altemative to 
these problems, a new methodology has been 
conceptualized in order to provide simple and effective 
access to parallel programming to those computer vision 
researchers and practitioners who are not experts in 
concurrent computation. The initial results of this 
enterprise, which are reported in the current paper, are 
based on the message-passing tool called CVMP (for 
Cybemetic Vision Message Passing). The project principal 
characteristics are: 

Popular Development Platform: The approach is based 
on a conventional and popular development platform, 
namely Borland Delphi and C++ Builder. 

Visual Programming: In order to speed up the 
development, visual programming concepts have been 
adopted. 

Object Oriented Programming: OOP represents one of 
the key points in CVMP, allowing simple and secure 
development, code reuse, and effective modeling of 
complex systems. 

The current paper presents the CVMP approach, 
covering its basic elements, some of the already obtained 
implementations and results, and the conclusions and 
perspectives for future works. 

11. THE CYMP TOOL. 

The CVMP approach includes a set of tools for the 
development of parallel programs in the Delphi/C++ 
Builder platforms, using concepts of visual programming 
and OOP. It is composed of a set of components (VCL -
Visual Component Library), native in Delphi, and 
additional applicatives organized under the following five 
groups: CVMP basic, CVMP Extended, CVMP processar 
farm, CVMP image processing, Statistics and Launcher, 
which are discussed below. Figure 1 shows part of the 
CVMP components palette in the Borland Delphi 
environment. 
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Fig.l CVMP components palette in Delphi 

A. CVMP Basic 

The applicatives in this group include two components 
supplying the message passing primitives: a component for 
distributed memory MIMO systems (network connected 
PCs) and another for shared memory MIMO (multiple 
processors PCs). These two components provide the 



backbone onto which ali the other CVMP tools are 
implemented. 

The communication between CVMP objects adopts the 
master-slave scheme. The nature of the CVMP Basic 
object, which can be either master or slave, is determined 
through one of its properties. Virtual channels between 
master/slave objects are established [BRU 97] [BRU OOb] 
[BRU OOa] in order to implement communication between 
objects, a concept inspired in the Transputer initiative [INM 
88]. Figure 2 presents some of the possible configurations 
allowed by this flexible strategy. 

li Machinc or 
L_j processar 

- Vinunl Channcl 

!BJ CVMP mastcr 

[I] CVMP slavc 

Fig.2 Two examples ofthe CVMP configurarions 

The set of the CVMP primitives are shown and 
described in Table 1. These primitives consist of the 
properties and methods of the CVMP Basic object, that 
allow the communications between the processes (message 
exchange). An example of the CVMP Basic programming 
is shown in Figure 3, presenting the Delphi code for the 
parallel computation of four processes using two machines 
(master and slave). 

Mastcr proccss algorithm 

cvmp1.mp_iniL filefinit.i ni'); 
cvmp1.mp_master, 
cvmp1.mp_send("start'); 

~ 
cvmp1.mp_send(b); 
a:=cvmp1.mp_receive; 

while f<>'end' do begin 
application.processmessages; 
f :=cvmp1.receive; 

end; 
result2:=cvmp1.mp_receive; 
show (result1 , result2); 

Slavc process algorithm 

cvmp1.mp_iniLfile("cyv.ini'); 
cvmp1.mp_slave ; 
while f<>'start' do begin 
application.processmessages; 
f:=cvmp1.mp_receive; 

end; 

~ 
b:=cvmp1 .mp_receive; 
cvmp1.mp_send(a); 

cvmp1 .mp_sendfend'); 
cvmp1.mp_ send(result2); 

Fig.3 Delphi code example ofhow to use the CVMP Basic 
primitives. 
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TABLEI 
CVMPM. B . am astc pnmt tves 

mp_init_file Property - Load the configuration 
file. 

mp_ slave Method - Set the object as slave. 
mp_ master Method - Set the object as master. 

mp _send( mens: str) Method - Sends a message through 
the Virtual Channel. 

str:=mp_recei v e Method- Return the first message o f 
messages FIFO. 

Setblocking Property - Set the messages as 
blocking. 

sendfile(str) Method - Send a high granularity 
message (file) though the Virtual 

Channel. 
receivefile(str) Method - Receive a high granularity 

message (file). 
mp_ close Close a Virtual Channel connection. 

