
Evaluating the Trade-Offs in the Parallelization of

Probabilistic Search Algorithms *

R. L. Carceronif W. Meira Jr.t R. Stetst and S. Dwarkadast

t Department of Compu ter Science
University of Rochester

Rochester, NY 14627-0226 USA

t Depto. de Ciência da Computação
UFMG - Caixa Postal 702

B. Horizonte, MG 30123-970 Brazil

Abstract

In this work, we propose a speculative parallelization strategy for Probabilistic
Search algorithms. We design a parallel version of one such algorithm for a real-time
computer vision problem with many practical applications. The implementation is
performed on a cluster of eight DEC AlphaServer 2100 4/233 machines connected
via a DEC Memory Channel network. Four types of run-time systems are tested:
Hardware-coherent Shared Memory (HSM), Distributed Shared Memory (DSM) with
software coherence (Cashmere-2L), Reflective Shared Memory (RSM), and message
passing (Digital PVM). A run- time system that is normally not the most efficient
among these four (RSM) is found to be the best choice for our combination of alg~
rithm and architecture. This shows that algorithmic parallelization and the selection
of an implementation environment mutually interfere with each other and must be
performed in a synergistic manner.

Resumo

Neste trabalho propomos uma estratégia de paralelização especulativa para al­
goritmos de Busca Probabilística. Um algoritmo de Busca Probabilística paralelo é
implementado para o Problema da Correspondência, cuja resolução é necessária em
várias aplicações de visão computacional com requerimentos de tempo real. Essa
implementação é executada em um clu~ter de oito DEC AlphaServer 2100 4/233
conectadas por um DEC Memory Channel. Apresentamos e discutimos resultados
com quatro sistemas de tempo de execução: Memória Compartilhada com coerência
por Hardware (HSM), Memória Compartilhada Distribuída (DSM) com coerência por
software (Cashmere-2L), Memória Distribuída Refletiva (RSM), e troca de mensagens
(Digital PVM). Dentre estes, o sistema de tempo de execução que normalmente é o
menos eficiente (RSM) apresenta o melhor desempenho, mostrando que a estratégia
de paralelização do algoritmo e a seleção do ambiente de execução se influenciam
mutuamente e não podem ser consideradas isoladamente.

'This work is supported in pari by CAPES process BEX 0591/91>-5; CNPq grant 200.862/93-6; NSF
grants CDA-9401142, CCR-9319445, CCR~702466, CCR-9705594 and CCR-9510173; and an equipment
grant from Digital Equipment Corporation's Externai R.esearch Program.

225

1 Introduction

Parallelism has played a central role in the area of high-performance computing. Histor­
ically, it gained momentum with the development of severa! hlgh-performance shared­
memory machines. However, recent improvements in networking technology have made
distributed-memory systema a very attractive low cost altemative to such traditional par­

allel architectures.

A big challenge motivated by this technological revolution is the development of softr
ware systema that allow users to express all the inherent parallelism of their applications
in an easy and architecture-independent way, without any major drawbacks in terms of
performance. Message passing protocole aeem to meet the efficiency requirement quite

well, but require users to manage ahared data migration and replication explicitly, which

increases development time and decreases reliability and portability. Distributed-Shared­

Memory (DSM) systema, on the other hand, seem to be a natural answer to these problema,

but their relative efficiency in many architectures is still questionable due to problema such
as excessive communication caused by false sharing.

Although this trade-off between ease of programming and efficiency is valid for many
classes of applications, the selection of an ideal paradigm for the implementation of ap­
plications with criticai performance requirements still seema to be highly dependent on
the particular atructure and data-access patterns of the algorithms involved, and on the
characteristics of the underlying run- time system and architecture.

In this paper, we study the parallelization of Probabilistic Search algorithms, a generic
technique employed for solving NP-hard problems. We use the Correspondence Problem,
which is a key component in severa! relevant real-time computar vision tasks, as a repre­

sentativa of combinatorial optimization problema that can be aolved by using Probabilistic

Search. We start by describing the problem and proposing a speculative parallelization
strategy for it. We then describe the implementation of this strategy in four run-time sys­
tema, the performance resulta in each of them, and discuss the issues involved in choosing
the run-time aystem that best supports our parallelization strategy.

