
Estimated and Observed Performance of Heuristic Algorithrns for
Task Scheduling on Heterogeneous Processors*

J .P.W. Kitajima

Departamento de Ciência da Computação

Universidade Federal de Minas Gerais

Caixa Postal 702

30123-970 Belo Horizonte - MG

{kita@dcc.ufmg.br}

S.C.S. Porto

Computação Aplicada e Automação

Universidade Federal Fluminense

Rua Passo da Pátria 156

24210-240 Niteói - RJ

{ stella@caa. uff.br}

Abstract - Parallel applications with regular and well-known behavior, where task execution

time estimates are fairly reliable, are suited to static task scheduling (in opposition to dynamic

scheduling, performed during the execution of the application). This is the case of many par

aliei scientific applications. Task scheduling on a heterogeneous environment, where processors

present different processing speeds, is even more complex than on a homogeneous one. Static task

scheduling is, thus, performed based on estimated data about the parallel application and the

system architecture, and has long taken a heuristic approach. Therefore, a realistic performance

evaluation of a task scheduling algorithm can only be fully accomplished if practical results are

also considered. In this sense, the present work analyzes the quality of greedy and tabu search

task scheduling algorithrns comparing estimated deterministic results with the actual observed

makespan of several parallel synthetic applications executing on real parallel machines following

the static schedule previously determined.

Resumo - Aplicações paralelas com um comportamento regular e bem conhecido, onde as

estimativas dos tempos de execução de tarefas são bastante razoáveis, adequam-se bem ao escalo

namento estático (em oposição ao escalonamento dinâmico, realizado durante a execução da aplica

ção) . Este é o caso de várias aplicações científicas paralelas. O escalonamento de tarefas em um

ambiente heterogêneo, onde os processadores apresentam capacidades diferentes de processamento,

é ainda mais complexo do que em um ambiente homogêneo. Escalonamento estático de tarefas

baseia-se em dados estimados sobre a aplicação paralela e a arquitetura do sistema e tem recebido

freqüentemente um enfoque heurístico. Por isso, uma avaliação de desempenho realística de um

algoritmo de escalonamento de tarefas poderá apenas ser completamente realizado se resultados

práticos também forem considerados. Neste sentido, o presente trabalho analisa a qualidade de dois

algoritmos de escalonamento, um heurístico de construção e outro baseado na metaheurística de

busca tabu. Esta análise compara resultados determinísticos com resultados observados do tempo

de execução de diversas aplicações paralelas sintéticas em máquinas paralelas reais de acordo com

o escalonamento previámente obtido.

•This work has been accomplished thanks to the financiai support from CNPq agency. The com
putational experiments were performed using the IBM SP machine available at the LMC/IMAG
laboratory, Grenoble, Francc.

253

1 Introduction

Task scheduling is one of the most challenging problems in parallel and distributed
computing, and is known to be NP-hard [5]. Scheduling algorithms have long taken
a heuristic approach. An important argument in favor of the use of heuristics is that
optimization is usually performed over a model of a real world problem. There is no
guarantee that the best solution for this model is also the best solution for the asso
ciated real world problem [15]. Obviously, truly exact models are not possible, but
heuristics are generally more flexible and capable of better manipulating objective
functions or complex constraints than exact algorithms. This is the case of methods
such as simulated annealing, tabu search and genetic algorithms, for example, where
objective functions do not rely on simplifying linearity premises. Hence, heuristics
allow more precise and elaborate models than those used by exact algorithms [15].

Parallel applications with regular and well-known behavior, where task execution
time estimates are fairly reliable, are suited to static task scheduling (in opposition
to dynamic scheduling, performed during the execution of the application). This
is the case of a great majority of scientific applications. For these applications,
the static scheduling algorithm is executed once, before the execution of the par
allel program, which is then actually ruo severa! times according to the previously
obtained schedule. Consequently, even i f the scheduling algorithm is a costly proce
dure, this cost will be amortized throughout the numerous executions of the parallel
application, i.e. the obtained schedule is re-applied repeatedly.