B. CVMP Extended 

This includes components similar to the CVMP Basic, 
but with additional properties and methods (encapsulated in 
the CVMP Basic), addressing the handling of message 
packets, message-passing synchronization, semaphores, as 
well as partition and distribution of images [ALM 94] 
[COD 94]. Often, parallel image processing algorithms 
require the partition o f the image in order that each portion 
is simultaneously processed in severa) distinct processors. 
The CVMP Extended is capable of partitioning the images 
in severa) ways. The images can be divided into portions of 
severa) sizes, in order to help the Joad balance in 
heterogeneous systems. In many situations, the simple 
division of the image implies data dependence (see Figure 
4). A typical example is the convolution o f templates in the 
space domain, a technique underlying severa) image 
processing algorithms [GON 93] . In order to cope with this 
requirement, the pixels adjacent to each image portion are 
also enclosed. Different neighborhood sizes can be 
considered depending on the type o f data dependence. 

Fig.4 Examples o f image partitioning with incorporation o f 
neighboring pixels. 



C. CVMP Processar Farm 

The processor farm paradigm [ALM 94], one of the 
most frequently adopted strategies in parallel image 
processing [BRU OOa], is characterized by a master which 
distributes the task to a number of supervised slaves (see 
Figure 5). The CVMP incorporates components 
specifically designed to implement this parallelization 
strategy, supporting configurations up to 16 slave machines 
or processes. 

c==JSiavcs 

Fig.5 The Processors Farm Paradigm. 

Through the CYMP processor farm, the user easily 
implements a distributed application by using visual means, 
without the need o f a single code line. Indeed, it is enough 
to configure some properties of the master and slaves (e.g. 
number oftasks, network configuration, etc.) and to add the 
calls to the parallel algorithms into the slaves code. 

D. CVMP Image Processing 

This set incorporates components containing ready-to­
use image processing parallel algorithms, which can be 
included just by dragging them into the forms, make a few 
configurations, and add a few lines of code. Each 
technique is composed by combinations of master/slave 
components, following the CYMP. Currently, the 
following algorithms are available: 

• Local operators - convolution m space domain 
[GON 93]. 

• Chromatic channels operations involving 
chromatic images, with parallel execution between 
the chromatic planes. 

• Fourier transform. 
• Hough transform [SCH 89]. 
• Hough transform with backmapping, a technique 

proposed by Gerig & Klein [GER 86] in order to 
enhance the peaks produced by the Hough 
transform. 

• Fractal dimension: includes algorithms based on 
Minkowski's sausages and box-counting [TRI 
95][KA Y 94]. 
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E. CVMP Statistic 

lncludes two components, one for statistical analysis 
and another for dynamic execution analysis, allowing 
proper statistical analysis of the behavior of the execution 
and message exchanges in concurrent programs developed 
in CYMP. The statistics component is capable of 
measuring the performance directly through the program 
code, which has to include calls to the statistic procedures 
at criticai points ofthe code, defined by the programmer. 

Figure 6 presents two windows of the statistics 
application. lt is used to visualize the statistical data 
obtained through the CVMP statistics components. The first 
window considers four machines running concurrently, the 
x-axis indicates the time in milliseconds, and through the 
boxes it is possible observing the duration, start and finish 
time of each process. The second window shows the 
respective numerical information. 

Fig.6 Windows ofthe Statistics application, used to 
visualize the CVMP statistics data. 

F. CVMP Launcher 

lncludes a component and a demon executing in 
background in the network machines, in order to enable the 
pro per triggering o f the processes in the network machines. 
Through calls to the object methods, the demon can trigger 
the execution o f a specific program in any specific machine 
in the network. 



Ill. PARALLEL IMAGE PROCESSING ALGORITHMS 

In this section there are presented four examples of 
parallel image processing algorithms (local operators, 
Hough transform, Hough transform backmapping and 
fractal dimension) implemented by using the CVMP. Each 
one is discussed in terms of implementation and 
performance. Because of its strong OOP base, CVMP 
allows any implemented algorithm (implemented by using 
CVMP) to be encapsulated and integrated into the CVMP 
lmage processing (see II.D). 