2 Probabilistic Search

Probabilistic Search (PS) is a technique that resembles Branch and Bound (B&B) [5] in

the sense that it minimizes the total number of altematives that must be verified in order
to perCorro an exhaustive aearch (i.e., a search that is guaranteed to find a solution if
one exista) in the solution space of a given combinatorial optimization problem. The
basic idea is to partition this aearch apace recursively into amaller sub-spaces and check

these sub-spaces for feasibility with certain restrictions imposed in the problem definition.
This way, sub-spaces that are entirely infeasible can be discarded in an early stage of the,
partitioning process, reducing the total computational cost of the search.

Both PS and B&B are useful to deal with problema for which no polynomial-time
algorithm is known. In some of these problema, although it is not always possible to find

226

a feasible solution in polynomial time, there is an efficient way of determining which sub­

spaces are more likely to contain at least one feasible solution. These are the problems that
can be successfully tackled with PS. Unli.ke B&B, PS assigns a feasibility probability to

each sub-space that is under consideration as the possible location of at least one feasible
solution. Then, whenever PS is faced with a decision between two or more sub-spaces
with the sarne cardinality, it uses these probabilities and chooses to work on the sub-space
with highest probability first.

Another difference between PS and B&B is that the former is much more difficult
to parallelize. The major obstacle to the successful parallelization of PS algorithms is
the fact that checking whether a given sub-space is completely infeasible or not usually
changes the values of the feasibility probabilities in regions of the search space that are

not necessarily in the neighborhood of the current search point. Note that PS is not
a randomized technique and thus it must explore the search space in the exact order

indicated by the probabilities assigned to its sub-spaces. In the general case, the identity

and even the approximate location of the next sub-space to be partitioned dependa on

the resulta obtained in the feasibility verification for the current sub-space. This resulta

in data dependencies between successive computation threads of PS algorithms.
In order to cope with this difficulty, we propose a speculatíve parallelízation strategy for

PS algorithms. In general, most of the sequential computation time of PS is spent in the
verification of the feasibility of the search sub-spaces under consideration. Therefore, a
successful parallelization strategy must allow multiple such verification steps to be at least
partially overlapped in time. According to our proposed strategy, rather than waiting for
the result of the current verification to update the probabilities and then choosing the next
sub-space to be verified (and possibly partitioned), a parallel PS algorithm immediately
speculates an outcome for the current feasibility check, updates the probabilities, and

starts working on what would be the next sub-space to be verified, if its speculation
were correct. If the parallel PS algorithm can perform severa! successful speculations in

sequence, then it executes multiple verification steps concurrently and the overall execution
time is significantly reduced. The disadvantage of this strategy is that whenever the

outcome of a feasibility check is not in agreement with what was speculated, the PS
algorithrn must roll back, restore the appropriate values for the probabilities, and discard

the work performed on ali the successive sub-spaces whose exploration was incorrectly
determined. Thus, some care is needed in the speculation process, so that the benefits

of the parallelization can outweight the extra cost of the wasted computation and the

roll-backs.

3 The Correspondence Problem

In order to show that the strategy described in the previous section can be successful in

practice, we use it to parallelize a known PS algorithrn for a combinatorial optimization
problem of fundamental importance in the field of computer vision, with applications in
visual navigation, automated surveillance, hand~ye coordination and augmented reality

227

(7, 4). To understand why this problem isso important let's consider how a typical active­

vision system works, as illustrated in Fig. 1.

Digital Images
30Hz

CO Camcra

Mobile

~ Motion Signals

3-D State

Vcctors

Figure 1: Components of a typical active-vision system.

Analog images collected by one or more cameras placed at a mobile platform a,re
digitized at a frequency of 30 Hz. Initially, this large amount of incoming information
must be processed (usually with specialized vectorial hardware}, so that relevant features
such as brightness edges can be isolated. After that, each incoming acene can be described
as a vector of 2-D measurements. But it is necessary to generate 3-D descriptions of these
scenes somehow, so that the relative pose (position and orientation) o f the mobile platform
with respect to targets or landmarks of interest can be determined, and used to calculate

adequate motion patterns. This 2-D-to-3-D backprojection step is frequently based on

the prior existence of a model for the 3-D scene geometry. Its execution depends on the
ability to establish pairwise correspondences between the features in the data-driven 2-D
scene description and the features in the 3-D geometrical model.

This is exactly the problem known as the Con-espondence Problem (CP): given M 3-D
features (scene model}, N 2-D features (image) anda projective transformation with some

unknown pararneters that maps the 3-D space onto the 2-D space (camera model}, find
a rnaximum-cardinality set ofpairwise correspondences between 2-D and 3-D features, so
that ali the selected 3-D features are projected onto the corresponding 2-D features with
a unique set of values for the unknown parameters. In general, this problem has a single

solution and the set of parameters tbat allows the maximum number of correspondences
to be established is exactly the true pose (position and orientation) between the camera
and the acene.