Processar heterogeneity, here represented by processors with different processing
speeds, has already demonstrated the potentiality in reducing the performance
degradation resulting from the execution of the inherent serial fractions of the par
aliei application on a homogeneous processar set [9]. Moreover, we can definitely
envision the design of parallel and distributed systems with heterogeneous structures
as a trend in contemporary computer architecture. In this sense, modeling parallel
machines as heterogeneous systems means taking into account more realistic issues
in computer design. Task scheduling on this heterogeneous environment is even
more complex than on a homogeneous one [10]. Greedy heuristic task scheduling
algorithms, considering heterogeneous processors and parallel applications repre
sented by task precedence graphs, were first presented in [10}. In [12, 13}, Porto and
Ribeiro proposed and analyzed sequential and parallel implementations of a tabu
search based algorithm. Tabu search [6] is a local search adaptive procedure for solv
ing combinatorial optimization problems, which guides a hill-descending heuristic
to continue exploration without becoming confounded by the absence of improv
ing moves, and without falling back into local optimum from which it previously
emerged. This tabu search task scheduling algorithm was thoroughly studied in re
cent work [14], where the solution quality was compared to the results obtained by
the best greedy algorithm for this same problem [10] . In most of the studied cases,
the tabu search approach achieved higher solution quality, i.e. reduced makespan
for the parallel application. In ali these mentioned work, scheduling algorithms were
evaluated based on estimated results, obtained through deterministic calculation or
simulation using different sets of problem instances.

Barr et al. [1] comment that, since an algorithm is an abstraction, it is evaluated
indirectly by experimenting with a specific implementation. There is a wide range

254

. . ,

of options when selecting the problems, implementing the algorithm, choosing a
computing environment, selecting performance measures setting algorithm options,
and reporting results. The choice made for each factor can have a substantial effect
on the results and significance of the experiment. To ensure that the reported
information is meaningful, the experimental design to be documented and used
must consider as many factors as possible, effectively measuring their impacts on
the results.

Static task scheduling is, thus, performed based on estimated data about the parallel
application and the system architecture. Therefore, realistic performance evaluation
of a task scheduling algorithm can only be fully accomplished i f practical results are
also considered. In this sense, the present work analyzes the quality of greedy and
tabu search task scheduling algorithms comparing estimated deterministic results
with the actual observed makespan of severa! parallel synthetic applications execut
ing on real parallel machines following the static schedule previously determined.
The following section presents the schedule system model. In Section 3, both the
greedy and tabu search algorithms are described. In Section 4, we report the overall
experimentation, including: (i) a description of the testing platform and problem
instances considered during the testing phase; (ii) the most significant nume~ical
results, and {iii) the comparative solution quality analysis according to different
parameters. Section 5 presents some brief concluding remarks.

2 The Scheduling Model

A parallel application fi with a set of n tasks T = { t~o · · · , tn} and a heteroge
neous multiprocessor system composed by a set of m interconnected processors
P = {p1, • • • ,Pm} can be represented by a task precedence graph G(fl) and an
n x m matrix f.J., where f.J.ki = f.J.(tk,P;) is the estimated execution time of a task
tk E T at processor Pi E P. Each processor can run one task ata time, all tasks can
be executed by any processor, and processors are said to be uniform in the sense
that ~ = ~,'Vtk,tt E T,'Vp;,P; E P. This implies that processors may be ranked
according to their processing speeds. In a framework with one single faster (het
erogeneous) processor, the heterogeneity may be expressed by a unique parameter
called processar power ratio, P P R, which is the ratio between the processing speed
o f the fastest processor and that of the remaining ones (those in the subset o f homo
geneous processors) . Thus, an instance of our scheduling problem is characterized
by the workload and parallel system models.

Given a solution s for the scheduling problem, a processor assignment function is
designed as the mapping A. : T -t P. A task tk is said to be assigncd to processor
Pi E P in solution s if A,(tk) = Pi· The task scheduling problem can then be
formulated as the search for an optimal assignment of the set of tasks onto that of
the processors, in terms o f the makespan c(s) o f the parallel application (cost o f the
solution s), i.e. the completion time of the last task being executed. At the end
of the scheduling process, each processor ends up with an ordered list of tasks that
will run on it as soon as they become executable.

255

3 Heuristic Task Scheduling Algorithms

We consider two algorithms in this work, namely: a greedy algorithm called DES+
MFT and a parallel tabu search algorithm, here referred as TSpar. Although both
of them are heuristic, they present different fundamental characteristics. The former
is a construction algorithm, which iteratively assigns tasks to processors based on
heuristic criteria, taking into account the static information of the system model.
On thc other hand, the TSpar is a synchronous parallel implementation of a tabu
search metaheuristic algorithm, which guides an aggressive local search procedure
over the task scheduling solution space.

3.1 The DES+MFT Greedy Algorithm

DES+MFT stands for Determini3tic Execution Simulation with Minimum Fini3h
Time [10]. This algorithm iteratively schedules tasks in a partia! order according to
the simulated execution of the parallel application (DES), based on the estimated
task execution times, while scheduling decisions are made according to the minimum
finishing time {MFT) for each "schedulable" task. Figure 1 describes the DES+MFT
in a procedural scheme. In this scheme, the clock variable measures the evolution
of the execution. At the end of this procedure, c(s) = clock is the cost of the
obtained solution, i.e., the makespan of the parallel application when submitted to
the DES+MFT processor assignment. At each iteration, certain tasks are scheduled
to processors, building an ordered list of tasks associated to each processor. This
is the actual execution order if tasks were to be executed in an ideal system with
estimated execution times. During this deterministic execution simulation, each
task tk E T assumes one of the following states at each time instant: non-executable,
executable, executing, executed. At the same time, each processor P; E P alternates
between two different states: free and busy. A processor P; is said to be busy if it
has a task in the executing state allocated to it.

