
Mixing Symbolic and Ternary Simulation Techniques for the
Verification o f Processor-Based Systems

Flávio Miana·1

miana@cpdee.ufmg.br

Patricia Nattrodf2

patty@dcc.ufmg.b
Julio Cezar de Meto·1

demelo@cpdec.u fmg.br

Antônio O. Femandes·2

otavio@dcc.ufmg.br

ABSTRACT

Claudionor N. Coelho Jr"2

coelho@dcc.ufmg.br

We present a new technique to support processor val idation and verification in

absence of information when modeling reactive systems. Current processor validation

techniques will not tolerate absence of information for some of its registers. In order to

overcome this problem we combine symbolic simulation with temary logic simulation

techniques. We exemplify our technique by simulating an Application Specific lnstruction

Processor(ASIP) core with its embedded logic.

1. INTRODUCTION

One of lhe most important tasks during lhe designo f a processo r is its validation.

Processors are becoming so complex that exhaustively verifying its implementation is

impractical. Therefore, it is only feasible to test exhaustively a processor when thc

number ofpossible states is small. For larger systems, the validation must bc confined to

some portions of the system. This is usually the reason for known bugs found in

industry, such as lhe Pentium bug that was found in the Floating Point Uni f, demanding

Intel to replace millions ofprocessors already in the market[12]; and the bug described by

Fujita et al[1], where a network coprocessor presented anomalous behavior after the chip

was manufactured.

One of lhe techniques used to verify a processor behavior is symbolic

simulation[2][8]. In symbolic simulation, we uniquely represent the sets of values any

variablc may take. Examples ofverification tools using symbolic simulation can be found
in Mur<p[6), SMY[8] and COSMOS[! I), and more recently in conjunction with proccss

algebras[l3][14] sue h as Circai[J 5] and CSP[16). Because this technique has a

prohibitive complexity, commercial tools for processar validation and verification are

based on temary logic instead.

~Eiectrical Engineering Departmcnt - Federal University of Minas Gerais - Brazil
·, Çomputer Scicnce Dcpartment - Federal University o f Minas Gerais- Brazil

241

Temary logic means a third unknown or indeterminate logic value (usually named

X) is added to the binary logic set {0, I }. The third value X can be used to reduce the

number o f cases o f the system to be tested[I] by encapsulati ng values that are unknown o r

indeterminate to the processor. Commercial simulators based on the languages VHDL[3]

and V erilog HDL[4] support temary logic. Albeit its constant use for processor validation

and verification, loosing information for some variables can invalidate completely the

simulation. For example, consider the following skeleton for a processor behavioral

simulator, where branches are handled based on an externai condition.

IR = Mcm[PC]:

switch (IR) {

case branch :

if(CC)

PC = I'C +2;

clsc

PC = PC + offsct;

Figure I. Handling branc/1 with Conditi011 Code

In Figure I, let us consider CC as a condition code dependent o f an externai value.

Therefore, CC can have one of the three values {O,I,X}, defined in the temary logic.

Assume CC equals to X while the simulator fetches the next instruction. Since X

represents an unknown value, the simulator cannot determine the next value for the PC

register. As a result, the simulation will become invalid because the s imulator wil l

propagate X to the memory and to the ali registers of the processor, making the

simulation results useless.

This paper presents a mechanism to support processor validation in presence of

indetem1inate states or input values, as defined in temary logic. For such models, some

rc:gisters of the processor cannot tolerate the loss of information, such as the PC in the

previous example. These registers will be treated symbolically. As we are going to show

!ater, this method can be very useful for the s imulation of reactive systems implemented

by processor cores with surrounding logic, where the logic simulation may generatc

indetem1inate states to the processor during the simulation, and the processor must

process them appropriately.

242

Figure 2 presents one o f the properties o f reactive systems that we want to verify.

Given a state SI, the system stays in this state until the occurrence o f an event ev, which

changes the system's state to S2. For such systems, we are going to show that the

simulation converges to a valid state even in absence o f information for some time.

wait wait

ev/process

Figure 2. Reactive System Model

This paper is organized as follows. In Section 2, wc provide a mathematical

background, important to understand the concepts used in the rest of the paper. We

introduce a new technique that can be used to verify processor-based systems in Section

3. An example is presented in Section 4 to illustrate the application of the proposed

approach. Finally, Section 5 concludes the paper and suggests some future work.