The rnost traditional approach for solving this problem is to perform a brute force
search, where every possible set of matches is checked for feasibility individually [1, 4).
Unfortunately, the cost of such metbods is unaffordable for real-time applications. David
Lowe (7) proposed an alternative PS algorithm that leads to drarnatic savings with re­
spect to the previous brute force approaches. In the following subsection, we explain this

228

algorithm, relate it to our previous discussion of PS, and show how to parallelize it.

3.1 A Probabilistic Search Algorithm and Its Parallelization

In order to characterize a PS algorithm for a given combinatorial optimization problem,
it is necessary to define: how the search space can be recursively partitioned; how the
resulting sub-spaces can be checked for feasibility; and how feasibility probabilities can
be assigned to individual sub-spaces. We discuss each of these steps below:

In Lowe's algorithm for the CP, a search sub-space corresponds to a partia! solution

in which (conjectured} correspondences are imposed only for m < M model features.
Partitioning a sub-space amounts to conjecturing the correspondence for an additional

model feature (i.e., increasing m by one) and a complete solution is a set of pairwise
matches between model and image features with size m = M (the algorithm assumes that

M$N).
Checking a sub-space (i.e., a partia! set of matching pairs) for feasibility involves a

careful geometrical analysis that is only sketched here. Recall from the previous section
that in the CP the relationship betwecn 3-D and 2-D features (i. e., whether they match or
not) is determined by a parametric projective transformation whose (unknown) parameters
correspond to the pose of the camera with respect to the rest of the acene. Thus, the CP

has a dual nature: given a certain camera pose, it is straightforward to simulate the
imaging transformation and then to determine ali the resulting pairwise matches between
3-D and 2-D features; and, on the other hand, given a certain set of correspondences, it
is also possible (though relatively expensive, computationally) to determine a pose that

fits ali the projections of the 3-D features to their 2-D image matches, in a least-squares
sense (6). The difficulty of the CP lies exactly in the fact that neither a solution in its
discrete domain (the correspondences) nor a solution in its continuous domain (the pose
pararneters) are known. However, if a conjectured discrete solution with at least four

matching pairs is available, its feasibility can be determined in the process of computing

the dualleast-squares pose solution, by verifying whether the residual of the least-squares
fitting is below a certain predefined threshold, as explained in (7].

Finally, in arder to complete a definition of a PS algorithm for the CP, it is necessary to

determine how to assign feasibility probabilities to partia! solutions in its discrete domain
and how to search its discrete solution space according to these probabilities. In Lowe's

algorithm, this search is performed in two completely distinct phases: the first one tries
to find an interesting partia! solution in a breadth- first-like style and the second tries to
expand thls partia! solution in a depth- first way, in order to transform it into a complete

one.
Note that, as mentioned in the last paragraph, partia! solutions with less than four

matching paira can not be checked for feasibility. So, initially, Lowe's algorithm performs a
probability-guided search in the space of O((M x N}4) possible partia! solutions with size
equal to four, until it finda one such partia! solution that is ruled as possibly feasible. In

order to assign numeric probabilities to ali partia! solutions of size four, Lowe's algorithm
assumes that a reasonable initial estimate for the unknown camera pose can be obtained

229

through temporal smoothing and extrapolation (keep in mind that this technique is used

in the core of a real-time visual servoing loop). Then, the imaging process is simulated,
generating a predicted synthetic image. This synthetic image is compared against the
image actually digitized and an error measure with two degrees of freedom is computed
for each of the possible M x N matching paira composed by one model feature and one
image feature. A bivariate normal distribution for the two parameters of this error measure
is then used to assign an initial numeric probability for each pair. Finally, the feasibility
probability for any given set of matching pairais defined as the product of the individual

probabilities assigned to each of i ta elements.

Ali the probabilities used in this first phase are based on an a priori estimate for the
camera pose and for this reason we call them a priori probabilities. Whenever the search

algorithm verifies that a certain set of matching pairs is not feasible, it is not possible to

compute a better pose estimate. However, the individual feasibility probabilities for ali

the matching pairs involved must necessarily be decreased, so as to indicate that at least

one of them is an outlier. Lowe's algorithm adopta a heuristic penalization scheme: the a
priori probabilities for ali possible matching pairs are stored in a matrix of size M x N;

whenever a partia! solution is ruled as infeasible, the elementa associated with its paira in
this a priori matrix are multiplied by a number in the range (0, 1).