A. Local Operators 

This technique is broadly used in image processing and 
computer vision and provides a good example of local 
operator [GON 93]. Basically, it consists of the 
convolution of a template with the image, obtaining a 
processed image. The kind of processing (which can 
include low and high pass filtering, template matching, etc.) 
will be determined by the template characteristics. 

The adopted parallel strategy consists in partitioning the 
image, distributing the slices to the machines, that is 
processed concurrently, and finally join the results of this 
processing, obtaining the processed image. 

Figure 7 presents the parallel strategy using four 
machines. The involved stages are: the original image (I), 
image division and it distribution (Il), the processing of 
each image part in a different processar unit (III), results 
reconstruction (IV) and the combination o f the results (V). 
The load balance can be accomplished by controlling the 
size of the slices in such a way that the most powerful 
processors receive the larger si ices. 

01~1:::::: ::::::::::::!!~10 
11 T Ili l IV I v 

Fig. 7 Parallel strategy for local opera to r algorithm using 4 
processors units. 

The reported experiment was performed on a computer 
network composed of 4 similar computers - AMD K6 li 
375 MHz, connected by ethemet NE2000 of I O Mb/s and 
Fastethemet o f I 00 Mb/s. The considered operation was a 
low pass filtering [GON 93] involving the sum of the 
elements o f the mask for the number o f components o f the 
filter. The parallel and sequential algorithm execution times 
were measured while processing a image with 500x500 
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pixels by using operators with templates of different sizes 
(3x3, 5x5, 9x9, 15xl5, 3lx31 , 51x51, 7 l x7 1, 85x85 and 
IOJxiOI elements). 

Figure 8 exhibits the comparison of the speed-ups 
obtained for execution in a ethemet based computer 
network (10 Mb/s) and fast-ethemet based (100 Mb/s) of a 
500x500 pixels image. The faster communication allowed a 
substantial increase of the performance for the smaller 
filters (3x3, 5x5, 9x9 and 15x 15). For larger filters {31 x31 , 
5Jx51, 7lx71 , 85x85 and IOlxlOI), the performances of 
both networks (10 Mb/s and lOO Mb/s) get closer because 
the processing becomes more highly compute bound, while 
the comrnunication time becomes relatively smaller. 
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Fig.8 Caparison between ethemet I O Mb/s network and 
fast-ethemet I 00 Mb/s computer network. 

8. Hough Transform 

Introduced by Hough in 1959 to calculate particle 
trajectories [HOU 59], the Hough Transform is largely used 
on image analyses as a global pattem recognized method. 
The basic idea of the method consists to find curves on 
image that can be parameterized, such as line segments, 
polynomials, circles, ellipses, etc. The parallel Hough 
transform implemented in this paper was used to detect Iine 
segments on the image, which constitutes it most frequent 
use [SCH 89]. 

Fig.9 Parallel Hough transform architecture using four 
processing units. 



Figure 9 shows the parallel strategy used to implement 
the algorithm using four machines. The diagram shows six 
stages that corresponding to: original image (1), image 
division (li), distribution of the image slices (Ill), parallel 
computation of the Hough arrange (p,e) for each image 
slice, sending the arranges to the master machine and 
joining them (V), obtaining the final result of the 
processing (VI). 

The Parallel Hough transform algorithrn was 
implemented using CVMP and executed on a computer 
network (LO Mb/s) with four similar machines (AMD K6 li 
- 375 MHz). Figure lO presents a diagram comparing the 
execution times o f the sequential algorithm ( I processo r) 
with the parallel approach (2,3 and 4 processors). A 
500x500 pixels image was used in the experiment. 

1 
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o 2000 4000 6000 
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Fig. l O Hough transform execution times 

C. Hough Ttransform Backmapping 

The Hough transform backmapping technique [GER 86] 
consists o f the creation o f a new accumulator array. For this 
new space, however, only the cells corresponding to the 
maximum values along each sinusoidal produces by the 
Hough transform are increased. In this way, a 
reinforcement of the Hough transform is obtained in an 
attempt to better locate the local peaks and to reduce the 
background noise caused by occasional alignrnents of 
points produced by interference between objects and 
segments with few points. 