Every task starts in the non-executable state. It will change to the executable state
if it has no predecessors or if all of its predecessors have achieved the executed
state. Every executable task is considered as a candidate for scheduling at each time
instant.

A task will be effectively scheduled (changing to the executing state), when the
processor (chosen from the entire processor set), which determines the minimum
finishing time for that task, becomes free. Otherwise the task will not be assigned
to any processor until a further iteration. This is the so called "look-ahead" fea
ture of this greedy algorithm. To determine the minimum finishing time of each
task-processor pair, in the moment where scheduling decisions are eventually made,
the algorithm maintains a record of the closest instant in future simulation time in
which each processor will be available. This means that there may be iterations
where schedulable tasks are not selected, because the processar presumed by the
algorithm as the best one is not available (i.e. it is busy) at that moment. After
a task is scheduled, the algorithm simulates the elapsed execution time, using the
variable clock, which is updated accordingly. It should be noticed that DES+MFT,
like most greedy algorithms, does not come back to re-evaluate the scheduling deci
sions taken in previous iterations. This means that besides the "look-ahead" feature,

256

it is not capable of making changes in scheduling decisions made in previous iter
ations, which were based on snapshots of the simulated execution. Consequently,
these scheduling decisions depend on how strongly tasks are tied through precedence
relations, because they determine the order in which tasks may possibly be sched
uled. Differently, the TSpar algorithm, departing from the initial solution obtained
by the DES+MFT algorithm, evaluates many other possible assignments, which
eventually improve the makespan of the parallel application, as we can see in the
following section.

3.2 The Parallel Tabu Search Algorithm

To describe the TSpar algorithm, we first considera general combinatorial optimiza
tion problem (P) formulated as to

minimize c(s)
subject to s E S,

where S is a discrete set of feasible solutions. Local search approaches for solving
problem (P) are based on search procedures in the solution space S starting from an
initial solution s0 E S . At each iteration, a heuristic is used to obtain a new solution
s' in the neighborhood N(s) of the current solution s, through slight changes in s.
A move is an atomic change which transforms the current solution, s, into one of its
neighbors, say s. Thus, movevalue = c(s)- c(s) is the difference between the value
of the cost function after the move, c(s), and the value of the cost function before
the move, c(s). Every feasible solution sE N(s) is evaluated according to the cost
function c(.), which is eventually optimized. The current solution moves smoothly
towards better neighbor solutions, enhancing the best obtained solution s•.

Tabu search [6, 7J may be described as a higher levei heuristic for solving minimiza
tion problems, designed to guide other hill-descending heuristics in order to escape
from local optima. Thus, tabu search is an adaptive search technique that aims to
intelligently exploring the solution space in search of good, hopefully optimal, solu
tions. The learning capability determines that tabu search supplies richer knowledge
about the instance of the problem to be solved than that generated in other iterative
algorithms. In the case of the task scheduling problem considered in this paper, the
cost of a solution is given by its makespan, i.e., the overall execution time of the
parallel application. The neighborhood N(s) of the current solution s is the set of
ali solutions differing from it by only a single assignment. If sE N(s), then there
is only one task t; E T for which A,(t;) :f: A 1(t;). Each move may be characterized
by a simple representation given by (A,(t;), t;, p,), as far as the position task t; will
occupy in the task list of processor p1 is uniquely defined. I f the best move takes the
current solution s to a best neighbor solution s' degenerating its cost function, i.e.
c(s') ~ c(s), then the reverse move must be prohibited during a certain number of
iterations (tabu tenure) in order to avoid cycling. However, there are situations in
which a recently prohibited move, i f applied after some iterations, will provide a bet
ter solution than the best one found by the algorithm so far, despite its prohibited
status. In these cases, an aspiration criterion is used to override this prohibition,

257

DES+MFT algorithm
begin

clock .-O
state(p1) 4- frec VpJ E P
start(tk), finish(tk) 4- O Vtk E T
while (3tk E T I state(tk) 'I cxecuted) do
begin

for (each tk E T I state(tk) = executable and Pi E P) do
obtain thc pair (t,p1) with the minimum finish time
if (state(p1) = frec) then
begin

state(tr) i- exccuting
A.(tr) = p;
state(p;) 4- busy
start(tr) 4- clock
finish(tr) 4- start(tr) + p(tr,p;)

end
Let i be such that finish(t;) = mint.ET I•tote(t•)=cxccutingUinish(tt)}
clock .- finish(t;)
for (each tk E T I state(t•) = cxecuting and finish(t.) = clock) do
begin

state(tk) 4- executed
state(A.(tk)) 4- free

end
end
c(s) 4- clock

end

--~~-

Figure 1: DES+MFT algorithm description.

enabling the move to be executed. In [12) and [13) the reader will find more detailed
description of the tabu search algorithm.