2. MATHEMATICAL BACKGROUND

We present in this section a brief summary on the theory of poseis and how they

can be used for dealing with absence of information in processor-based systems

according to definitions presented in [I)[5].

We denote sets by A and B and individual elements of the sets by a and b. The

caf·tesia n product A x B o f the two sets A and B is thc set o f ali ordered pai rs (a, b),

where a E A and b E B. A binary relation on a set Bis any subset o f B x B. Let R be

a binary relation on B, i.e., R ç; B x B. We say that R is reflexive if and only if (iff)

aRa for ali aE B. Similarly, Ris antisymm etric iff aRb and bRa implics a = b for ali

a, b E B. Finally, Ris transitive iff aRb and bRc implies aRe for ali a, b, c E B. A

binary relation on B which is reflexive, antisymmetric, and transitive is called a partia/

ordered on B.
A posei (partially ordered-set) is an ordered pai r (S, ç), where S is a sct and ç is

a partia! order on S. Intuitively, we will view a partia I order as ordering the values by their

"information content". That is, elements less than others "contain less information".

243

I f (S, !;) is a posei, A !; S, and b E S, then b is a lower bound o f A iff b!; a for

ali a E A. A lower bound a of A is called grealest lower bound of A, written glb(A), iff

b!; a for every lower bound b o f A. The concept o f upper bound and least upper bound

of A , written lub(A), are defined dually. If A = {a,b}, we will write glb(a,b)(lub(a,b))

rather than glb({a,b})(lub({a,b})). Clearly, if glb(A) exists, it is unique, and the samc

holds for lub(A).

Mapping f A~B consists of a function f assigning an element b from thc

codomain B to each elemcnt a o f its domain A, written as b =f{ a).

Givcn a poset (S, !;) and mappingf: s~s. we say thatfis monolone iff

a !; b => .f{ a) !; .f{b)

This monotonicity definition is consistent with ou r use o f information content. I f a

mapping is monotonc, we cannot "gain" any information by reducing the information

content ofthe arguments to the function.

Wc can apply the concept o f partia/ ordered sei to r ={ O, I ,X} in order to

fom1alize the concept o f unknown value. Assuming the partial order ~ on r as a~a for ali

aE r , X ~O and X ~ I, we can show in Fig. 3 the H asse diagram o f partia! order.

0 I

~ I
X

Figure 3. Thc :s; partia! arder

We can extcnd the theory oftemary logic in digital circuits to word-level systems

by the following definitions.

Definition I : Assume a word can take the vai ucs in the set A = { ()(0, <X 1• ()(1 , ...

<X ... 1}, where n is the num ber o f thc clcmcnts on A. A partial ordering representing the

absence of information can be defined in the fol lowing way. For ali <X; E A, <X;~ <X;

an(l X~ <X;.

244

O I 2 .. 5 6 7 S n

~JI/
X

Figure 4. The :!> panial order on A

In Figure 4, we present the partia! order for A = (O, 1, 2, ... , n}. In this figure, we

can see that glb(a;, <Xj) = X i f i *- j, implying that i f two different values are possible for

a single variable, the variable looses its infonnation content. The accuracy for

information loss can be improved by the following definition.

Definition 2 : Consider a set B = (l3o, ~~ . ~2···· ~n·d where n is the number of the

elements on B and each p; can be represented by the binary encoding rm.irm.1.; ••• r0,;, rk.i

e (0,1} . For each rk,í , rt,í S rt,; and X Srt,;, for k e [O,m].

For example, assume we represent each number o f the set B = (O, 1, 2, 3} with

two bits, i.e, ~o = 00, P1 = 01 , P2 = 10, PJ = 11.

