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ABSTRACT 
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We present a new technique to support processor val idation and verification in 

absence of information when modeling reactive systems. Current processor validation 

techniques will not tolerate absence of information for some of its registers. In order to 

overcome this problem we combine symbolic simulation with temary logic simulation 

techniques. We exemplify our technique by simulating an Application Specific lnstruction 

Processor(ASIP) core with its embedded logic. 

1. INTRODUCTION 

One of lhe most important tasks during lhe designo f a processo r is its validation. 

Processors are becoming so complex that exhaustively verifying its implementation is 

impractical. Therefore, it is only feasible to test exhaustively a processor when thc 

number ofpossible states is small. For larger systems, the validation must bc confined to 

some portions of the system. This is usually the reason for known bugs found in 

industry, such as lhe Pentium bug that was found in the Floating Point Uni f, demanding 

Intel to replace millions ofprocessors already in the market[12]; and the bug described by 

Fujita et al[1], where a network coprocessor presented anomalous behavior after the chip 

was manufactured. 

One of lhe techniques used to verify a processor behavior is symbolic 

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any 

variablc may take. Examples ofverification tools using symbolic simulation can be found 
in Mur<p[6), SMY[8] and COSMOS[! I), and more recently in conjunction with proccss 

algebras[ l3][14] sue h as Circai[J 5] and CSP[ 16). Because this technique has a 

prohibitive complexity, commercial tools for processar validation and verification are 

based on temary logic instead. 
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Temary logic means a third unknown or indeterminate logic value (usually named 

X) is added to the binary logic set {0, I }. The third value X can be used to reduce the 

number o f cases o f the system to be tested[ I] by encapsulati ng values that are unknown o r 

indeterminate to the processor. Commercial simulators based on the languages VHDL[3] 

and V erilog HDL[4] support temary logic. Albeit its constant use for processor validation 

and verification, loosing information for some variables can invalidate completely the 

simulation. For example, consider the following skeleton for a processor behavioral 

simulator, where branches are handled based on an externai condition. 

IR = Mcm[PC]: 

switch (IR) { 

case branch : 

if(CC) 

PC = I'C +2; 

clsc 

PC = PC + offsct; 

Figure I. Handling branc/1 with Conditi011 Code 

In Figure I, let us consider CC as a condition code dependent o f an externai value. 

Therefore, CC can have one of the three values {O,I,X}, defined in the temary logic. 

Assume CC equals to X while the simulator fetches the next instruction. Since X 

represents an unknown value, the simulator cannot determine the next value for the PC 

register. As a result, the simulation will become invalid because the s imulator wil l 

propagate X to the memory and to the ali registers of the processor, making the 

simulation results useless. 

This paper presents a mechanism to support processor validation in presence of 

indetem1inate states or input values, as defined in temary logic. For such models, some 

rc:gisters of the processor cannot tolerate the loss of information, such as the PC in the 

previous example. These registers will be treated symbolically. As we are going to show 

!ater, this method can be very useful for the s imulation of reactive systems implemented 

by processor cores with surrounding logic, where the logic simulation may generatc 

indetem1inate states to the processor during the simulation, and the processor must 

process them appropriately. 
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Figure 2 presents one o f the properties o f reactive systems that we want to verify. 

Given a state SI, the system stays in this state until the occurrence o f an event ev, which 

changes the system's state to S2. For such systems, we are going to show that the 

simulation converges to a valid state even in absence o f information for some time. 

wait wait 

ev/process 

Figure 2. Reactive System Model 

This paper is organized as follows. In Section 2, wc provide a mathematical 

background, important to understand the concepts used in the rest of the paper. We 

introduce a new technique that can be used to verify processor-based systems in Section 

3. An example is presented in Section 4 to illustrate the application of the proposed 

approach. Finally, Section 5 concludes the paper and suggests some future work. 

2. MATHEMATICAL BACKGROUND 

We present in this section a brief summary on the theory of poseis and how they 

can be used for dealing with absence of information in processor-based systems 

according to definitions presented in [I )[5]. 