Severa! implementations have been proposed in recent literature for the paralleliza
tion of tabu search [2, 3, 4, 17). The parallelization schemes proposed in [13) for the
tabu search scheduling algorithm have a synchronization point at the end of each
iteration o f the search. The search for the best neighbor during each iteration is per
formed in parallel and different sets of neighbor solutions are analyzed by each task.
This typically characterizes a strict domain decomposition parallelization scheme.

Two basic parallel programming models were used: Master-Slave (MS) and Single
Program-Multiple-Data (SPMD). In both models, parallel strategies determine a
rigid synchronized cooperation scheme, and differences arise essentially in the way
information is exchanged between processes at the end of each tabu search iteration.
Four different strategies were implemented, derived from these two models. In the
SPMD model, communication follows a ring structure. In the master-slave model,
slaves communicate strictly with the master, and the number and size of the domain
partitions determine two different approaches: single and multi pie partitioning (MS
SP and MS-MP, respectively).

In both master-slave strategies, neighborhood partitions are distributed to ali the
slaves. The master is responsible for selecting the best move at the end of each
iteration among ali partia! results. The best move is then sent to ali the slaves

258

in arder to start the next iteration from a new current solution. In the MS-MP
approach, to attend load balancing requircments, the distribution of the domain
partitions is dane on a work-demand-basis. The neighborhood is divided in equal size
partitions, but thc number of partitions is significantly grcater than the number of
slaves. Whcn a slave ends its partia! search over a certain partition, the master may
eventually send to it a new partition, if there are any stillleft to be searched. More
work will be then given to the slaves wbich are less loaded (and are thus working
faster) , and the master dedicates itself exclusively to the partition distribution.

The promising results obtained through parallelization led to the possibi!ity of more
effectively evaluating solution quality of the proposed tabu search task scheduling
algorithm using its parallel implementation. Considering both sequential and parai
lei implementation, solution quality was analyzed according to different parameters
and strategies, which needed to fully specify the tabu search algorithm with a cer
tain variety of application model parameters (such as task graph structures, number
of tasks, serial fraction and task service demands) and system configurations (such
as number of processors and architecture heterogeneity measured by the processar
power ratio). It was shown that the tabu search algorithm obtained better results,
i.e. shorter completion times for parallel applications, improving up to 40% the
makespan obtained by the DES+MFT algorithm, which in fact is the most appro
priate grecdy algorithm previously published in the literature (12, 14]. We have used
the MS-MP parallel version to carry out the experimentation reported here, because
it has demonstrated the best speedup results in most of the studied cases (13].

4 Experimental Results

In this section, we depict some experimental results obtained from the execution
of synthetic parallel programs scheduled with both the greedy and tabu search al
gorithms. We first present some results derived from the estimated improvement
analysis of tabu search schedules over those generated by the DES+MFT, which
is the initial solution for the tabu search algorithm. The performance criterium is
the makespan (solution cost) estimated by both algorithms. In the following, we
describe ANDES [8], a framework for performance evaluation using parallel pro
gram models and synthetic programs. Finally, using this framework, we compare
execution times of synthetic parallel programs scheduled by DES+MFT and TSpar
algorithms.

4 .1 Estimated Performance Analysis

DES+MFT and TSpar scheduling algorithms were implemented using ANSI C and
PVM (Parallel Virtual Machine) (16]. The schedule quality is estimated based on
the computed makespan. In other words, the makespan represents the schedule cost,
c(.), which isto be minimized.

Onc of the main goals is to achieve makespan reduction when changing from the
schedule produced by DES+MFT to the one produced by TSpar. Thus, solution
quality is measured by relative cost reduction, n, computed as

259

'R.= c(so) - c(s•)
c(so)

where s0 is the initial solution obtained by the greedy algorithm DES+MFT and
s• is the best solution found by the TSpar algorithm.