O I 2 3
00 OI 10 11

\~X')(~
OX XO XI IX

~\j/
Figure 5. The :!> panial order on B

In Figure 5, we can see that the greatest lower bound of B is given as following:

In Definition 2, the concept of partial-order applied to elements in set B on bit

levei generates new elements containing less infonnation than original numbers. We can

see that in some elements there are some bits with less infonnation than others. In this

case, the "content infonnation" of the elements diminishes gradually.

245

These definitions are useful when modeling incompletely-specified systems. In

the next section, we show an approach in order to allow symbolic simulation of portions

ofprocessors in ternary based simulators.

3. PROCESSOR SYMBOLIC SIMULATION WITH TERNARY LOGIC

In the first section, we presented two known approaches used to simulate

processors. The symbolic simulation is very powerful because each symbolic variable

represents a set o f di fferent conditions to the processor. However, it becomes prohibitive

dueto its complexity for larger systems.

On thc other hand, ternary logic simulation can cover many conditions of the

system, though it becomes impractical in some cases because the simulator cannot

tolerate loss o f information for some o f the variables during the simulation. Once there is

a loss o f information, the system monotonically propagates this loss.

Considering the advantages ofthese techniques, we developed a simulator for the

validation of processor-based systems mixing symbolic simulation with ternary logic.

The registers and the memory are simulated according to the ternary logic that makes the

simulation feasible by allowing loss of information. The Program Counter (PC) is

simulated using symbolic tcchniques, since it is a criticai registcr and cannot tolerate the

loss o f information. Thus, the state o f the program bcing exccuted is dependent on the

PC, i.e. we must maintain the current state ofthe program being simulated in terms of its

internai registers and memory for each PC.

In order to exemplify the simulator behavior, assume the following assembly code

for some hypothetical RISC machine:

PC Assembly Code

100 ld ri ,O(r2)

110 jf.ext 120

111 add r l,r2,r3

112 ldi r3,114

120 sub r2,r4,rl

Table I. Assembly Sample Code

On address li O, the jf.ext represents a branch i f an externai condition ext is false.

The other instructions belong to common RISC instruction sets, as given by[IO].

246

When PC = 11 O, we fínd the branch instruction defíned previously. Ifthe condition

ext is unknown, the simulator forks its state into two parts as follows.

PC = 110 (jf.cxt 120)

valuc

... .. .
regsfll -3

re_g~21 X

... ...
regs[4] 2

... .. .
ext X

PC = 111 (add rl ,r2,r3) PC= 120 (sub r2,r4,rl)

valuc va luc

..
regsfll X regsfll -3

regsf21 X regs[2) 5
..

regsf41 2 regsf41 2

...

Figure 6. Forking Statcs

Figure 6 presents a partia! snapshot ofthe state following the execution ofthe code

when PC = 11 O. Assume that regs represents the set o f general-purpose registers o f the

processar core and that the externai input ext has an undefíned value prior the execution o f

the branch instruction. In addition, below each box labeled by the PC, we present the

partia! state after the instruction was executed. In this figure, we see that when instruction

labeled by PC= 111 is executed, the values for regs[/] and regs[2] becomes undefíned.

Nonetheless, when the instruction labeled by PC= 120 is executed, regs[l} and regs[2}

have defíned values.

The simulation continues in these two ways regardless of each other. The forking

situation can occur whenever the decision to be made by the processar is indeterminate.

The simulation system increases its reliability since more information about each possible

247

state is available. We discuss how this infonnation can affect the behavior of the system
in the next two subsections.

3.1 Visibility of Symbolic Simulations in Ternary Environments

Symbolic simulations in ternary environments means that the system behaves as

a ternary model externally. However, in the core simulator there may be many states

being simulated. The Figure 7 illustrates this model.

~ Symbolic & Temary ~
~ Simulation ~

Figure 7. Simulation Environment

In this way, symbolic sirnulation is transparent to the ternary environment. In the

previous example, a snapshot of the processor simulation can be found in Figure 7.