Due to the new transform computation and the 
continuous search for maximum points along the Hough 
space, corresponding to each point of the image, that 
technique involves considerable overhead, consuming 
substantial computer power and motivating parallel 
implementations. 

Figure ll exhibits a diagram illustrating the parallel 
approach to backmapping considering four processing 
elements, which can be easily modified. The stages in the 
diagram mean: image split and fragments distribution (I), 
distribution of the Hough space (11), backmapping 
processing from the data of the image fragments (III), 
transmission of the new Hough space generated by the 
backmapping processing to the master process, where the 
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elements of each Hough space will be added in order to 
obtain the sought result (IV). 

11 

Fig.II Hough Backmapping parallel approach using 4 
processing units. 

We implemented the parallel version ofthe technique in 
a distributed system in a computer network based on 
ethemet ( 10 Mb/s), with four similar machines (AMD K6 11 
- 375 MHz). Figure 12 presents the processing time of the 
sequential and paralle implementations for two different 
image sizes (250x250 and 500x500 pixels). 

Fig. l2 Backmapping execution times for two different 
image sizes. 

D. Fractal Dimension 

Fractal dimensions can be used as a means to determine 
shape and image complexity. Although initially related to 
fractal geometry research, the concept of fractal dimension 
popu1arized quickly, allowing applications in severa) areas 
such as: material sciences, geology, computer vision [BIS 
98], neuromorphology [COS 99], etc. 

Severa) techniques for fractal dimension estimation 
have been described in the Jiterature [KA Y 94], including 
the particularly simple Minkowski sausage method [TRl 
95] considered in this paper. 

The parallelization of this technique is particularly 
simple and can be implemented directly with the CVMP 
Processor Farm component. Firstly, a Processor Farm 
architecture is defined. The master process distributes a 
copy of the image to ali the slaves and a radius parameter 
(r) specific for each slave. The basic task consists in the 
convoluting a circular region with radius r and the 



respective area determination. The results (areas) are sent to 
the master as soon as the calculations are made. 

The experiment was performed for a binary image with 
512x512 pixels, considering 32 disks with radiuses varying 
by 2. Figure 12 presents the execution times, obtained 
through the CVMP statistics component, each subsequent 
box (represented in light and dark gray) indicates the 
execution of one process. Due to the small data flow 
implied by the message passes in the net, the system 
allowed particularly good performance and a small number 
of execution gaps. The excellent performance is 
corroborated by the fact that the parallel system with four 
heterogeneous machines (200 MHz, 250 MHz, 300 MHz 
and 375 MHz) is approximately 2.7 times faster than the 
sequential version executed in the fastest machine 
(375Mhz). 

lM)RIJ~~~ !,.,u .. 
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Fig.1 2 Parallel fractal dimension algorithm executing time 
for four machines 

IV. IMPLEMENTATIONS USING CVMP 

CVMP is the current platform supporting the 
development of high performance applications in the 
Cybemetic Vision Research Group. Through its usage, 
computer vision and image processing researchers have 
benefited with parallelism in the development of severa! 
projects, some ofwhich are outlined in the following. 

A. Cyvis-1 

Fig.13 Cyvis- 1 Diagram. 

227 

The Cyvis- 1 project [COS 94][BRU 97](standing for 
Cybemetic Vision, version I) represents an attempt at 
obtaining versatile computer vision systems through the 
progressive incorporation of biological principies such as 
selective attention, Zeki and Shipp's multi-stage integration 
framework [ZEK 88][ZEK 93], and effective integration of 
top-down and bottom-up processing (see Figure 13). As 
such approaches inherently demand the use of paralle1ism 
in their respective implementation, the research on Cyvis-1 
has strongly depended on the CVMP. The already obtained 
results include the integration of visual attributes, the 
distributed environment, and the incorporation of 
parallelism in severa! algorithms developed as part of the 
Cyvis- I project. 

