
I
I
I
I
I

A Programming Tool for the Development of
Parallel Computer Vision and Image Processing

Algorithms and Applications
Odemir Martinez Bruno1

, Luciano da Fontoura Costa2

1 Department o f Computer Science and Statistics- ICMC, University o f São Paulo
Caixa postal668, CEP 13560-970, São Carlos, SP, Brazil

{ obruno@icmc.sc.sp.br}
2 Cybemetic Vision Research Group- IFSC, University ofSão Paulo

Caixa Postal369, CEP 13560-970, São Carlos, SP, Brazil.
{luciano@if.sc.usp.br}

Abstract-
Thís article presents thc developmcnt, implemcntation,

and applications of the CYMP parallel programming tool for
image processing and computer vision. Running on Borland
Delphi and C++ BuiJdcr, this simple and easy-to-use tool
incorporates visual programming and object orientcd
capabilities, having already allowed a series of applications
and results, which are also outlined.

Keywords-lmage Processing, Parallel Computing

I. INTRODUCTION

Although parallel computing is posed to enhance image
processing, computer vision and related areas, some
obstacles have constrained its effective and broad
application. One of the principal problems is the difficulty
to implement concurrent programs, a consequence of the
fact that most development tools for parallel programming
are destined to experts in this area [BRU OOa] . This
difficulty is aggravated by the existing variety of available
programming environments and languages, each with its
specific tools and parallel structures. As an altemative to
these problems, a new methodology has been
conceptualized in order to provide simple and effective
access to parallel programming to those computer vision
researchers and practitioners who are not experts in
concurrent computation. The initial results of this
enterprise, which are reported in the current paper, are
based on the message-passing tool called CVMP (for
Cybemetic Vision Message Passing). The project principal
characteristics are:

Popular Development Platform: The approach is based
on a conventional and popular development platform,
namely Borland Delphi and C++ Builder.

Visual Programming: In order to speed up the
development, visual programming concepts have been
adopted.

Object Oriented Programming: OOP represents one of
the key points in CVMP, allowing simple and secure
development, code reuse, and effective modeling of
complex systems.

The current paper presents the CVMP approach,
covering its basic elements, some of the already obtained
implementations and results, and the conclusions and
perspectives for future works.

11. THE CYMP TOOL.

The CVMP approach includes a set of tools for the
development of parallel programs in the Delphi/C++
Builder platforms, using concepts of visual programming
and OOP. It is composed of a set of components (VCL -
Visual Component Library), native in Delphi, and
additional applicatives organized under the following five
groups: CVMP basic, CVMP Extended, CVMP processar
farm, CVMP image processing, Statistics and Launcher,
which are discussed below. Figure 1 shows part of the
CVMP components palette in the Borland Delphi
environment.

222

Fig.l CVMP components palette in Delphi

A. CVMP Basic

The applicatives in this group include two components
supplying the message passing primitives: a component for
distributed memory MIMO systems (network connected
PCs) and another for shared memory MIMO (multiple
processors PCs). These two components provide the

backbone onto which ali the other CVMP tools are
implemented.

The communication between CVMP objects adopts the
master-slave scheme. The nature of the CVMP Basic
object, which can be either master or slave, is determined
through one of its properties. Virtual channels between
master/slave objects are established [BRU 97] [BRU OOb]
[BRU OOa] in order to implement communication between
objects, a concept inspired in the Transputer initiative [INM
88]. Figure 2 presents some of the possible configurations
allowed by this flexible strategy.

li Machinc or
L_j processar

- Vinunl Channcl

!BJ CVMP mastcr

[I] CVMP slavc

Fig.2 Two examples ofthe CVMP configurarions

The set of the CVMP primitives are shown and
described in Table 1. These primitives consist of the
properties and methods of the CVMP Basic object, that
allow the communications between the processes (message
exchange). An example of the CVMP Basic programming
is shown in Figure 3, presenting the Delphi code for the
parallel computation of four processes using two machines
(master and slave).