In this simulation, we can maintain lhe externai visibility of each processor state

by reducing the information content of the state for ali PCs being simulated in any

cycle .. This can be achieved if we apply glb(state[PC1], ... ,state[PCnD·

Let us consider Figure 8, for example. The processor flags is externally

indeterminate since it assumes different values for flagspc=111 andflagspc=120• Note also

that the value for regs[4] is determinate, since it has a value 2 regardless of the PC

value. From this externai visibility, we can obtain information of the state of the system

tracing the simulation step by step and verifying its correctness.

248

I Internai statc I I Internai state I
PC = 111 PC= 120

valuc valuc

...
rcgs[4] 2 rc!!s[4] 2

...
tl:t!!S 3 llags 2

~ ~
Externai visibility I

valuc

... . ..
rc!!s[4J 2

... ...
llaus X

Figure 8. Snapshot and Externai Visibility

As mentioned beforc, intcmally wc have a symbolic simulation for the PC. This

approach has a constraint when considcring the possiblc number of forks that may be

generated by the third unknown logic value. In the next subscction, we show a

mechanism used to overcome this problem.

3.2 LIMITING THE EXPONETIAL COMPLEXITY OF SYMBOLIC

SIMULA TIONS

Symbolic simulation is based on uni que coding for variables rathcr than on actual

values for the design under simulation. Thus, it is possible to simulate entirc classes of

valucs in a single run. In largc systcms, this approach may be cxpensive due to its

cxponential complcxity. In such cases, it would be important to find a way to rcduce this

complexity.

We can minimize lhe number of cases to simulate by reducing the infonnation

contcnt when different statcs exist for a single PC. In this case, wc use intemally lhe glb

function to collapse the states. Figure 9 presents a snapshot wherc two diffcrcnt statcs

appear for a single PC.

249

I
PC= 111

I
PC= 120

000 000

I i

I
t

I
PC= 112 PC= 121

o o 000

l I
PC= IIJ PC: II J

valuc va luc

000 00 0 00 0 00 0

I'C!!&n_ X n:l!s[2] 5

...
mcm[I OO] 2 mcm[IOO] 2

il lii!S 3 illi i!S X

~ /
PC = 113

valuc

... ...

I'C!!SI21 X

..

mcmiiOOI 2

lla!!s X

Figure 'J. Snapshot and Interna i Visihility

By restricting the number o f cases to be simulated to lhe differenl PCs that may be

alive at any time, we constmin the simulation time to at most the ROM (code) size on

each cycleo

In the next section we provide an example of applications running on a simulator

which uses the techniques proposcd carl iero

4. SIMULATION OF APPLICATION-SPECIFIC INSTRUCTION

PROCESSORS (ASIPs)

We devcloped a prototype using a 16-bit RISC core to test the ideas presented in

this paper. We present an ASIP in which a data-acquisition system is embedded into the

architecture as followso

250

Lo: jf.ln Lo
ldi RI, 8000
ldi R2,1
sw R2,(RI)

ldi R2,0
sw R2,(RI)
jmp Lo

Data

In
xxxo ... 0111. ..

done

ND
Converter

Data acquisition module

Figure 10. Co-Simulation of HW/SW for ASIP

In Figure I O, we can see that the simulator controls the data-acquisition by setting

the ready port in the A/D converter. The core reads and process the value on Data port

when In port is set by A/D converter. As a result, the Out port is set or not depending on

the data processing performed by the simulator.

Allowing the presence of undefined values, e.g X, we can verify and validate the

HW/SW and propagate accordingly X value from the logic simulation into the processor

using our technique. For example, assume the RISC assembly sample used to process

data from the data acquisition module is given by the code on the left portion of Figure

I O, and that PC is set initially to Lo. Also, consider the address o f Out port as 8000

initially set to O and a value X coming into the core via the externai input In port for 3

cycles (representing for example that it may take from I to 3 cycles to complete a data

conversion). Applying symbolic simulation to the PC register according to the ideas

presented in Section 3, we can see that the simulation continues normally and after some

time, the value on the Out port will have a defined value again. Thus, we can verify and

validate the processor in absence ofinformation regardless of the value that is propagated

to the PC register in the processo r core.

S. CONCLUSIONS

Due to its complexity, the validation ofprocessors is a hard task and may demand

as much effort as the design itself. Usual techniques for validation are based on symbolic

simulation or temary logic simulation. The former is prohibitive in larger systems due to

its complexity. The I ater easily propagates wrong values in absence o f information.