B. TreeVis 

TreeVis [BRU OOa], an abbreviation for Tree Vision, is 
a system for the automated recognition of arboreal plants 
through the comprehensive extraction of features from 
images o f leaves and the respective statistical classification. 
The bases of the system consists of the systematic 
exploration of the leaves geometrical properties through a 
large number of visual features, that implicates on a Iarge 
time of processing (about tive minutes for each sample), 
justi fying a parallel solution. The parallelism in the TreeVis 
project has been implemented by using the CVMP 
Processar Farm components (see Figure 14), through the 
replication ofthe feature extraction module. 

SI aves 

,--------------
lmagcs 

Ocscrip1 ions 

Ft>aturcs Lisls 

DataB.1sc 

6-~ 
I Se...,.,. , _____________ _ 

Master 

Fig.l 4 Overall organization ofTreeVis. 

On the experiment reported here, the system included 
six identical machines (Pentium 11 - 300 MHz) connected 
through a network (10 Mb/s). Figure 15 shows an execution 
time diagram for 12 samples, where each sample is 
represented as a block. Observe that each system machine 
executes a samp1e concurrently. A speed-up near the 
expected maximum (i.e. 6) was obtained, as the sample 
number is a multiple ofthe number ofsystem processors. 



M, .............. .. 
M~ .............. .. 

M~~-=== Ml~-
M21 ................ .. 
Ml1 ................ .. 

t(s) 

Fig.IS Processor farm execution time. 

The TreeVis approach is based on statistical analyses, 
needing severa! samples of each species for optimal 
training and classification. The performance of the 
processor farm approach reaches the optimal when the 
number of samples is a multiple of the number of the 
processors or is close to it. However, the performance 
decreases in two situations: (i) when the number o f samples 
is less than the number of processor and (ii) when the 
number o f samples is higher than the number o f processors, 
but it is not close to the multiple. 

The Parallel implementation of Treevis has an 
automatic configuration architecture, capable of changing 
the parallel approach in execution time. The system 
compares the number of sample and the number of 
processors, and if one of the two situations (i) or (ii) are 
detected, the system change its parallel approach, in order 
to minimizes the execution time and improve its 
performance. 
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Fig.l6 - Concurrence between the submodules for feature 
extraction approach. 
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Figure 16 exhibits the concurrence between the feature 
extraction submodules approach (using three machines) and 
Figure 17 shows its execution time diagram for 3 'samples 
running on 6 machines. Although, it performance is worse 
than the processor farm approach (when the number of 
samples is a multiple of the processors number), its 
utilization guarantees the system speed-up for the two 
situations (i) and (ii) which the processor farms approach 
performance decreases. 

MaciL I - - -l\lada.1 - - -Alikfli.l 

M•mo .. 
Mtt •. S 

1\lllâ.' 

li O liD 
l{i} 

Fig.17 Concurrence between submodules execution time. 

C. I ynergos 

The CVMP has also provided the basic support for 
parallelization in a project oriented to the integration of 
severa! important approaches in computer vision and 
pattern recogmtlon, such as algorithm validation, 
performance comparison, datamining, psychophysical 
experiments, artificial intelligence, etc [BRU98) [BRU O I]. 
Basically, it is expected that the severa! advantages and 
disadvantages of these approaches complement each other 
in order to catalyze the development and application of 
computer vision concepts and tools. More specifically, the 
CVMP has been used for the parallel implementation and 
execution o f the genetic algorithm, required for datamining 
tasks. 

e p IDI t!ll tt.t m~•t 

Fig.l8 Time diagram for the execution ofthe genetic 
algorithm in four different machines. 



Figure 18 presents the time diagram for the parallel 
execution of the genetic algorithm in four different 
machines under CVMP, connected through IOMbit/s 
ethemet connection. Each subsequent box (represented in 
Iight and dark gray) indicates the execution of one of the 
basic algorithm steps. 

V . CONCLUSION 

This article has reported the development, 
implementation, and application of a tool designed to 
support parallelization in image analysis and computer 
vision. Its basic elements and some of its already 
successful applications have been described. The benefits 
of the CVMP have been substantiated in practice, helping 
severa! computer vision researchers to solve severa! distinct 
problems. 

In addition to the continuation of the outlined projects 
(e.g. Cyvis-1 and TreeVis), future developments should 
include the implementation of other image analysis 
techniques and the extension o f CVMP in such a way that it 
interacts with MPI [PAC 97] or PVM [GEI 96]. 
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