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Abstract - Parallel applications with regular and well-known behavior, where task execution 

time estimates are fairly reliable, are suited to static task scheduling (in opposition to dynamic 

scheduling, performed during the execution of the application). This is the case of many par­

aliei scientific applications. Task scheduling on a heterogeneous environment, where processors 

present different processing speeds, is even more complex than on a homogeneous one. Static task 

scheduling is, thus, performed based on estimated data about the parallel application and the 

system architecture, and has long taken a heuristic approach. Therefore, a realistic performance 

evaluation of a task scheduling algorithm can only be fully accomplished if practical results are 

also considered. In this sense, the present work analyzes the quality of greedy and tabu search 

task scheduling algorithrns comparing estimated deterministic results with the actual observed 

makespan of several parallel synthetic applications executing on real parallel machines following 

the static schedule previously determined. 

Resumo - Aplicações paralelas com um comportamento regular e bem conhecido, onde as 

estimativas dos tempos de execução de tarefas são bastante razoáveis, adequam-se bem ao escalo­

namento estático (em oposição ao escalonamento dinâmico, realizado durante a execução da aplica­

ção) . Este é o caso de várias aplicações científicas paralelas. O escalonamento de tarefas em um 

ambiente heterogêneo, onde os processadores apresentam capacidades diferentes de processamento, 

é ainda mais complexo do que em um ambiente homogêneo. Escalonamento estático de tarefas 

baseia-se em dados estimados sobre a aplicação paralela e a arquitetura do sistema e tem recebido 

freqüentemente um enfoque heurístico. Por isso, uma avaliação de desempenho realística de um 

algoritmo de escalonamento de tarefas poderá apenas ser completamente realizado se resultados 

práticos também forem considerados. Neste sentido, o presente trabalho analisa a qualidade de dois 

algoritmos de escalonamento, um heurístico de construção e outro baseado na metaheurística de 

busca tabu. Esta análise compara resultados determinísticos com resultados observados do tempo 

de execução de diversas aplicações paralelas sintéticas em máquinas paralelas reais de acordo com 

o escalonamento previámente obtido. 

•This work has been accomplished thanks to the financiai support from CNPq agency. The com­
putational experiments were performed using the IBM SP machine available at the LMC/IMAG 
laboratory, Grenoble, Francc. 
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1 Introduction 

Task scheduling is one of the most challenging problems in parallel and distributed 
computing, and is known to be NP-hard [5]. Scheduling algorithms have long taken 
a heuristic approach. An important argument in favor of the use of heuristics is that 
optimization is usually performed over a model of a real world problem. There is no 
guarantee that the best solution for this model is also the best solution for the asso­
ciated real world problem [15]. Obviously, truly exact models are not possible, but 
heuristics are generally more flexible and capable of better manipulating objective 
functions or complex constraints than exact algorithms. This is the case of methods 
such as simulated annealing, tabu search and genetic algorithms, for example, where 
objective functions do not rely on simplifying linearity premises. Hence, heuristics 
allow more precise and elaborate models than those used by exact algorithms [15]. 

Parallel applications with regular and well-known behavior, where task execution 
time estimates are fairly reliable, are suited to static task scheduling (in opposition 
to dynamic scheduling, performed during the execution of the application). This 
is the case of a great majority of scientific applications. For these applications, 
the static scheduling algorithm is executed once, before the execution of the par­
allel program, which is then actually ruo severa! times according to the previously 
obtained schedule. Consequently, even i f the scheduling algorithm is a costly proce­
dure, this cost will be amortized throughout the numerous executions of the parallel 
application, i.e. the obtained schedule is re-applied repeatedly. 