Whenever a partia! solution of size four is ruled as possibly feasible, Lowe's algorithm
enters a second phase that resembles a depth-first search towards a complete feasible
solution. Note that the fact that a possibly-feasible partialsolution has been found implies
that a better pose estimate is available (namely, the least~quares fitting computed in the
verification step). So, the algorithm momentarily abandona the a priori probabilities and
computes a set of a posteriori probabilities, that are kept in a separate M x N matrix.

These probabilities are then used to determine which is the next best matching pair to be

added to the current partial solution at each step. Then, the expanded set is checked for
feasibility again and the a posteriori probabilities are recomputed, completing a cycle.

If the partia! solution being expanded ever gets infeasible in this phase, our implemen­
tation performs an individual check for each of its elements, in order to determine which
of them is most likely to be an outlier. Then, we search the probabilistic neighborhood of
the current solution for an adequate replacement to this conjectured outlier (i.e., another

pai r that makes the resulting partia! solution possibly feasible again). If one such replace­
ment is found, the search can proceed normally towards a complete solution. Otherwise,
a backtrack occurs. In this case, the a posteriori probability matrix is discarded, the a

priori matrix is restored and properly updated, and the search reverta back to the first

phase.
Our parallelization of the first phase of the search algorithm described above is based

on the speculative strategy presented in Section 2. Preliminary experimenta showed that
in most of the computationally demanding instances of the problem at hand, a lot of
initial seta with size four must be checked and rejected until one of them can be expanded
towards a possible complete solution. Every time one such set is generated, our parallel
algorithm immediately updates the a priori probability matrix, assuming that this set

230

is going to be ruled as iníeasible. Then our algorithm uses the resulting probabilities to

speculate the next set to have its feasibility verified and immediately starta this verification

in parallel with the current one, completing a cycle. In the relatively unlikely (but very

important) case in which a set with size four is found to be (potentially) feasible, the

incorrectly speculated seta are discarded, appropriate values for the a priori probabilities

are restored, and the search enters ita second phase.

This second phase is mostly inherently sequential at task levei. However, good par­

alielization opportunities appear in the pointa where the current partia! solution being

expanded is ruled as iníeasible. In this case, both the testa to determine which of the pairs

currently selected is most likely to be an outlier and the search for a replacement involve

perforrning multiple feasibility checks that we fully parallelize in a non-i!peculative way.

In order to simplify the coordination o f the whole search process, we adopt a centralized

approach in which ali the probability matrices are read and updated by a unique master

process. This master process is also responsible for choosing which seta of matching pairs

are going to be checked for feasibility and for sending work requests to a set of slave pro­

cesses. The slave processes then perform the computationally intensive feasibility checks

and return the resulta of these checks back to the master. Although the accesses to the

probability matrices are inherently sequential, a distributed-control approach in which

these matrices migrate between severa! owner processes would also be possible. How­

ever, preliminary testa indicated that the contention for this exclusive--access shared data

structure would result in extremely poor performance and this approach was immediately

discarded.

The protocol for communication between the master and the slaves starts in a non­

blocking mode, in which the master repeatedly sends requests of work to the slaves and

then tries to retrieve answers to requests posted so far, even if they arrive out of order. O f

course, the out-of-order resulta based on speculative guesses can not be used until these

guesses are confinned. Whenever one such result is retrieved from the communication

structures, it is stored in a private queue at the master, where it may be immediately

accessed when needed. If eventually some speculative guess is found to be false, ali the

resulta queued after it are discarded from the queue. At certain points in its execution,

the master process can not proceed and generate new feasibility-check requests before the

answers to one or more pending requesta are received from the slaves. In these situations,

the master may either use a blocking primitive or keep polling the communication struc­

tures, depending on the availability and on the relative efficiency of these options in the

different implementation environments chosen.

4 Parallel Processing Environment

In this section we describe our experimental environment. We start by describing the

hardware resources available and then we describe the four run-time protocols used in our

evaluation.

231

4.1 Hardware

Our hardware platform consists of eight DEC AlphaServer 2100 4/233 machines which are

connected by a DEC Memory Channel network. Each of these bus-based multiprocessors
houses four 233 MHz 21064A Alpha processors and 256 MB of memory. The Memory
Channel is a reliable, in~rder, low-latency, remote-write-access network. One-way mes·

sage latency is 5.2 J.IS.

