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Abstract 

A nonintrusive electricalload monitoring system for household appliances 
is developed using neural networks. Appliances are characterized by features 
extracted from their transient and steady-state responses obtained from sam­
pling information from the AC power line. A discrim.inating analysis is applied 
as an efficient way to achieve a compact neural discriminator which identifies 
seven classes of equipment. Over 100 different pieces of equipment studied, 
the system classifies correctly more than 90% of the sample. The system is 
implemented on a 16 node transpu ter based parallel machlne to support mas· 
sive application. A processing time smallcr than 2 IJS is achieved for each 
pattcrn. 

1 Introduction 

In Brazil, domestic power consumption responds for about one quarter of the total 
demand. Moreover, dueto the new scenario established by global economy trends, 
this segment shows a. continuous increase in its power demands. New products 
are continuously being introduced in the market, which represent new loa.ds to the 
electrical system, and changes in federal policies can have a significa.nt impa.ct in 
this segment. As an exa.mple, a rise in air conditioning a.nd refrigerating product. 
demand was observed during 1995 due to import restriction decrease. 

Thus, the knowledge of the power consumption profile of such segment can be 
c;onsidered quite relevant in terms of energetic pla.nning. Domestic loa.d monitoring 
can pla.y a. role in alleviating the electrical system in peaking periods, a.voiding 
interruptions and delaying the needs of huge investments. 

This work aims at developing a neural nonintrusive electrical load monitoring 
system for household appliances and implement it in a parallel machine. The design 
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strategy comprises a preprocessing method for data compression and a discrimi­
nating analysis for achieving a compact neural discriminator. The implementation 
involves C code development for a 16 node parallel system. The parallel machine 
is based on a combination of fast digital signal processors (DSPs) and T9000 trans­
puters. 

In the next section, the monitoring system is described in details, including the 
preprocessing method, the achievements of the discriminating analysis, and system 
implementation. Results in terms of discrimination efficiency and processing speed 
are also presented in this section. Section 3 addresses conclusions. 

2 The Load Monitoring System 

The data used in this work concern measurements from the AC power line performE:d 
on different equipments, which were grouped into the following classes: refrigerating, 
resisti v e heating, universal motor, ventilating, consume electronics, incandescent 
lamp and fiuorescent lamp. These classes are responsible for more than 95% of the 
total domestic electricity demand. 

Appliances were characterized by their transient and steady-state responses. 
Transient analysis involved data acquisition with a digital storage oscilloscope with 
a sampling rate of 500 Sa/s, so that third harmonic information could be preserved. 
Starting from the time each appliance had been switched on and for roughly 2 sec­
onds, current signals were acquired from the AC line and formed data words of 1024 
samples. For the steady-state response, active and reactive powers and steady-state 
voltage werc measured from a power transducer anda digital voltmeter after a min­
imum of 2 second working period. From these measurements, apparent current and 
phase angle were obtained. Figure 1 shows the block diagram of data acquisition 
system. 

2.1 Preprocessing 

Aiming at reducing the dimension of data input space, a preprocessing method based 
on envelope feature extraction and variance analysis was applied in the transient 
response [1]. 

The signal envelope is defined by the 60 Hz fundamental frequency of the AG 
line and shape features can be extracted by retaining the current peaks. From the 
original 1024 samples, 200 peaks were extracted. For this, a sliding window was 
used for detecting the maximum value in the set of samples that fali in between two 
neighbour zero crossing samples. Pre-trigger samplcs were neglected in this analysis. 

The variance analysis was performed on the resulting vectors obtained from signal 
envelope analysis. Firstly, the mean value of the last 20 samples was subtracted from 
each vector, so that steady-state information could be eliminated from the transient 
signal. Next, the variauce of each sample was computed. It was observed that the 
first 50 samples (417 ms) account for 95% of the normalized cumulative variance 
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Figure 1: Data acquisition system. 

sum. Therefore, the acquisition time window could be reduced by a factor of 4 by 
retaining only these more relevant samples. 

In order to further reduce the dimension of data input vector, a spectrum analysis 
was applied. The Fast Fourier Transform was computed for each signal and most 
of the valuable information was observed to be restricted to 10 Ilz for ali classes 
but two which extended the relevant information up to 30 Hz. Based on Nyquist 
theorem, this implies that a 60 Hz sampling frequency would be enough for envelope 
representation. On the other hand, further analysis pointed out that this sampling 
rale needed to be maintained only for the first 10 samples, so that a 20 Hz sampling 
frequency was used for the remaining samples. 