Processar heterogeneity, here represented by processors with different processing 
speeds, has already demonstrated the potentiality in reducing the performance 
degradation resulting from the execution of the inherent serial fractions of the par­
aliei application on a homogeneous processar set [9]. Moreover, we can definitely 
envision the design of parallel and distributed systems with heterogeneous structures 
as a trend in contemporary computer architecture. In this sense, modeling parallel 
machines as heterogeneous systems means taking into account more realistic issues 
in computer design. Task scheduling on this heterogeneous environment is even 
more complex than on a homogeneous one [10]. Greedy heuristic task scheduling 
algorithms, considering heterogeneous processors and parallel applications repre­
sented by task precedence graphs, were first presented in [10}. In [12, 13}, Porto and 
Ribeiro proposed and analyzed sequential and parallel implementations of a tabu 
search based algorithm. Tabu search [6] is a local search adaptive procedure for solv­
ing combinatorial optimization problems, which guides a hill-descending heuristic 
to continue exploration without becoming confounded by the absence of improv­
ing moves, and without falling back into local optimum from which it previously 
emerged. This tabu search task scheduling algorithm was thoroughly studied in re­
cent work [14], where the solution quality was compared to the results obtained by 
the best greedy algorithm for this same problem [10] . In most of the studied cases, 
the tabu search approach achieved higher solution quality, i.e. reduced makespan 
for the parallel application. In ali these mentioned work, scheduling algorithms were 
evaluated based on estimated results, obtained through deterministic calculation or 
simulation using different sets of problem instances. 

Barr et al. [1] comment that, since an algorithm is an abstraction, it is evaluated 
indirectly by experimenting with a specific implementation. There is a wide range 
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of options when selecting the problems, implementing the algorithm, choosing a 
computing environment, selecting performance measures setting algorithm options, 
and reporting results. The choice made for each factor can have a substantial effect 
on the results and significance of the experiment. To ensure that the reported 
information is meaningful, the experimental design to be documented and used 
must consider as many factors as possible, effectively measuring their impacts on 
the results. 

Static task scheduling is, thus, performed based on estimated data about the parallel 
application and the system architecture. Therefore, realistic performance evaluation 
of a task scheduling algorithm can only be fully accomplished i f practical results are 
also considered. In this sense, the present work analyzes the quality of greedy and 
tabu search task scheduling algorithms comparing estimated deterministic results 
with the actual observed makespan of severa! parallel synthetic applications execut­
ing on real parallel machines following the static schedule previously determined. 
The following section presents the schedule system model. In Section 3, both the 
greedy and tabu search algorithms are described. In Section 4, we report the overall 
experimentation, including: (i) a description of the testing platform and problem 
instances considered during the testing phase; (ii) the most significant nume~ical 
results, and {iii) the comparative solution quality analysis according to different 
parameters. Section 5 presents some brief concluding remarks. 

2 The Scheduling Model 

A parallel application fi with a set of n tasks T = { t~o · · · , tn} and a heteroge­
neous multiprocessor system composed by a set of m interconnected processors 
P = {p1, • • • ,Pm} can be represented by a task precedence graph G(fl) and an 
n x m matrix f.J., where f.J.ki = f.J.(tk,P;) is the estimated execution time of a task 
tk E T at processor Pi E P. Each processor can run one task ata time, all tasks can 
be executed by any processor, and processors are said to be uniform in the sense 
that ~ = ~,'Vtk,tt E T,'Vp;,P; E P. This implies that processors may be ranked 
according to their processing speeds. In a framework with one single faster (het­
erogeneous) processor, the heterogeneity may be expressed by a unique parameter 
called processar power ratio, P P R, which is the ratio between the processing speed 
o f the fastest processor and that of the remaining ones ( those in the subset o f homo­
geneous processors) . Thus, an instance of our scheduling problem is characterized 
by the workload and parallel system models. 