Mastcr proccss algorithm

cvmp1.mp_iniL filefinit.i ni');
cvmp1.mp_master,
cvmp1.mp_send("start');

~
cvmp1.mp_send(b);
a:=cvmp1.mp_receive;

while f<>'end' do begin
application.processmessages;
f :=cvmp1.receive;

end;
result2:=cvmp1.mp_receive;
show (result1 , result2);

Slavc process algorithm

cvmp1.mp_iniLfile("cyv.ini');
cvmp1.mp_slave ;
while f<>'start' do begin
application.processmessages;
f:=cvmp1.mp_receive;

end;

~
b:=cvmp1 .mp_receive;
cvmp1.mp_send(a);

cvmp1 .mp_sendfend');
cvmp1.mp_ send(result2);

Fig.3 Delphi code example ofhow to use the CVMP Basic
primitives.

223

TABLEI
CVMPM. B . am astc pnmt tves

mp_init_file Property - Load the configuration
file.

mp_ slave Method - Set the object as slave.
mp_ master Method - Set the object as master.

mp _send(mens: str) Method - Sends a message through
the Virtual Channel.

str:=mp_recei v e Method- Return the first message o f
messages FIFO.

Setblocking Property - Set the messages as
blocking.

sendfile(str) Method - Send a high granularity
message (file) though the Virtual

Channel.
receivefile(str) Method - Receive a high granularity

message (file).
mp_ close Close a Virtual Channel connection.

B. CVMP Extended

This includes components similar to the CVMP Basic,
but with additional properties and methods (encapsulated in
the CVMP Basic), addressing the handling of message
packets, message-passing synchronization, semaphores, as
well as partition and distribution of images [ALM 94]
[COD 94]. Often, parallel image processing algorithms
require the partition o f the image in order that each portion
is simultaneously processed in severa) distinct processors.
The CVMP Extended is capable of partitioning the images
in severa) ways. The images can be divided into portions of
severa) sizes, in order to help the Joad balance in
heterogeneous systems. In many situations, the simple
division of the image implies data dependence (see Figure
4). A typical example is the convolution o f templates in the
space domain, a technique underlying severa) image
processing algorithms [GON 93] . In order to cope with this
requirement, the pixels adjacent to each image portion are
also enclosed. Different neighborhood sizes can be
considered depending on the type o f data dependence.

Fig.4 Examples o f image partitioning with incorporation o f
neighboring pixels.

C. CVMP Processar Farm

The processor farm paradigm [ALM 94], one of the
most frequently adopted strategies in parallel image
processing [BRU OOa], is characterized by a master which
distributes the task to a number of supervised slaves (see
Figure 5). The CVMP incorporates components
specifically designed to implement this parallelization
strategy, supporting configurations up to 16 slave machines
or processes.

c==JSiavcs

Fig.5 The Processors Farm Paradigm.

Through the CYMP processor farm, the user easily
implements a distributed application by using visual means,
without the need o f a single code line. Indeed, it is enough
to configure some properties of the master and slaves (e.g.
number oftasks, network configuration, etc.) and to add the
calls to the parallel algorithms into the slaves code.

D. CVMP Image Processing

This set incorporates components containing ready-to­
use image processing parallel algorithms, which can be
included just by dragging them into the forms, make a few
configurations, and add a few lines of code. Each
technique is composed by combinations of master/slave
components, following the CYMP. Currently, the
following algorithms are available:

• Local operators - convolution m space domain
[GON 93].

• Chromatic channels operations involving
chromatic images, with parallel execution between
the chromatic planes.

• Fourier transform.
• Hough transform [SCH 89].
• Hough transform with backmapping, a technique

proposed by Gerig & Klein [GER 86] in order to
enhance the peaks produced by the Hough
transform.

• Fractal dimension: includes algorithms based on
Minkowski's sausages and box-counting [TRI
95][KA Y 94].

224

E. CVMP Statistic

lncludes two components, one for statistical analysis
and another for dynamic execution analysis, allowing
proper statistical analysis of the behavior of the execution
and message exchanges in concurrent programs developed
in CYMP. The statistics component is capable of
measuring the performance directly through the program
code, which has to include calls to the statistic procedures
at criticai points ofthe code, defined by the programmer.

Figure 6 presents two windows of the statistics
application. lt is used to visualize the statistical data
obtained through the CVMP statistics components. The first
window considers four machines running concurrently, the
x-axis indicates the time in milliseconds, and through the
boxes it is possible observing the duration, start and finish
time of each process. The second window shows the
respective numerical information.

Fig.6 Windows ofthe Statistics application, used to
visualize the CVMP statistics data.