In (12}, relative cost reductions of up to 30% were obtained considering applica
tions modeled by diamond-shaped precedence graphs. In [14}, new results were pre
sented considering other structures for the parallel applications. Part of the ANDES
benchmark was then used: other types of diamond-shaped graphs (Dia.mond3 and
Diamond4), iterative graphs (FFT and PDE2), divide-and-conquer strategies (Div
conq), typical matrix computation structures (Gauss), and master-slave rnodels
(MS3). We can summarize the following results of these above experiments:

• A parallel application is said to be serialized by a certain processor assign
ment algorithm when all of its tasks are scheduled to one unique processor.
When the serial fraction (F,) and/or the processar power ratio (PPR) are
very high, the best solution is usually obtained through the serialization of
the application over the heterogeneous processar, which has greater process
ing capacity. This seems to be clear if we imagine two extreme cases: F, = 1
or P P R ~ oo. In the first case, we face a totally serial application, which
must be executed on the heterogeneous processar (F, corresponds to the serial
fraction defined as the fraction of the total parallel execution time when just
one task is executing even if infinite processors were available) . In the latter
case, the heterogeneous processor is able to execute any task in infinitesimal
time, consequently serialization determines again the best performance.

In certain circumstances, serialization will be performed by the DES+MFT
algorithm, when there is still available parallelism to be explored in the par
aliei application. In these cases, the tabu search algorithm will start from a
scrializcd initial schedule, and more easily will be capable of finding differ
ent assignments which greatly reduce the overall makespan of the application,
augmenting the relative cost reduction.

For very low and very high PPR values low or null makespan improvements
are obtained. A low PPR value means low heterogeneity degree, and, in
this case, the greedy algorithm improvements are suflicient (it is suitable for
homogeneous configurations). On the other end of the heterogeneity range,
very high PPR values mean that serialization on the very fast processar is the
best solution. In these cases both the DES+MFT and TSpar algorithms are
able of serializing the application, so makespan improvements are not observed;

• Between the two extremes of the PPR value range, we find a mountain-like
peak of improvements, culminating with a PPR that gives the best relative
performance achieved by the TSpar algorithm. This point is referred as the
P P R,eak point. The P P R,eok point is highly dependent on the shape of the
input task graph. Groups of similar task graphs have a similar behavior. For
example, diamond-shaped graphs present a low PPR,eok (around 5). On the
other hand, iterative graphs produce a more smooth improvement curve, with
higher P P Rpeo~; (around 20 o r 30), depending on the size o f the task graph;

260

• Not only the structure of the task graph is criticai in the relative quality
improvement analysis. The number of processors available for scheduling as
signments infiuence the results. The relationship between solution quality
improvements and the number of processors is variable depending on the struc
ture of the task graph. On one hand, the greater the number of processors
we have, the less heterogeneous the system becomes and thus lower relative
cost reduction is achieved. However, a greater number of processors also rep
resents more available parallelism and therefore a greater number of different
scheduling possibilities arise.

Figure 2 presents some estimated relative cost reductions computed between DES+MFT
and TSpar algorithms. In (14J, Porto et al. measured improvements for discrete val-
ues of PPR {2, 5, 10, 20, ... , depending on the input) . Figure 3 presents a more
detailed experiment, with a fine variation of PPR values and number of processors,
considering the Diamond3 benchmark with 66 tasks .

....., , ,
·-fJb:]~ -J~I~ J » a_, H:! ,j ·-~·

o -~ 1 s ,. 10 ~ J: ' to lO~
..--.--· ._.. ,

·-c:;AJ= ·cir· j 10 o..a j' 0-'

.j ••16 "' a..a
.j ·-" 0 t,l010~ •..,..,.2A:a~

m--• m ,

·c:h:r .c:=J= j' D"" j' 0""
10 o..a 2D 0 ...

,j ·-·· .j ... 16
0 M "'gAAt~ o N "' g A ~ ' ~

..........
___ ,

. [h]= ··c;J= j' D-' j » 0_. 10 D ...

,j - ·-·· .j ••..
• ""'! · ,..~ o ·~ " ~ 2 ft ft ' ~

.a ,

_, __ ,

··o::: !'"[~=]= j 10 o-a j 20 _ o••
,j ·-·· , ·-" 0 "~2RV~ • ri"' 2 Sil. ~

Figure 2: Relative cost reduction n versus P P R for two different sizes of Diamond3,
· Divconq, FFT, Gauss, and MS3 graphs (m corresponds to the number of processofli·
to which the tasks are scheduled).