The Memory Cllannel (2) also provides user-level messaging capabilities through a
very unique programming interface. Through special initialization calls, processes attach

to address space regions reserved for the Memory Channel. The attach ca1l must specify

the message direction, i.e., TRANSMIT or RECEIVE. If a region is attached as the former,
then any atores to the region are automatically propagated to processes that have mapped
the region as RECEIVE. All RECEIVE regions are pinned down in physical memory ao that

the network interface can quickly transfer incoming data to its destination. TIUNSMIT

regions are simply uncached writes to I/O space. As a result, values in TRANSMIT regions

can not be read. These regions can only be accessed through basic store instructions. The

RECEIVE regions, however, are in physical memory and can be accessed through load and

store instructions. However, store instructions do not produce messages.

4.2 Run-Time Protocols

Hardware-Coherent Shared Memory

The HSM protocol simply runs on the hardware-coherent shared memory available inside
one of the AlphaServer machines. Synchronization and communication are implemented
entirely through shared memory and hardware coherence. Our hardware limits this pro­

toco! to executions of one to four processors. The user sees it as a library with routines

for sllared-memory spin locks, tree-based barriers, and synchronization via flags.

Cashmere-2L

Cashmere-2L (8) is a stat~f-the-art software-based DSM system. The system is designed

for operation on clusters of multiprocessors connected by a network with capabilities simi­

lar to tlle Memory Channel. Like HSM, the protocol is implemented as a user-levellibrary
which must be linked with the applications. A special compilation script is required to

instrument applications and to link the Cashmere library. The instrumentation adds four

polling instructions to the start of every loop. These polling instructions check for incoming
messages and jump to a message handler if necessary.

The library contains synchronization and virtual memory fault handling routines,
which provide the main entry points to the protocol. The protocol itself can be log­

ically divided into inter- node and intra- node leveis. The inter-node levei implements
"moderately" lazy release consistency, while allowing multiple concurrent writers. As
data accesses are tracked via virtual memory page faults, the coherence unit is naturally
a virtual memory page. The protocol maintains a distributed page directory that atores

232

page-state information including a page's current sharing set and its associated home node.

The home node contains the page's master copy, which is kept updated according to the

definition of release consistency. When a processar firat attempts to modify a page, the

protocol will construct a twin of the page. Subsequently, at a release operation, the page is

compared with the twin to uncover ali modificatioiiB. The modifications are flushed to the

appropriate home node(s) and write notices are sent to processors in the page's sharing

set through the Memory Channel's remote-write-access capability.

As mentioned, Caslunere-2L exploits our platform's available hardware coherence. Ali
processara iiiSide a node share the same page frame for a single page of shared memory.

CoiiSistency of the page modifications is then maintained by the hardware. By virtue of

this underlying hardware coherence, any software coherence transaction performed by one

processar is actually performed on behalf of ali processara on the node. In other words, the

result of the transaction is refiected on ali processara. Thus often coherence transactions

from multiple processara on the node can be coalesced or a single transaction from one

processot can obviate the need for trall8actions from other processara.

Reflective Shared Memory

Refiective Shared Memory (RSM) is a very straightforward implementation of DSM. Any

access to shared memory is automatically propagated to ali other nodes in the system. Our

implementation of RSM simply maps the entire shared memory address space into Memory

Channel space at initialization time. The shared memory is actually mapped twice: once

as a RECEIVE and once as a TRANSKIT region. The two regions are separated by a fixed

offset. During the compilation phase, application executables are instrumented so that ali

writes to shared memory are duplicated. One write places the data in the RECEIVE region

and the second write atores data to the TR!NSKIT region which results in an immediate

broadcast of the data. Applications with high read latencies may benefit from RSM,

although extensive computation in shared memory may overwhelm the available network

bandwidth and limit the application's scalability.

PVM

Digital PVM has been written to exploit the user- Ievel messaging capabilities of the Mem­

ory Channel (3]. Outgoing messages are copied directly to a TRANSKIT region and thus

are dispatched very efficiently. On the receiver side however, the messages can not be

handled with the same efficiency. Incoming data is deposited by the Memory Channel

into a predefined RECEIVE region. The PVM library must then copy the data from this

region to the final location. This double-copy is necessary because RECEIVE regioiiB can

not be re-located. Interestingly, the PVM library also uses an adaptive back-{)ff spin loop
to poli for incoming messages. The library polls for a certain number of cycles and then

yieids the processar. The number of polls performed decreases in each subsequent cycle
until a timeout threshold is reached.