F. CVMP Launcher

lncludes a component and a demon executing in
background in the network machines, in order to enable the
pro per triggering o f the processes in the network machines.
Through calls to the object methods, the demon can trigger
the execution o f a specific program in any specific machine
in the network.

Ill. PARALLEL IMAGE PROCESSING ALGORITHMS

In this section there are presented four examples of
parallel image processing algorithms (local operators,
Hough transform, Hough transform backmapping and
fractal dimension) implemented by using the CVMP. Each
one is discussed in terms of implementation and
performance. Because of its strong OOP base, CVMP
allows any implemented algorithm (implemented by using
CVMP) to be encapsulated and integrated into the CVMP
lmage processing (see II.D).

A. Local Operators

This technique is broadly used in image processing and
computer vision and provides a good example of local
operator [GON 93]. Basically, it consists of the
convolution of a template with the image, obtaining a
processed image. The kind of processing (which can
include low and high pass filtering, template matching, etc.)
will be determined by the template characteristics.

The adopted parallel strategy consists in partitioning the
image, distributing the slices to the machines, that is
processed concurrently, and finally join the results of this
processing, obtaining the processed image.

Figure 7 presents the parallel strategy using four
machines. The involved stages are: the original image (I),
image division and it distribution (Il), the processing of
each image part in a different processar unit (III), results
reconstruction (IV) and the combination o f the results (V).
The load balance can be accomplished by controlling the
size of the slices in such a way that the most powerful
processors receive the larger si ices.

01~1:::::: ::::::::::::!!~10
11 T Ili l IV I v

Fig. 7 Parallel strategy for local opera to r algorithm using 4
processors units.

The reported experiment was performed on a computer
network composed of 4 similar computers - AMD K6 li
375 MHz, connected by ethemet NE2000 of I O Mb/s and
Fastethemet o f I 00 Mb/s. The considered operation was a
low pass filtering [GON 93] involving the sum of the
elements o f the mask for the number o f components o f the
filter. The parallel and sequential algorithm execution times
were measured while processing a image with 500x500

225

pixels by using operators with templates of different sizes
(3x3, 5x5, 9x9, 15xl5, 3lx31 , 51x51, 7 l x7 1, 85x85 and
IOJxiOI elements).

Figure 8 exhibits the comparison of the speed-ups
obtained for execution in a ethemet based computer
network (10 Mb/s) and fast-ethemet based (100 Mb/s) of a
500x500 pixels image. The faster communication allowed a
substantial increase of the performance for the smaller
filters (3x3, 5x5, 9x9 and 15x 15). For larger filters {31 x31 ,
5Jx51, 7lx71 , 85x85 and IOlxlOI), the performances of
both networks (10 Mb/s and lOO Mb/s) get closer because
the processing becomes more highly compute bound, while
the comrnunication time becomes relatively smaller.

3

a.
:J

al 2
Q)
a.
(/)

11 I
3x3 5x5 9><9 15x15 31x31 51x51 71x71 85x85 101x101

templatcs

- 10Mbits/s
D 100 Mbits/s

Fig.8 Caparison between ethemet I O Mb/s network and
fast-ethemet I 00 Mb/s computer network.

8. Hough Transform

Introduced by Hough in 1959 to calculate particle
trajectories [HOU 59], the Hough Transform is largely used
on image analyses as a global pattem recognized method.
The basic idea of the method consists to find curves on
image that can be parameterized, such as line segments,
polynomials, circles, ellipses, etc. The parallel Hough
transform implemented in this paper was used to detect Iine
segments on the image, which constitutes it most frequent
use [SCH 89].

Fig.9 Parallel Hough transform architecture using four
processing units.

Figure 9 shows the parallel strategy used to implement
the algorithm using four machines. The diagram shows six
stages that corresponding to: original image (1), image
division (li), distribution of the image slices (Ill), parallel
computation of the Hough arrange (p,e) for each image
slice, sending the arranges to the master machine and
joining them (V), obtaining the final result of the
processing (VI).

The Parallel Hough transform algorithrn was
implemented using CVMP and executed on a computer
network (LO Mb/s) with four similar machines (AMD K6 li
- 375 MHz). Figure lO presents a diagram comparing the
execution times o f the sequential algorithm (I processo r)
with the parallel approach (2,3 and 4 processors). A
500x500 pixels image was used in the experiment.