261

45

40
.,-..
u
bO
!S
c::

35
u
~ 30 u o.
e, 25
c::
o
"5
"' 20
-o
~ 15 u
;>

·:=~

"' 10 'i)
c.::

5

o
o 5

Relative Reduction for Diamond3 with 66 tasks

10 15

· m=2---
I : ... -·-···-· ··-·- m=4-·· ... •••

20 25 30
PPR

35

m=6 ··D····
,.m;;;S .. . ~ ..
:m=IO
:m=l2 · .•.. ..
"'m=t4· ·::·.;·.:·_, ...
:m=16 ··+····

40 45 50

Figure 3: Detailed relative cost reduction n versus PPR for Diamond3 graph (m
corresponds to the number of processors to which the tasks are scheduled) .

4.2 The Experimental Framework

The ANDES Environment - ANDES [14) is a PVM-based parallel tool that sup
ports performance evaluation of parallel programs at the prediction levei. ANDES
considers the cxisting complex overheads of parallel computers. This is achieved
through the use of synthetic parallel executions directly on the parallel machine. In
a synthctic parallel execution, the resources of the parallcl computer are used in a
controlled way, but no code is generated. All the steps from the interpretation of the
parallel program graph-based and of the parallel machine models to the synthetic
execution on the target parallel machine are automatically managed by ANDES.
ANDES finally computes performance metrics from the execution of that workload
implemented according to mapping and/or scheduling strategies. Synthetic execu
tion is the chosen performance technique due to the easy contrai of parameters as
well as the real environment in use. The idea is to conjugate the best of model
based approaches with the best of realistic parallel executions. ANDES has been
!ISed to refine analytical and simulation analysis. With the current high availability
of parallcl systems, the results of ANDES have been proved to be precise and useful.

The Parallel System - ANDES along with the synthetic parallel programs were
executed on an IBM SP multicomputer composed of 32 RS6000 RISC microproces
sors with 64 megabytes of RAM. The processors are interconnected by a high-speed
switch (bidirectional with nominal speed of 80 megabytes per second).

262

The Benchmarks - In order to compare estimated and observed improvements
of the overall execution times of real parallel synthetic programs, we have used the
following benchmark (part of the ANDES package): (i) Diamond3 with 66 tasks; {ii)
FFT with 194 tasks; {iii)Gauss with 192 tasks; and {iv) Divconq with 46 tasks.

This benchmark picks representative task graphs from the ones studied in [14].
Small and larger task graphs are used. The TSpar was executed using 4 processors
of the IBM SP. The estimated quality of both TSpar and DES+MFT algorithms is
computed using a conventional C procedure for computing the makespan of the task
graphs, detailed in Figure 4 (very similar to the DES+MFT description). The final
value of clock is the actual makespan. Each graph of the benchmark is scheduled to
2, 4, 8, and 16 processors.

makespan computation algorithm
begin

Let s = (A,(tl), ... ,A,(tn)) be a fcasible solution for the scheduling problem, i.e.,
for every k = 1, ... , n , A,(t.t) = PJ for some Pi E P

clock i- o
state(pi) +-- free '1/pi E P
.!tart(t.t), finish(t.t) i- O Vt.t E T
while (3t.t E T I state(t.t) ~ executed) do
begin

for (each t.t E T I state(t.t) = executable) do
if (state(A,(t.t)) = free) then
begin

state(t.t) +-- executing
state(A,(t.t)) i- busy
start(t.t) +-- clock
fínish(t.t) i- start(t.t) + ll(t,t,A,(t.t))

end
Let i be such that finish(t ;) = min,.eTf.tate(t•)=executing{/inish(t,t)}
clock i- fini.sh(t;)
for (each t.t E T I state(t.t) = executing and f inish(tt) = clock) do
begin

state(t.t) i- executed
state(A,(t.t)) +-- free

end
end
c(s) i- clock

end

Figure 4: Computation of the makespan of a given schedule.

The gencrated schedules are read by ANDES which generates the synthetic load to
be interpreted by ANDES-Synth, the synthetic execution kernel. Synthetic loads
are then executed according to the given schedules.

In order to simulate heterogeneity, the size of synthetic loops corresponding to tasks
allocated to the faster processar are reduced by a factor corresponding to the PPR
itsclf. Thus, a PPR of 2 means that loops to be executed on the heterogeneous
processar are reduced by half. The scheduling algorithms consider communications
with zero overhead. This corresponds in ANDES to communications of a single byte
{in the IBM SP machine, such message transmitted through the switch determines
a latency of around 47.03 microseconds [11)).

263

Preliminary experiments were performed on an idle machine. The standard devia
tion was always under 1% for 10 consecutive executions. Considering this low degree
of variability, we have performed measures using a sample of size 5.

4.3 Results and Analysis

Figures 5, 6, 7, and 8 present, in the same graphic, estimated and measured rei
ative cost reductions. The chosen PPR value range includes, for all graphics, the
higher relative cost reductions achieved by TSpar. Differences between estimated
and observed improvements are under 5% for all experiments.