251

We proposed a new technique useful for validating a processor core architcclures

where additional logic is addcd lo lhe processor. This approach lakes advanlage o f mixing

symbolic s imulalion and lernary logic techniques to improve thc accumcy of simulation

results in absence o f informalion.

For future work, we intend to exlend lhis tcchnique to verify quanlified temporal

asset1ions on a specification. Also, we intend to investigalc a mcchanism to automatically

identify variablcs that must be symbolically s imulated.

6. REFERENCES

[I] C. H. Scgcr and R. E. Bryant. Formal v,•r{/ication /~v .~)'lltbolic El'(t/uatimt 1!(Partia/(v
Ordered Trajectories. Tcchnical Rcpon 93-0H, Dcpanmcnt of Computcr Scicncc,
Univcrsity of British Columbia. July 1993.

[2] R. E. Bryanl. !J:wnholic /mo/ean m1mipulation ll"ith ordered bimu:1•-decision diagrams. ACM
Computing Survcys, pagcs 293-31 H. Scptcmbcr 1992.

[3] R. Lipsctt. C. Schacfcr and C. Usscry. VI/DI. : l/ard1rare Description m11/ Design. Kluwcr
Acadcmic Publishcrs, 1989.

(4] D. E. Thomas and P. R. Moorby. Tlw Verilog hardll"are description language. Kluwcr
Acadcmic Publ ishcrs, 199 I.

(5] B. A. Davcy and H. A. Pricstlcy. lntroduction to l.allices m11/ Order Cambridgc Univcrsity
Prcss, 1994.

[6] D. L. Dill , A. J. Drcxlcr, A. J. Hu and C. H Yang. Pro/oco/ Verijication as a Hardll"are
Design Aid. ICCD,I992.

[7] Fujita ct ai. /Jug hlelll{/ication l!(a Ueal Cllip Design /~,, S.Fmbolic Model Checking. EDAC,
1994.

[8] J. R. Burch, E. M. Clarkc, D. E. Long. K. L. McMi llan and D. L. Dill. ~:l'luholic Mmlel

CheckingJiw Sequem ia/ Circuit Ver!fictllion. IEEE Transaction on Computcr-Aidcd
Dcsign of lntcgratcd Circuits and Systcms, V oi. 13. No. 4, April 1994.

(9] D. L. Bcatty. A Metlwdo/o~l' Jiw Formal 1/ardll"are Ver(/ication with Application to
Micropocessors. PhD thcsis, Carncgic-Mcllon Univcrsity, 1993.

[I O] D. A. Pattcrson and J. L. Hcnncssy. Compu ter Ardtilecture: A Qu<mlitatil•e Approac/1.
Morgan Kaufmann Publishcrs, lnc., l996.

[li] D. L. Bcatty, K. Bracc, R. E. Randal, Kycongsoon Cho, and Lawrcncc Huang. User 's guie/e

to COSMOS: a compiled simulator Jiw MOS circuits. Computcr Scicncc Dcpanmcnt,
Carncgic-Mcllon Univcrsity. Octobcr, 1987

[12] V. R. Pratt, Pentium Ueport # bug l , Dcpanmcnt of Compu ter Scicncc, Stanford Univcrsity,
1994.

[13] M inc. G .. Formal SjJec{/ication mui l'er(/ication l!(digillll systems, McGraw-Hill. 1994
[14] A. Gupta, 1-iwma/ 1/ardll"are Ver{fication Metlmds: A Surw:y, Formal Mcthods in Systcm

Dcsign. Volt.. No 2/3,1992, pp.I5 1-23H
[1 5] G. J. Milnc, Circal and the representation 1!/"comlllllllimtion. concurrency w11/time. ACM

Trans. on Programming Languagcs and Systcms, 7(2), 19!!5.
(1 6] C.A.R. Hoarc, Collummicating Sequential Processes, Prcnticc Hall lntcmational Scrics in

Computcr Scicncc, 19!!5.

252