1

~ 2
"' "' ~ 3 e
a.. 4

o 2000 4000 6000
time (ms)

Fig. l O Hough transform execution times

C. Hough Ttransform Backmapping

The Hough transform backmapping technique [GER 86]
consists o f the creation o f a new accumulator array. For this
new space, however, only the cells corresponding to the
maximum values along each sinusoidal produces by the
Hough transform are increased. In this way, a
reinforcement of the Hough transform is obtained in an
attempt to better locate the local peaks and to reduce the
background noise caused by occasional alignrnents of
points produced by interference between objects and
segments with few points.

Due to the new transform computation and the
continuous search for maximum points along the Hough
space, corresponding to each point of the image, that
technique involves considerable overhead, consuming
substantial computer power and motivating parallel
implementations.

Figure ll exhibits a diagram illustrating the parallel
approach to backmapping considering four processing
elements, which can be easily modified. The stages in the
diagram mean: image split and fragments distribution (I),
distribution of the Hough space (11), backmapping
processing from the data of the image fragments (III),
transmission of the new Hough space generated by the
backmapping processing to the master process, where the

226

elements of each Hough space will be added in order to
obtain the sought result (IV).

11

Fig.II Hough Backmapping parallel approach using 4
processing units.

We implemented the parallel version ofthe technique in
a distributed system in a computer network based on
ethemet (10 Mb/s), with four similar machines (AMD K6 11
- 375 MHz). Figure 12 presents the processing time of the
sequential and paralle implementations for two different
image sizes (250x250 and 500x500 pixels).

Fig. l2 Backmapping execution times for two different
image sizes.

D. Fractal Dimension

Fractal dimensions can be used as a means to determine
shape and image complexity. Although initially related to
fractal geometry research, the concept of fractal dimension
popu1arized quickly, allowing applications in severa) areas
such as: material sciences, geology, computer vision [BIS
98], neuromorphology [COS 99], etc.

Severa) techniques for fractal dimension estimation
have been described in the Jiterature [KA Y 94], including
the particularly simple Minkowski sausage method [TRl
95] considered in this paper.

The parallelization of this technique is particularly
simple and can be implemented directly with the CVMP
Processor Farm component. Firstly, a Processor Farm
architecture is defined. The master process distributes a
copy of the image to ali the slaves and a radius parameter
(r) specific for each slave. The basic task consists in the
convoluting a circular region with radius r and the

respective area determination. The results (areas) are sent to
the master as soon as the calculations are made.

The experiment was performed for a binary image with
512x512 pixels, considering 32 disks with radiuses varying
by 2. Figure 12 presents the execution times, obtained
through the CVMP statistics component, each subsequent
box (represented in light and dark gray) indicates the
execution of one process. Due to the small data flow
implied by the message passes in the net, the system
allowed particularly good performance and a small number
of execution gaps. The excellent performance is
corroborated by the fact that the parallel system with four
heterogeneous machines (200 MHz, 250 MHz, 300 MHz
and 375 MHz) is approximately 2.7 times faster than the
sequential version executed in the fastest machine
(375Mhz).

lM)RIJ~~~ !,.,u ..
'IM\11 11!

•·r '11•
u ~ u u ~ ..

OI)•

Fig.1 2 Parallel fractal dimension algorithm executing time
for four machines

IV. IMPLEMENTATIONS USING CVMP

CVMP is the current platform supporting the
development of high performance applications in the
Cybemetic Vision Research Group. Through its usage,
computer vision and image processing researchers have
benefited with parallelism in the development of severa!
projects, some ofwhich are outlined in the following.

A. Cyvis-1

Fig.13 Cyvis- 1 Diagram.

227

The Cyvis- 1 project [COS 94][BRU 97](standing for
Cybemetic Vision, version I) represents an attempt at
obtaining versatile computer vision systems through the
progressive incorporation of biological principies such as
selective attention, Zeki and Shipp's multi-stage integration
framework [ZEK 88][ZEK 93], and effective integration of
top-down and bottom-up processing (see Figure 13). As
such approaches inherently demand the use of paralle1ism
in their respective implementation, the research on Cyvis-1
has strongly depended on the CVMP. The already obtained
results include the integration of visual attributes, the
distributed environment, and the incorporation of
parallelism in severa! algorithms developed as part of the
Cyvis- I project.