233

5 Experimental Evaluation

In order to evaluate the effectiveness of our parallelization scheme, we initially implemented
a sequential version of Lowe's algorithm for the CP. Ali the geometrical analysis needed
in the feasibility checks and in the probability assignments was implemented in Matlab,

and then translated to C, with the Matlab Compiler 4.2. The search procedure itself was

implemented directly in C. The resulting code was compiled with the optimization option
-04. Ali the results described here are based on a test-ease with M = 12 and N = 36,

in which 225 conjectured partial solutions must be checked for feasibility before a true
solution is found, in the sequential case.

Our first implementation environment was shared memory, because of its simple pro­
grarnming paradigm. In our shared memory implementation, the communication between

the master and each slave is done through two shared buffers: one is used to issue work
requesta to the alave and the other is used to store the answers to these requests. In the

test case selected the size of each of these two per--slave buffers is much amaller than the

unit of coherence (8 KB). The master-slave synchroni1.ation is managed with a vector of

flags, one per alave. Whenever the master wishes to receive help from a apecific slave, it
writes a request in the request buffer and then aets the flag associated with that slave. As

soon as this operation is propagated through the Memory Channel, the slave is awakened
from a blocked state, performs the required work, writes the resulta to the resulta buffer,
and then resets its flag. Finally, whenever the master wants to collect answers, it keeps

polling the flags of the active slaves, in a round-robin fashion. When the atate-change in
one of these flags is detected, the master effectively synchronizes with the alave and copies
the results from shared memory to data structures in its private memory.

Initially, we used the HSM run-time Iibrary, which is aimply hardware-coherent shared
memory. The measured speedups, as a function of the number of slaves, are plotted in

Fig. 2. In this aame figure, we also display the results obtained with other choices of run­
time ayatema, as well as a curve ahowing the maximum apeedups predicted by Amdahl's
Law, given the fact that the profiling of Lowe'a PS algorithm revealed that the inherently

aequential fraction of its computation- time is 11%. Hardware coherence obtains results
very close to optimal speedups for this particular algorithm, but the number of total
processors is limited by our platform to four (three slaves).

To Jeverage the full number of available processors, we used Cashmere-2L. As we
mentioned in the previous aection, Cashmere-2L is a natural choice for the architecture

at hand, since it allows one to explore the availability of hardware coherence in ali the
interactions between processors of the same node, and still provides additional aupport for
inter-node interactions. The resulta displayed in Fig. 2 show that when the execution is
limited to a unique node, the performance of Cashmere-2L closcly matches that of pure
hardware coherence, as expected. However, as soon as inter-node interactions are needed,
the gap between the apeedups obtained with Cashmere-2L and those expected according to

Amdahl's Law quicldy increases. The performance achieves a maximum levei with twelve
slaves and tails down after that.

234

Br-----,------,-----,------,-----,------,-----,

7

6

2

...

.. .. ····· ·· ···

·· ····· ·· ···· ·· ······ ····
Theoretical limit

Reflective SM
........ --- ---

,.. -::.='- ·- ·-.-.- ·-·- · - · - ·- .- .- . - ·- __ .,..,.- ·- ·- ·- ·-... ;~·- ·

.··J.Iãrdware SM r· "....... Digital PVM

Cashmere 2L

0~----~------~------~------~------J-------~----~ o 5 10 15 20 25 30 35
SI aves

Figure 2: Speedups: elapsed sequential time divided by the elapsed time of the parallel
execution, as a function of the number of slaves.

At a first glance, we attributed the modest gains obtained with the use of additional
nodes to the fact that the size of the coherence unit in Cashmere-2L (8 KB) is much
bigger than the actual amount of data communicated in a typical master-slave interaction
of our parallel PS algorithm (about 400 bytes, for the test case selected). The natural

way of avoiding this conjectured extra communication overhead seemed to be to migrate
our implementation to a message passing environment in which the granularity of the
communication is smaller, such as Digital PVM.

In our message passing implementation of the parallel PS algorithm, each slave com­
municates with the master through a private mailbox. Whenever the master is in a state in
which there is more work to be done regardless of whether additional resulta are received
from the slaves, it uses a non-blocking receive primitive to collect incoming resulta. When

it finally reaches a state where the computation can not proceed until some additional

result is received, it uses blocking receives, which were found to be slightly more efficient
than their non-blocking counterparta. The slaves always use blocking receives.