We denote sets by A and B and individual elements of the sets by a and b. The 

caf·tesia n product A x B o f the two sets A and B is thc set o f ali ordered pai rs (a, b ), 

where a E A and b E B. A binary relation on a set Bis any subset o f B x B. Let R be 

a binary relation on B, i.e., R ç; B x B. We say that R is reflexive if and only if (iff) 

aRa for ali aE B. Similarly, Ris antisymm etric iff aRb and bRa implics a = b for ali 

a, b E B. Finally, Ris transitive iff aRb and bRc implies aRe for ali a, b, c E B. A 

binary relation on B which is reflexive, antisymmetric, and transitive is called a partia/ 

ordered on B. 
A posei (partially ordered-set) is an ordered pai r (S, ç ), where S is a sct and ç is 

a partia! order on S. Intuitively, we will view a partia I order as ordering the values by their 

"information content". That is, elements less than others "contain less information". 
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I f (S, !; ) is a posei, A !; S, and b E S, then b is a lower bound o f A iff b!; a for 

ali a E A. A lower bound a of A is called grealest lower bound of A, written glb(A), iff 

b!; a for every lower bound b o f A. The concept o f upper bound and least upper bound 

of A , written lub(A), are defined dually. If A = {a,b}, we will write glb(a,b)(lub(a,b)) 

rather than glb({a,b})(lub({a,b})). Clearly, if glb(A) exists, it is unique, and the samc 

holds for lub(A). 

Mapping f A~B consists of a function f assigning an element b from thc 

codomain B to each elemcnt a o f its domain A, written as b =f{ a). 

Givcn a poset (S, !; ) and mappingf: s~s. we say thatfis monolone iff 

a !; b => .f{ a) !; .f{b) 

This monotonicity definition is consistent with ou r use o f information content. I f a 

mapping is monotonc, we cannot "gain" any information by reducing the information 

content ofthe arguments to the function. 

Wc can apply the concept o f partia/ ordered sei to r ={ O, I ,X} in order to 

fom1alize the concept o f unknown value. Assuming the partial order ~ on r as a~a for ali 

aE r , X ~O and X ~ I, we can show in Fig. 3 the H asse diagram o f partia! order. 

0 I 

~ I 
X 

Figure 3. Thc :s; partia! arder 

We can extcnd the theory oftemary logic in digital circuits to word-level systems 

by the following definitions. 

Definition I : Assume a word can take the vai ucs in the set A = { ()(0, <X 1• ()(1 , ... 

<X ... 1}, where n is the num ber o f thc clcmcnts on A. A partial ordering representing the 

absence of information can be defined in the fol lowing way. For ali <X; E A, <X;~ <X; 

an(l X~ <X;. 
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O I 2 .. 5 6 7 S ...... n 

~JI/ 
X 

Figure 4. The :!> panial order on A 

In Figure 4, we present the partia! order for A = (O, 1, 2, ... , n}. In this figure, we 

can see that glb(a;, <Xj) = X i f i *- j, implying that i f two different values are possible for 

a single variable, the variable looses its infonnation content. The accuracy for 

information loss can be improved by the following definition. 

Definition 2 : Consider a set B = (l3o, ~~ . ~2···· ~n·d where n is the number of the 

elements on B and each p; can be represented by the binary encoding rm.irm.1.; ••• r0,;, rk.i 

e ( 0,1} . For each rk,í , rt,í S rt,; and X Srt,;, for k e [O,m]. 

For example, assume we represent each number o f the set B = (O, 1, 2, 3} with 

two bits, i.e, ~o = 00, P1 = 01 , P2 = 10, PJ = 11. 

O I 2 3 
00 OI 10 11 

\~X')(~ 
OX XO XI IX 

~\j/ 
Figure 5. The :!> panial order on B 

In Figure 5, we can see that the greatest lower bound of B is given as following: 

In Definition 2, the concept of partial-order applied to elements in set B on bit

levei generates new elements containing less infonnation than original numbers. We can 

see that in some elements there are some bits with less infonnation than others. In this 

case, the "content infonnation" of the elements diminishes gradually. 
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These definitions are useful when modeling incompletely-specified systems. In 

the next section, we show an approach in order to allow symbolic simulation of portions 

ofprocessors in ternary based simulators. 

3. PROCESSOR SYMBOLIC SIMULATION WITH TERNARY LOGIC 

In the first section, we presented two known approaches used to simulate 

processors. The symbolic simulation is very powerful because each symbolic variable 

represents a set o f di fferent conditions to the processor. However, it becomes prohibitive 

dueto its complexity for larger systems. 