Given a solution s for the scheduling problem, a processor assignment function is 
designed as the mapping A. : T -t P. A task tk is said to be assigncd to processor 
Pi E P in solution s if A,(tk) = Pi· The task scheduling problem can then be 
formulated as the search for an optimal assignment of the set of tasks onto that of 
the processors, in terms o f the makespan c( s) o f the parallel application ( cost o f the 
solution s), i.e. the completion time of the last task being executed. At the end 
of the scheduling process, each processor ends up with an ordered list of tasks that 
will run on it as soon as they become executable. 
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3 Heuristic Task Scheduling Algorithms 

We consider two algorithms in this work, namely: a greedy algorithm called DES+ 
MFT and a parallel tabu search algorithm, here referred as TSpar. Although both 
of them are heuristic, they present different fundamental characteristics. The former 
is a construction algorithm, which iteratively assigns tasks to processors based on 
heuristic criteria, taking into account the static information of the system model. 
On thc other hand, the TSpar is a synchronous parallel implementation of a tabu 
search metaheuristic algorithm, which guides an aggressive local search procedure 
over the task scheduling solution space. 

3.1 The DES+MFT Greedy Algorithm 

DES+MFT stands for Determini3tic Execution Simulation with Minimum Fini3h 
Time [10]. This algorithm iteratively schedules tasks in a partia! order according to 
the simulated execution of the parallel application (DES), based on the estimated 
task execution times, while scheduling decisions are made according to the minimum 
finishing time {MFT) for each "schedulable" task. Figure 1 describes the DES+MFT 
in a procedural scheme. In this scheme, the clock variable measures the evolution 
of the execution. At the end of this procedure, c(s) = clock is the cost of the 
obtained solution, i.e., the makespan of the parallel application when submitted to 
the DES+MFT processor assignment. At each iteration, certain tasks are scheduled 
to processors, building an ordered list of tasks associated to each processor. This 
is the actual execution order if tasks were to be executed in an ideal system with 
estimated execution times. During this deterministic execution simulation, each 
task tk E T assumes one of the following states at each time instant: non-executable, 
executable, executing, executed. At the same time, each processor P; E P alternates 
between two different states: free and busy. A processor P; is said to be busy if it 
has a task in the executing state allocated to it. 

Every task starts in the non-executable state. It will change to the executable state 
if it has no predecessors or if all of its predecessors have achieved the executed 
state. Every executable task is considered as a candidate for scheduling at each time 
instant. 

A task will be effectively scheduled (changing to the executing state), when the 
processor (chosen from the entire processor set), which determines the minimum 
finishing time for that task, becomes free. Otherwise the task will not be assigned 
to any processor until a further iteration. This is the so called "look-ahead" fea­
ture of this greedy algorithm. To determine the minimum finishing time of each 
task-processor pair, in the moment where scheduling decisions are eventually made, 
the algorithm maintains a record of the closest instant in future simulation time in 
which each processor will be available. This means that there may be iterations 
where schedulable tasks are not selected, because the processar presumed by the 
algorithm as the best one is not available (i.e. it is busy) at that moment. After 
a task is scheduled, the algorithm simulates the elapsed execution time, using the 
variable clock, which is updated accordingly. It should be noticed that DES+MFT, 
like most greedy algorithms, does not come back to re-evaluate the scheduling deci­
sions taken in previous iterations. This means that besides the "look-ahead" feature, 
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it is not capable of making changes in scheduling decisions made in previous iter­
ations, which were based on snapshots of the simulated execution. Consequently, 
these scheduling decisions depend on how strongly tasks are tied through precedence 
relations, because they determine the order in which tasks may possibly be sched­
uled. Differently, the TSpar algorithm, departing from the initial solution obtained 
by the DES+MFT algorithm, evaluates many other possible assignments, which 
eventually improve the makespan of the parallel application, as we can see in the 
following section. 