As a summary of the overall preprocessing method, from the original samples of 
signal envelope, ten samples were retained with a 16.7 ms period and five samples 
followed with 50 ms period until the last sample is reached. lncluding the two 
<;omponents derived from the steady-state analysis, raw data was translated int.o 
eighteen component data vectors, which were fed into the input nodes of the neural 
classifier. Typical preprocessed signals can be seen in Figure 2. 

As the maximumstarting current for ali appliances was expected to be 100 A, this 
value was used as a fixed normalizing factor for ali samples of the transient signal. 
Similarly, the steady-state current was normalized by a fixed 50 A current. This fixed 
normalization is valuable in terms of system implementation, as the normalizing 
factor can be stored in processor memories and extra processing is not necessary to 
perform sample norma.lization. 
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Figure 2: Typical transient signals from ea.ch of the seven classes after the prepro· 
cessing method is applied. Time is in seconds. 

2.2 Discriminating Analysis 

The discriminating ana.lysis aims at finding a. reduced number of directions in the 
input data space able to efficiently discrimina.te events from different classes. 

In order to have a compact neural network to perform the classification task, 
principal discriminating components were extra.cted from preprocessed data. The 
neural discrimination was then performed by projecting the preprocessed data vector 
in to these discriminating directions, which are found at the input layer of the neural 
network. 

Figure 3 shows how the principal discriminating components were extracted. 
The backpropagation training procedure [2] was used for a scalable network built 
by increasing the number of discriminating components up to the point where the 
discrimination efficiency could not increase for the overall seven classes that were to 
be identified. For this single hidden layer neural network, each time a new component 
was added, in the form of adding a new neuron in the hidden layer, the hidden la.yer 
of the network was trained just for the weights which connected the input nodes 
to this new added neuron. The other weights in this layer remained frozen, as 
they represented discriminating components already extracted. The weight vectors 
that connected the hidden layer to the output layer were retrained for each new 
component added, so that the network could search for the best way to combine the 
contribution of each component of the new set of discriminating components. 

The neural networks used along this paper were simulated by means of JETNET 

204 



11111 

lfl1l 

"'" 
1(111) -.....,. - -.....,. .....,. 

(1) 

11(11 

""' 
1111) 

liiUtl - - -..... .._ .._ 
(b) 

Figure 3: Principal discriminating component extraction: first (a) and N-th (b) 
components are shown. For simplicity, the output layer is represented by a siJlgle 
neuron. 
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Figure 4: The basic architecture of TN 310 system. Extracted frotn [5). 

2.0 pa.ckage [3). The selected activation function for the neurons was the hyperbolic 
tangent. The fully-connected feedforward networks comprised seven neurous in the 
output layer and each one of these neurons was assigned to a given class, so that 
maximum probability was used to detect the winning class for a given pattern pre­
sented at the input nodes of the network. The target vector for the training phase 
was defined by establishing a target value of 1 to the output neuron that represented 
the class to which belongs the pattern being presented to the network and filling the 
rest of the vector's components with -1. The sample space included 100 different 
pieces of equipments and half of this was used for training and the other half was 
only involved with testing. 

For comparison, a network was trained using backpropagation and disregarding 
the principal discriminating component analysis. For a network comprising 18 input 
nodes and seven nodes in the hidden layer, 84% of the sample was correctly classified. 
On the other hand, after extracting four principal components, more than 90% of 
the sample was correctly classified. It should be noticed that, as from Figure 3, 
the network in this case has only 4 nodes in the hidden layer, which means that 
the number of multiplications involved in processing a given pattern is reduced 
almost by a factor of two, when the two neural networks are compared. Thus, 
principal discriminating component analysis can provide a more compact and faster 
discriminating system. 

It should also be mentioned that the classifier is working based on a reduc:;ed 
statistical sample and possible improvements in performance can be achieved if a. 
larger set of data. can be recorded a.nd used in the network's tra.ining phase. 

2.3 System Implementation 

The implementa.tion of the load monitoring system considered two aspects. In the 
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Figure 5: T9000 transputer. Extracted from [5]. 

first, the fiexibility of technology was addressed and digital signal processors (DSPs) 
were considered as a feasible solution. DSPs can accommodate a different number 
of applications and support high-level language programming, like C, in different 
platforms. Moreover, neural processing is very suitable to be implemented in this 
technology, as the main computation required by this technique is inner products 
which, in fact, represent one of the main concerns in DSP designs. Also, demanding 
processing speed requirements can be met by fast DSPs currently available in the 
market a.t a reasonable price. A classifier based on principal discriminating analysis 
was previously implemented in such technology with quite good performance (4] 

The second aspect addressed processing parallelism. As neural processing ex­
hibits a natural parallelism, ultimate speed can be achieved by exploring this fea­
ture. Here, communication among processes can be thought to be efficiently realized 
by using transputers. · 

Combining both aspects, the TN-310 system (see Figure 4) was selected for sys­
tem implementation. This is a 16 node transputer based parallel machine that uses 
fast DSPs (ADSP-21020) running as coprocessors to the transputers (T9000). Thus, 
the architecture of such system tries to combine the T9000 capabilities for process 
communication and the optimized signal processing implementation by means of the 
DSP. 