The timings obtained with this implementation (Fig. 2} show that ita performanc:e

sr.ales relatively well as the number of slaves is increased. However, the method used to
poli for incorning messages and the double-copy operation generate an unacceptably high

overhead, even ü a few processors are used. Instrumentation later inserted in the user-level

code revealed that regardless of the number of processara used, the computation times for
the threads corresponding to the feasibility verification step roughly doubled with respect
to the sequential implementation, both in the master and in the slaves. A likely cause
for this increase is the use of the adaptive back-ofl' spin loop approach in the polling for
incorning messages, which may be forcing the sequential threads to be de-scheduled and

re--scheduled repeatedly. However, dueto the proprietary nature of Digital PVM, we coul.J
not use protocol- level instrumentation to confirm this. We also tried to use a traditional
TCP-based PVM (9] but the preliminary resulta obtained with it were so poor that it was
immediately abandoned.

235

At this point we performed a careful instrumentation of our DSM implementation,

both at user and protocol leveis. The execution-time in the master processar was broken

down into five major categories, as shown in Fig. 3: (Verif) the time spent in "residual" fea­
sibility verification operations that take place in inherently sequential parta of the search

and thus can not be distributed to the slaves; (Probab) the time spent in the computation

of the feasibility probabilities, also inherently sequential at task levei; (Comm) the com­

munication overhead, i. e., the time spent transferring data to or from the buffers in shared

memory; (Synch) the overhead associated with synchronization primitives; and (Wait) the

time spent in the busy-waiting loop that polls the flags.

1.4

5

Cashme,...2L

;

Wal1
Comm
Synch
Probab
V•rif

10 15 20 25 30
SlaV81

Aelleclive SM

~
WaH
Comm
Sync:h
Probab
Verit

Figure 3: Composition of the elapeed times per image from the point of view of the master

process. Actual times were obtained in real-time loops iterated for at least 50 images.

It can be observed that with a few slaves only, most of the time in the master is in

the Wait category. This is due to the fact that at this point the slaves can not keep

up with the rate at which the master generates new work requests. When the number

of slaves is increased this time decays, until a saturation point is reached with twelve

slaves. The residual waiting time is due to the fact that in the second phase of the search

algorithm (expansion towards a complete solution) there is an algoritlunic limit on the

degree of parallelism that can be achieved. Note that twelve is exactly the size of a

complete solution to the test case used. Whenever it is necessary to determine an outlier

in a solution ruled as infeasible, at most twelve feasibility checks are needed and nothing
else can be done wlüle these are not finished.

Another interesting phenomenon is the fact that the communication overhead increases

when the number of slaves is gradually raised from one to fifteen, and remains const~t

afterwards. The explanation for this is quite complex. l'hrough a careful analysis of

the code, we were able to determine that the node·that contains the master process '!'as

236

always chosen as the home node for all the shared pages used in the communication with
the slaves. Thus, whenever the master writes to a shared page, the modifications are of
course immediately reflected on its node, but are not propagated to the remote nodes.
When the master incremente a flag, its processar uses the remote write capabilities of the
Memory Channel in order to update the protocol directory in the slave's node. These
updates signal that the old copy of the modified page in the slave's cache is now invalid.
When the slave is finally awakened, it incurs a page fault and senda a request for the
missing page to the master's node. At this point a major overhead in the master is
incurred, because as it detecta that a request has arrived {via polling), it must send the
requested page through the Memory Channel, an operation that takes time in the order
of 300 IJS.

There are two reasons why this overhead increases with the number of slaves. An

obvious one is the fact that the number of master-slave transactions actually increases

with the number of slaves, since a higher degree of parallelism implies that longer sequences
of speculations will have been made whenever a roll-baclc is needed in the first phase of

the search algorithm. A more subtle reason is the fact that with fewer sla.ves the ma.ster
is able to issue work requests faster than they can be serviced. So the general execution
patterns tend to be similar to this: the master issues a large number of work requests,
the slaves all incur page faults at almost the same time, and the resulting protocol-issued
page requests arrive at the master during a short time interval, being serviced in a batch
by a unique polling operation. With more slaves, the master needs to do more work

in between successive requests to slaves, because the more frequently incoming answers
may involve relatively expensive opera.tions. This "more continuous" flow of incoming

answers requires more polling operations and thus the associated overhead of entering

the protocol increases. Furthermore, the chance that an incoming page-fetch protocol

message interrupts the ma.ster while it is performing useful computation is significantly
increased. These two phenomena help to explain the slight increase in the elapsed times
for the inherently sequential operations as well.