B. TreeVis

TreeVis [BRU OOa], an abbreviation for Tree Vision, is
a system for the automated recognition of arboreal plants
through the comprehensive extraction of features from
images o f leaves and the respective statistical classification.
The bases of the system consists of the systematic
exploration of the leaves geometrical properties through a
large number of visual features, that implicates on a Iarge
time of processing (about tive minutes for each sample),
justi fying a parallel solution. The parallelism in the TreeVis
project has been implemented by using the CVMP
Processar Farm components (see Figure 14), through the
replication ofthe feature extraction module.

SI aves

,--------------
lmagcs

Ocscrip1 ions

Ft>aturcs Lisls

DataB.1sc

6-~
I Se...,.,. , _____________ _

Master

Fig.l 4 Overall organization ofTreeVis.

On the experiment reported here, the system included
six identical machines (Pentium 11 - 300 MHz) connected
through a network (10 Mb/s). Figure 15 shows an execution
time diagram for 12 samples, where each sample is
represented as a block. Observe that each system machine
executes a samp1e concurrently. A speed-up near the
expected maximum (i.e. 6) was obtained, as the sample
number is a multiple ofthe number ofsystem processors.

M,
M~

M~~-=== Ml~-
M21
Ml1

t(s)

Fig.IS Processor farm execution time.

The TreeVis approach is based on statistical analyses,
needing severa! samples of each species for optimal
training and classification. The performance of the
processor farm approach reaches the optimal when the
number of samples is a multiple of the number of the
processors or is close to it. However, the performance
decreases in two situations: (i) when the number o f samples
is less than the number of processor and (ii) when the
number o f samples is higher than the number o f processors,
but it is not close to the multiple.

The Parallel implementation of Treevis has an
automatic configuration architecture, capable of changing
the parallel approach in execution time. The system
compares the number of sample and the number of
processors, and if one of the two situations (i) or (ii) are
detected, the system change its parallel approach, in order
to minimizes the execution time and improve its
performance.

I Central

111\lJ;CS

Ocscriptions

Faatures List

Data Base

~'~~~~~
r.:=C=olor=~~~ : ~!:,. -u
I Color

lhtogram
I 1-------------M~~R

si aves

Fig.l6 - Concurrence between the submodules for feature
extraction approach.

228

Figure 16 exhibits the concurrence between the feature
extraction submodules approach (using three machines) and
Figure 17 shows its execution time diagram for 3 'samples
running on 6 machines. Although, it performance is worse
than the processor farm approach (when the number of
samples is a multiple of the processors number), its
utilization guarantees the system speed-up for the two
situations (i) and (ii) which the processor farms approach
performance decreases.

MaciL I - - -l\lada.1 - - -Alikfli.l

M•mo ..
Mtt •. S

1\lllâ.'

li O liD
l{i}

Fig.17 Concurrence between submodules execution time.

C. I ynergos

The CVMP has also provided the basic support for
parallelization in a project oriented to the integration of
severa! important approaches in computer vision and
pattern recogmtlon, such as algorithm validation,
performance comparison, datamining, psychophysical
experiments, artificial intelligence, etc [BRU98) [BRU O I].
Basically, it is expected that the severa! advantages and
disadvantages of these approaches complement each other
in order to catalyze the development and application of
computer vision concepts and tools. More specifically, the
CVMP has been used for the parallel implementation and
execution o f the genetic algorithm, required for datamining
tasks.

e p IDI t!ll tt.t m~•t

Fig.l8 Time diagram for the execution ofthe genetic
algorithm in four different machines.

Figure 18 presents the time diagram for the parallel
execution of the genetic algorithm in four different
machines under CVMP, connected through IOMbit/s
ethemet connection. Each subsequent box (represented in
Iight and dark gray) indicates the execution of one of the
basic algorithm steps.

V . CONCLUSION

This article has reported the development,
implementation, and application of a tool designed to
support parallelization in image analysis and computer
vision. Its basic elements and some of its already
successful applications have been described. The benefits
of the CVMP have been substantiated in practice, helping
severa! computer vision researchers to solve severa! distinct
problems.

In addition to the continuation of the outlined projects
(e.g. Cyvis-1 and TreeVis), future developments should
include the implementation of other image analysis
techniques and the extension o f CVMP in such a way that it
interacts with MPI [PAC 97] or PVM [GEI 96].