Our results demonstrated by the similarity between estimated and observed relative
cost reductions that the makespan computation used in both scheduling algorithms
is in fact reliable. This is a complctely deterministic computation. On the otber
hand, the observed execution times are definitely non-deterministic due to overheads
from the operating system and the communication subsystem. However, the execu
tion times presented very low variability. Therefore, these overbeads do not influence
significantly tbe experimental execution times, i.e. the makespan algorithm shows
itself to be very useful to the static scheduling decisions based on estimated data.
Although intuitive, this conclusion is not obvious and experiments were necessary
to validate it.

Taking into account a precise makespan computation, one important consequence is
that tabu search improvements are real and significant. This was foreseen from pre
vious works, based on the estimated relative cost reductions between DES+MFT
and TSpar algorithms. In this paper, we demonstrate that these improvements also
occur in more realistic execution environments.

Another interesting result is that the P P J4ea~c is not always the same. As a matter
of fact, there is a range of P P R values where the best relative cost reductions
vary. This irregular behavior occurs due to the irregular searcb through the solution
space performed by the tabu search algorithm, which depends on different heuristic
parameters such as tabu list size, number of iterations without improvements, and
aspiration criteria. Metabeuristics, sucb as tabu search, frequently depend on a

· fine tuning stage, where parameters are tested and calibrated. After this step, they
remain uncbanged, and in some test cases thcy are not always set to achieve the
best results.

Finally, ANDES bas been proven to be a useful tool in the validation of scbeduling
algorithms. The direct combination of both scheduling algorithms and the synthetic
execution runtime system provided an environment where response time measure
ments could be quickly obtained.

264

SOr-----~----~----~----,-----~----~

m=2(obs)-+
m=2 (est) -·---

. . m=4 (obs) ·-o····
40 - -·--·-··;··-----·-· ·~.--·---~:x-~ - :::8\~~!~ -=

·~ ./.~ ~ , m=8 (cst) -• ·-·-
..,. "'\, m=16 (obs) ··• ····

··-- ... , S:~ !.---.rv=16_(cst) _::.~:.. . ' , 4.-.-:.·· ~

\ -·~ . lt.,-..::...... '."-..
- --- :~_:_--~~--- -

'

30

20

10 ···---··------·---.. --- ----- .

o~----~--~~--~~--~----~----~
o 2 4 6

PPR
8 10 12

Figure 5: Estimated (est) and observed (obs) relative cost reduction 'R versus PPR
for Diamond3 graph (m corresponds to the number of processors on which the tasks
are scheduled).

so

'Oi' 40

~ c u
!:!
8. 30
á
c
.2
õ ::s

! 20

u
.~
õí

~ 10

o
24

...
26

m=2(obs)-+
m=2 (cst) ·-+·-·

m=4(obs) . ..,
·--··:···· ········ ·········m=4.(est) ---.. ..

m=8 (obs) -•·"·
m=B (est) - •~··

m=16 (obs) ..• ; ...

- .. , ... ·-·················· m:: !.~.!~~> -•-..

--~-f~~::~::~j~~
li . . ·•· ···· · ---·········· · .

!I ~-:=!J=II=I!.

j / ~~ll=:tl7:::-~
""""'-- -- --- ---- - .. ---

28 30 32 34 36 38 40
PPR

Figure 6: Estimated (est) and observed (obs) relative cost reduction 'R versus PPR
for FFT graph (m corresponds to the number of processors on which the tasks are
scheduled).

265

...,.
1>0
!9
c u
~
&
2,
c o ·= (,)
:I

"3
c:>:
u .:::
Cã
ü
c:>:

50

40

30

20

10

____ ,!.._ .. --·.

m=2(obs)
m=2 (est)

m=4 (obs) ·-<>····
m=4 (est)· ~><
m=8 (obs) ·•···-
m=8 (est)

m=16 (obs) .. o

rn=.:l6 (est)

QL---~--~----~--~--~----~--~--~~
4 6 8 10 12 14 16 18 20

PPR

Figure 7: Estimated (est) and observed (obs) relative cost reduction n versus PPR
for Divconq graph (m corresponds to the number of processors on which the tasks
are scheduled).

g
c
-~
ti
:I
'O ...
c:>: ...
>
-~
ü
c:>:

50r---~--~--~----r---~--~--~----~

m=2(obs)-
m=2 (est)

40 _ --.. ·---·-·-·---
m=4 (obs) .. o: .. .
m=4(est) -~

m=8 (obs)
m=8 (est)

m=l6 (obs) .. o

30
m=l6 (est) ... _ ..