On thc other hand, ternary logic simulation can cover many conditions of the 

system, though it becomes impractical in some cases because the simulator cannot 

tolerate loss o f information for some o f the variables during the simulation. Once there is 

a loss o f information, the system monotonically propagates this loss. 

Considering the advantages ofthese techniques, we developed a simulator for the 

validation of processor-based systems mixing symbolic simulation with ternary logic. 

The registers and the memory are simulated according to the ternary logic that makes the 

simulation feasible by allowing loss of information. The Program Counter (PC) is 

simulated using symbolic tcchniques, since it is a criticai registcr and cannot tolerate the 

loss o f information. Thus, the state o f the program bcing exccuted is dependent on the 

PC, i.e. we must maintain the current state ofthe program being simulated in terms of its 

internai registers and memory for each PC. 

In order to exemplify the simulator behavior, assume the following assembly code 

for some hypothetical RISC machine: 

PC Assembly Code 

100 ld ri ,O(r2) 

110 jf.ext 120 

111 add r l,r2,r3 

112 ldi r3,114 

120 sub r2,r4,rl 

Table I. Assembly Sample Code 

On address li O, the jf.ext represents a branch i f an externai condition ext is false. 

The other instructions belong to common RISC instruction sets, as given by[IO]. 
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When PC = 11 O, we fínd the branch instruction defíned previously. Ifthe condition 

ext is unknown, the simulator forks its state into two parts as follows. 

PC = 110 (jf.cxt 120) 

valuc 

... .. . 
regsfll -3 

re_g~21 X 

... ... 
regs[4] 2 

... .. . 
ext X 

PC = 111 (add rl ,r2,r3) PC= 120 (sub r2,r4,rl ) 

valuc va luc 

.. . .. . ... . .. 
regsfll X regsfll -3 

regsf21 X regs[2) 5 
.. . ... . .. . .. 

regsf41 2 regsf41 2 

... ... ... . .. 

Figure 6. Forking Statcs 

Figure 6 presents a partia! snapshot ofthe state following the execution ofthe code 

when PC = 11 O. Assume that regs represents the set o f general-purpose registers o f the 

processar core and that the externai input ext has an undefíned value prior the execution o f 

the branch instruction. In addition, below each box labeled by the PC, we present the 

partia! state after the instruction was executed. In this figure, we see that when instruction 

labeled by PC= 111 is executed, the values for regs[/] and regs[2] becomes undefíned. 

Nonetheless, when the instruction labeled by PC= 120 is executed, regs[l} and regs[2} 

have defíned values. 

The simulation continues in these two ways regardless of each other. The forking 

situation can occur whenever the decision to be made by the processar is indeterminate. 

The simulation system increases its reliability since more information about each possible 
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state is available. We discuss how this infonnation can affect the behavior of the system 
in the next two subsections. 

3.1 Visibility of Symbolic Simulations in Ternary Environments 

Symbolic simulations in ternary environments means that the system behaves as 

a ternary model externally. However, in the core simulator there may be many states 

being simulated. The Figure 7 illustrates this model. 

~ Symbolic & Temary ~ 
~ Simulation ~ 

Figure 7. Simulation Environment 

In this way, symbolic sirnulation is transparent to the ternary environment. In the 

previous example, a snapshot of the processor simulation can be found in Figure 7. 

In this simulation, we can maintain lhe externai visibility of each processor state 

by reducing the information content of the state for ali PCs being simulated in any 

cycle .. This can be achieved if we apply glb(state[PC1], ... ,state[PCnD· 

Let us consider Figure 8, for example. The processor flags is externally 

indeterminate since it assumes different values for flagspc=111 andflagspc=120• Note also 

that the value for regs[4] is determinate, since it has a value 2 regardless of the PC 

value. From this externai visibility, we can obtain information of the state of the system 

tracing the simulation step by step and verifying its correctness. 
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I Internai statc I I Internai state I 
PC = 111 PC= 120 

valuc valuc 

... ... ... ... 
rcgs[4] 2 rc!!s[4] 2 

... ... ... . .. 
tl:t!!S 3 llags 2 

~ ~ 
Externai visibility I 

valuc 

... . .. 
rc!!s[4J 2 

... ... 
llaus X 

Figure 8. Snapshot and Externai Visibility 

As mentioned beforc, intcmally wc have a symbolic simulation for the PC. This 

approach has a constraint when considcring the possiblc number of forks that may be 

generated by the third unknown logic value. In the next subscction, we show a 

mechanism used to overcome this problem. 