REFERENCES

[ALM 94] ALMAS!, G. S.; GOTTLIEB, A. Highly Parai/e/
Computing. 2.ed. Califomia, The
Benjamin!cummings Publishing, 1994.

[BIS 98] BISWAS, M. K. ; GHOSE, T. ; GUHA, S. ; BISWAS,
K . K. Fractal dimension estimation for texture
images: A parai/e/ approach. Pattem Recognition
Letters, 19(1998) pp.309-3 13, 1998.

[BRU 97] BRUNO, O. M. and COSTA, L. F. Versatile Real-Time
Vision Based on a Distribllled System of Personal
Computers. In: Proc. Third IEEE Intemational
Conference on Engineering of Complex Computer
Systems. Como, Itália, IEEE Computer Science, Los
Alamitos-CA, p.174-9, Los Alamitos-CA, 1997.

[BRU 98] BRUNO, O. M., CESAR Jr., R.M., CONSULARO, L.
A.; COSTA, L. F. Automatic fea/1/re selection for
biological shape classification. in l:ynergos. In:
Proceedings 1998 Intemational Symposium on
Compu ter Graphics, lmage Processing and Vision, Rio
de Janeiro, RJ, IEEE Computer Society Press, pp 363-
370, 1998.

[BRU OOa] BRUNO, O. M. Parallelism in Natural and Artificial
Vision, University of S. Paulo, Brazil, 2000 (Ph.D.
Thesis in Portuguese).

[BRU OOb] BRUNO, O. M. ; COSTA, L. F. Eflective lmage
Segmentation with Flexible ICM-Based Markov
Random Fields in a Distributed Systems of Personal
Computers. Real-Time lmaging, Academic Press, v. 6,
p. 283-95, 2000.

[BRU OI] BRUNO, O. M.; CESAR Jr., R. M.; CONSULARO, L.
A. ; COSTA, L. F. Synergos - Synergetic Vision
Research Real-Time Systems, Kluwer, v. 21 , p. 7-42,
2001.

[COD 94] CODENOTI, B. ; LEONCINI, M.. lntroducing to
Parai/e/ Processing. Addison-Wesley, 1994.

229

[COS 94] COSTA, L. F.; RODA, V. 0 .; KOBERLE, R. A
biologically-lnspired System for Visual Pattern
Recognition. In: Proc. IEEE lntemational Symposium
on Industrial Electronics, Santiago, Chile, 1994.

[COS 99] COSTA, L. F.; VEL TE, T. Automatic characterization
and classification of ganglion cel/s from the
salamander retina. Joumal of Comparative
Neurology, v.404, n.l , pp.33-51 , 1999

[GEI 96] GEIST, BEGUELIN, DONGARRA, et al. PVM:
Parai/e/ Viril/a/ Machine, A User's Guide and Tlllorial
for Parai/e/ Computing, MIT Press, 1996.

[GER 86) GERIG, G.; KLEIN, F. Fast Contour ldentification
Through Efficient Hough Transform and Simplified
lnterpretation Strategy. In: Proc. 8th lnt. Conference
on Pattem Recognition, vol. l , pp. 498-500, Paris,
France, 1986.

[GON 93] GONZALEZ, R. C.; WOODS, R. E. Digital lmage
Processing. Addison-Wesley, New York, 1993.

[HOU 59] HOUGH, P. V .C. Machine Analysis of Bubble
Chamber Pictures. In: lntemational Conference on
High Energy Accelerators and lnstrumentation,
CERN, 1959.

[INM 88] INMOS Limited. Transputer Reference Manual.
Prentice Hall, New York, 1988.

[KA Y 94] Kaye, B. H. A Random Walk Through Fractal
Dimensions: 2nd Edition. VCH Publishers, New York,
1994.

[PAC 97] PACHECO, Peter. Parai/e/ Programming with MP/.
Morgan Kaufmann, 1997.

[SCH 89] SCHALKOFF, R. F. Digital image processing and
compwer vision. John Wiley and Sons, I 989.

[TRJ 95) TRJCOT, C. Curves anel Fractal Dimensions. Springer­
Verlag, Paris, 1995.

[ZEK 88] ZEKI, S.; SHIPP, S. The Functional Logic ofCortical
Connections. Nature, Nature Publishing Group, v.355,
p3 ll-31 7, September 1988.

[ZEK 93] ZEKI, S. A Vision of the Brain. Blackwell Science,
1993.