20

lO

QL---~--~----~--~--~----~--~--~~
4 6 8 10 12 14 16 18 20

PPR

Figure 8: Estimated (est) and observed (obs) relative cost reduction n versus PPR
for Gauss graph (m corresponds to the number of processors on which the tasks are
scheduled).

266

5 Final Remarks

This paper presents an experimental validation of makespan improvements of two
scheduling algorithms: a greedy construction algorithm and a tabu search based
algorithm. Synthetic parallel executions were performed using the scheduled graph
costs. These synthetic executions were performed on a real parallel machine (IBM
SP). The estimated and observed response times improvements are very similar,
representing the low impact of system overheads on makespan improvement esti
mation. This guarantees a reliable cost function for static scheduling algorithms
and confirms the actual better results of the tabu search metaheuristic applied to
scheduling problems.

References

[1) R.S. BARR, B.L. GOLOEN, J .P . KELLY, M.G.C. RESENDE, and W.R.
STEWART, "Designing and Reporting on Computational Experiments with
Heuristic Methods", Journal oj Heuristics 1 (1995), 9-32.

[2) T.G. CRAINIC, M. TOULOUSE, and M. GENDREAU, "Towards a Taxonomy
of Parallel Tabu Search Algorithms" , Research Report CRT-933, Centre de
Recherche sur les Transports, Université de Montréal, 1993.

[3] C.-N. FIECHTER "A Parallel Tabu Search Algorithm for Large Traveling Sales
man Problems", Discrete Applied Mathematics 51 (1994), 243-267.

[4] B. GARCIA and M. TouLOUSE, "A Parallel Tabu Search for the Vehicle Rout
ing Problem with Time Windows" , Computers and Operations Research 21
(1994), 1025- 1033.

[5] M .R. GAREY and D .S. JOHNSON, Computers and Intractability: A Guide to
the Theory oj NP-Completeness, W.H. Freeman and Company, San Francisco,
1979.

[6] F. GLOVER and M. LAGUNA, "Tabu Search", Chapter 3 in Modem Heuristic
Techniques for Combinatorial Problems (C.R. Reeves, cd.), 70-150, Blackwell
Scientific Publications, Oxford, 1992.

[7] F. GLOVER, E. TAILLARD, and D. DE WERRA, "A User's Guide to Tabu
Search", Annals oj Operations Research 41 (1993), 3-28.

[8) J.P. KITAJIMA, B. PLATEAU, P.BOUVRY, and D. TRYSTRAM, "A method
and a tool for performance evaluation. A case study: Evaluating mapping
strategies", Proceedings of the 1994 Cray Users Group Meeting, Tours, 1994.

[9] D.A. MENASCÉ and V. ALMEIDA, "Cost-Performance Analysis of Hetero
geneity in Supercomputer Architectures", Proceedings o f the Supercomputing '90
Conjerence, New York, 1990.

[10] D.A. MENASCÉ and S.C.S. PoRTO, "Processor Assignment in Heterogeneous
Parallel Architectures", Proceedings oj the IEEE Intemational Parallel Pro
cessing Symposium, 186-191, Beverly Hills, 1992.

267

. '

[11) J. MIGUEL, A. ARRUABARRENA, R. BEIVIDE, and J. A. GREGORIO, "As
sessing the performance of the new IBM SP2 communication subsystem", IEEE
Parallel & Distributed Technology 4{1996), 12-22.

[12) S.C.S. PORTO and C.C. RIBEIRO, "A Tabu Search Approach to Task Schedul
ing on Heterogeneous Processors under Precedence Constraints" , International
Journal of High-Speed Computing 7 {1995), 45- 71.

[13) S.C.S. PORTO and C.C. RIBEIRO, "Parallel Tabu Search Message-Passing
Synchronous Strategies for Task Scheduling under Precedence Constraints",
Journal of Heuristics 1 {1996), 207-233.

[14) S .C.S. PORTO, J .P .W. KITAJIMA, and C.C. RIBEIRO, "Performance EvahJ
ation of a Parallel Tabu Search Scheduling Algorithm", Solving Combinatorial
Problems in Parallel (joint workshop with the International Parallel Processing
Symposium'91), April1-5 1997, Geneva.

{15) C.R. REEVES, Chapter 1 in Modem Heuristic Techniques for Combinatorial
Problems (C.R. Reeves, ed.), Blackwell Scientific Publications, Oxford, 1992.

[16) V . S. SuNDERAM, G. A. GEIST, J. DONGARRA, and R . MANCHEK, "The
PVM concurrent computing system: evolution, experiences, and trends", Par
allel Computing 20{1994) , 531-546.

[17) E . TAILLARD, "Parallel Taboo Search Techniques for the Job Shop Scheduling
Problem", ORSA Journal on Computing 6 {1994), 108-117 .

268