3.2 LIMITING THE EXPONETIAL COMPLEXITY OF SYMBOLIC 

SIMULA TIONS 

Symbolic simulation is based on uni que coding for variables rathcr than on actual 

values for the design under simulation. Thus, it is possible to simulate entirc classes of 

valucs in a single run. In largc systcms, this approach may be cxpensive due to its 

cxponential complcxity. In such cases, it would be important to find a way to rcduce this 

complexity. 

We can minimize lhe number of cases to simulate by reducing the infonnation 

contcnt when different statcs exist for a single PC. In this case, wc use intemally lhe glb 

function to collapse the states. Figure 9 presents a snapshot wherc two diffcrcnt statcs 

appear for a single PC. 
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I 
PC= 111 

I 
PC= 120 

000 000 

I i 

I 
t 

I 
PC= 112 PC= 121 

o o 000 

l I 
PC= IIJ PC: II J 

valuc va luc 

000 00 0 00 0 00 0 

I'C!!&n_ X n:l!s[2] 5 

... ... ... ... 
mcm[I OO] 2 mcm[ IOO] 2 

il lii!S 3 illi i!S X 

~ / 
PC = 113 

valuc 

... ... 

I'C!!SI21 X 

.. . . .. 

mcmiiOOI 2 

lla!!s X 

Figure 'J. Snapshot and Interna i Visihility 

By restricting the number o f cases to be simulated to lhe differenl PCs that may be 

alive at any time, we constmin the simulation time to at most the ROM (code) size on 

each cycleo 

In the next section we provide an example of applications running on a simulator 

which uses the techniques proposcd carl iero 

4. SIMULATION OF APPLICATION-SPECIFIC INSTRUCTION 

PROCESSORS (ASIPs) 

We devcloped a prototype using a 16-bit RISC core to test the ideas presented in 

this paper. We present an ASIP in which a data-acquisition system is embedded into the 

architecture as followso 
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Lo: jf.ln Lo 
ldi RI, 8000 
ldi R2,1 
sw R2,(RI) 

ldi R2,0 
sw R2,(RI) 
jmp Lo 

Data 

In 
xxxo ... 0111. .. 

done 

ND 
Converter 

Data acquisition module 

Figure 10. Co-Simulation of HW/SW for ASIP 

In Figure I O, we can see that the simulator controls the data-acquisition by setting 

the ready port in the A/D converter. The core reads and process the value on Data port 

when In port is set by A/D converter. As a result, the Out port is set or not depending on 

the data processing performed by the simulator. 

Allowing the presence of undefined values, e.g X, we can verify and validate the 

HW/SW and propagate accordingly X value from the logic simulation into the processor 

using our technique. For example, assume the RISC assembly sample used to process 

data from the data acquisition module is given by the code on the left portion of Figure 

I O, and that PC is set initially to Lo. Also, consider the address o f Out port as 8000 

initially set to O and a value X coming into the core via the externai input In port for 3 

cycles (representing for example that it may take from I to 3 cycles to complete a data 

conversion). Applying symbolic simulation to the PC register according to the ideas 

presented in Section 3, we can see that the simulation continues normally and after some 

time, the value on the Out port will have a defined value again. Thus, we can verify and 

validate the processor in absence ofinformation regardless of the value that is propagated 

to the PC register in the processo r core. 

S. CONCLUSIONS 

Due to its complexity, the validation ofprocessors is a hard task and may demand 

as much effort as the design itself. Usual techniques for validation are based on symbolic 

simulation or temary logic simulation. The former is prohibitive in larger systems due to 

its complexity. The I ater easily propagates wrong values in absence o f information. 
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We proposed a new technique useful for validating a processor core architcclures 

where additional logic is addcd lo lhe processor. This approach lakes advanlage o f mixing 

symbolic s imulalion and lernary logic techniques to improve thc accumcy of simulation 

results in absence o f informalion. 

For future work, we intend to exlend lhis tcchnique to verify quanlified temporal 

asset1ions on a specification. Also, we intend to investigalc a mcchanism to automatically 

identify variablcs that must be symbolically s imulated. 
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