The TN 310 system is a multiple instructions multiple data parallel computer 
with a distributed memory architecture (5]. This means that each node has its 
own local memory. The system in consideration houses 16 nades based on T9000 
transputers, which communicate with each other by means of a network of C104 
chips. Each node has access to the communication network through four high speed 
(100 Mbits/s) seriallinks (DS-links), which allow it to access data held anywhere in 
the system. 
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The T9000 transpu ter is a 32-bit microprocessor that allows multiple instructions 
to be executed at every processor cycle. Figure 5 shows the T9000's architecture. 
lt supports the creation and scheduling of any number of concurrent processes. 
For inter-process communication, the instruction set includes specific instructions. 
Thus, communication between processes running on a single transputer or running 
on separa.te tra.nsputers is possible. 

Communication between processes takes place over channels, and is implemented 
in hardware. Communication between processes on different processors takes place 
over virtual channels. Multiple virtual channels are multiplexed onto each physical 
link by the virtual channel processar. With virtual channels, it is not necessary for 
the programmer to allocate cha.nnels to physicallinks, and the allocation of processes 
to processors is simple. 

The C104 is able to connect 32 high bandwidth serial communication links to 
each other via a 32 by 32 non-blocking crossbar switch, enabling messages to be 
routed from any of its links to any other link. The TN-310 system uses four C104s, 
each one connected to a corresponding link of the T9000s. 

All nodes of this machine complies to the Standard HTRAM (High performance 
TRAnsputer Modules) specification, which allow to use a fast DSP for signal pro­
cessing applications. 256 kbytes SRAM is used as shared memory, to transfer data to 
and from the DSP coprocessor. The DSP HTRAM also includes 8 Mbytes of T9000 
private DRAM. The ADSP 21020 can be programmed from the T9000 through C 
runtime library calls. 

The 32-bit floating point DSP used (ADSP-21020) (6] runs at 25 MHz clock 
speed. The basic architecture (see Figure 6) of this device includes three independent 
computational units: ALU , multiplier with fixed-point accumulator and shifter. The 
units are connected in parallel and can use up to 16 internai registers at any moment. 
Every instruction is executed in a single cycle, which implies that multiplication with 
accumulation and search for the next operands can be performed in one cycle. 

Thc TN 310 system can be accessed through a host machine, in our case a PC 
running MS-DOS and Windows. Applications can be developed using a C toolset 
layer of programming that provides ultimate processing speed. 

The load monitoring system was implemented in the TN-310 system including 
both data preprocessing and neural processing. For each pattern to be identified, 
the data fed into the system comprised the 200 sample vector from signal envelope. 
The neural network's weights obtained from principal component analysis and the 
normalizing factors were stored in memory. 

The parallelism of actions was based on one processor acting as a manager of the 
overall system, whilst the other 15 processors were allocated for neural processing 
(7]. The managing processor was continuously feeding data to the other processor 
and was the only processor to communicate with the host. Therefore, ali input 
and output information passed through this processor. Using such approach, the · 
processing time for a pattern was measured to be in average smaller than 2 p.s. 
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Figure 6: The basic architecture of ADSP-21020. Extracted from [6]. 

3 Conclusions 

A nonintrusive system for electrical load monitoring has been presented. It was 
ba,sed on acquiring data from the AC power line concerning steady-state and tran­
sient analysis. Data compression was obtained by a combination of signal envelope 
feahtre extraction and variance analysis supported by a spectrum analysis. The 
system used neural networks to classify pieces of equipment from seven different 
classes. The neural network was designed by using principal discriminating com­
ponent analysis, so that a compact and high-efficiency classifier could be achieved. 
Over a total sample of 100 pieces of equipment, the system using four components 
(a 18-4-7 network) classified more than 90% correctly. Besides being quite compact, 
this approach improves the original performance of a.18-7-7 nctwork trained withont 
principal component considerations. 

The compact load monitoring system was implemented in a. transputer-DSP 
based pa.rallel machine housing 16 processing nodes. The application was described 
in a C toolset environment and processes were coded in C language. Less than 2 p.s 
were required to process in a.verage each pattcrn in such system. 
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