After this analysis, it beca.me clear that our parallel algorithm would probably benefit

from the utilization of a RSM protocol, in which the modifications performed in the shared
memory are immediately broadcast to all the nodes. Since in Cashmere-2L the master
is the home node for all the shared pages, the broadcasts do not increase the incoming
traffic in the master's node. Furthermore, except in the cases where the number of slaves

is very small, the computation-time in the slaves is not as criticai as the master's. So a
little extra traffic on their side can't hurt performance significantly either {keep in mind
that the amount of data communicated is relatively small in this algorithm). On the other
hand, with RSM, all the data needed by the slaves is already in their caches whenever

they are awakened. This avoids the overhead of cache misses at the slave side and, more
important, avoids the interruption of the master when it is performing memory-intensive

sequential computation.
In fact, the results obtained with the RSM protocol, displayed in Figa. 2 and 3, show

the Comm and Synch times increase very slightly and the Verif and Probab times remain

237

virtually constant, as the number of slaves is increased (contrast these resulta with those

obtained for Cashmere-2L). With only a few slaves, RSM is inferior to Cashmere-2L be­

cause data that is communicated just inside a single node in the Jatter must be broadcast
in the former, generating a small but not negligible overhead. However, in these cases,

hardware coherence is the best solution anyway. With four or more slaves, RSM becomes

the most effective run-time system available for our parallel algorithm, achieving a max­

imal speedup of 4.44, with 18 processors. We must stress that at this configuration, the

maximum theoretical speedup possible given the serial fraction of the program is only

6.27 and most of the difference between tlüs and the speedup actually attained can be

explained by algorithmic limitations on the degree of parallelism available in the second

phase of the search.

6 Conclusion

It is well known that the greater levei of abstraction of shared memory {if compared to

message passing) reduces the complexity of implementing, debugging and maintaining

parallel applications. However, it is also believed that, in general, more abstract program­

ming modela entail bigger overheads in architectures that do not provide native support

for them. In this work we demonstrate that the trade-offs involved in the selection of

an ideal implementation environment for certain irregular applications can be quite more

complex than those captured by ''rules-<)f-thumb". The superiority of ali three shared

memory protocols tested with respect to Digital PVM shows that the intimate relation­

ship between algorithmic parallelization aspects such as the computation-eommunication

ratio and the intrinsic properties of the underlying architecture such as network topology,

bandwidth and latency can lead to quite unexpected resulta if proper care is not taken.

Even among the shared memory systems, the surprising superiority ofReflective Shared

Memory over Cashmere-2L is explained entirely by the fact that our parallel implemen­

tation is centralized in a unique master processor. Hence, Cashrnere-2L does not benefit

from any kind of clustering in the resulting communication patterns, and the extra traffic

generated by the broadcasts performed with Reflective Shared Memory does not interfere

too much with the critical path of the computation.

We would like to stress the fact that both parallel architectures and run- time systcms

are still in a process of quick evolution and even subtle changes in their implementation can

have a major impact on the performance of applications that use irregular algorithms such

as Probabilistic Search. Thus, careful empirical analysis such as the one presented here still

seems to be a strong requirement for obtaining satisfactory (e.g. real-time) performance
in these cases.

References

(1) R. A. Brooks. Symbolic reasoning among 3-D modela and 2-D images. Artificial
Intelligence, 17:285-348, 1981.

238

[2] R. B. Gillett. Memory channel network for PC!. IEEE Micro, pages 12-18, 1996.

[3] R. B. Gillett and R. Kaufmann. Experiente using the first-generation memory channel
for PCI network. Submitted for publication.

[4] E. Grimson and T. Lozano-Pérez. Localizing overlapping parts by searching the inter­

pretation tree. IEEE 7rans. on Pattem Analysís and Machíne Intellígence, 9:469-482,

1987.

[5] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operatíons

Research, 14:699-719, 1966.

[6] D. G. Lowe. Fitting parameterized thr~dimensional models to images. IEEE 1hms.

on Pattem Analysis and Machine Intelligence, 13(5):441-450, 1991.

[7] D. G. Lowe. Robust model-based motion tracking through the integration of search

and estimation. Intematíonal Joumal of Gomputer Vísíon, 8(2):113-122, 1992.

[8] R. Stets, S. Dwarkadas, N. Hardavellas, L. Kontothanassis G. Hunt, S. Parthasarathy,
and M.Scott. CASHMERE-2L: Software coherent shared memory on a clustered

remote-write network. In Proc. 16th Symposium on Operating Systems Principies,

1997.

[9] V. Sunderam. PVM: A framework for parallel and distributed computing. Goncur­

rency: Practíce and Experience, 4(2):315-339, 1990.

239