3.2 The Parallel Tabu Search Algorithm 

To describe the TSpar algorithm, we first considera general combinatorial optimiza­
tion problem ( P) formulated as to 

minimize c(s) 
subject to s E S, 

where S is a discrete set of feasible solutions. Local search approaches for solving 
problem (P) are based on search procedures in the solution space S starting from an 
initial solution s0 E S . At each iteration, a heuristic is used to obtain a new solution 
s' in the neighborhood N(s) of the current solution s, through slight changes in s. 
A move is an atomic change which transforms the current solution, s, into one of its 
neighbors, say s. Thus, movevalue = c(s)- c(s) is the difference between the value 
of the cost function after the move, c(s), and the value of the cost function before 
the move, c(s). Every feasible solution sE N(s) is evaluated according to the cost 
function c(.), which is eventually optimized. The current solution moves smoothly 
towards better neighbor solutions, enhancing the best obtained solution s•. 

Tabu search [6, 7J may be described as a higher levei heuristic for solving minimiza­
tion problems, designed to guide other hill-descending heuristics in order to escape 
from local optima. Thus, tabu search is an adaptive search technique that aims to 
intelligently exploring the solution space in search of good, hopefully optimal, solu­
tions. The learning capability determines that tabu search supplies richer knowledge 
about the instance of the problem to be solved than that generated in other iterative 
algorithms. In the case of the task scheduling problem considered in this paper, the 
cost of a solution is given by its makespan, i.e., the overall execution time of the 
parallel application. The neighborhood N(s) of the current solution s is the set of 
ali solutions differing from it by only a single assignment. If sE N(s), then there 
is only one task t; E T for which A,(t;) :f: A 1(t;). Each move may be characterized 
by a simple representation given by (A,(t;), t;, p,), as far as the position task t; will 
occupy in the task list of processor p1 is uniquely defined. I f the best move takes the 
current solution s to a best neighbor solution s' degenerating its cost function, i.e. 
c(s') ~ c(s), then the reverse move must be prohibited during a certain number of 
iterations (tabu tenure) in order to avoid cycling. However, there are situations in 
which a recently prohibited move, i f applied after some iterations, will provide a bet­
ter solution than the best one found by the algorithm so far, despite its prohibited 
status. In these cases, an aspiration criterion is used to override this prohibition, 
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DES+MFT algorithm 
begin 

clock .-O 
state(p1) 4- frec VpJ E P 
start(tk), finish(tk) 4- O Vtk E T 
while (3tk E T I state(tk) 'I cxecuted) do 
begin 

for (each tk E T I state(tk) = executable and Pi E P) do 
obtain thc pair (t,p1) with the minimum finish time 
if (state(p1) = frec) then 
begin 

state(tr) i- exccuting 
A.(tr) = p; 
state(p;) 4- busy 
start(tr) 4- clock 
finish(tr) 4- start(tr) + p(tr,p;) 

end 
Let i be such that finish(t;) = mint.ET I•tote(t•)=cxccutingUinish(tt)} 
clock .- finish(t;) 
for (each tk E T I state(t•) = cxecuting and finish(t.) = clock) do 
begin 

state(tk) 4- executed 
state(A.(tk)) 4- free 

end 
end 
c(s) 4- clock 

end 

------------------------------------------------------~~-

Figure 1: DES+MFT algorithm description. 

enabling the move to be executed. In [12) and [13) the reader will find more detailed 
description of the tabu search algorithm. 

Severa! implementations have been proposed in recent literature for the paralleliza­
tion of tabu search [2, 3, 4, 17). The parallelization schemes proposed in [13) for the 
tabu search scheduling algorithm have a synchronization point at the end of each 
iteration o f the search. The search for the best neighbor during each iteration is per­
formed in parallel and different sets of neighbor solutions are analyzed by each task. 
This typically characterizes a strict domain decomposition parallelization scheme. 

Two basic parallel programming models were used: Master-Slave (MS) and Single­
Program-Multiple-Data (SPMD). In both models, parallel strategies determine a 
rigid synchronized cooperation scheme, and differences arise essentially in the way 
information is exchanged between processes at the end of each tabu search iteration. 
Four different strategies were implemented, derived from these two models. In the 
SPMD model, communication follows a ring structure. In the master-slave model, 
slaves communicate strictly with the master, and the number and size of the domain 
partitions determine two different approaches: single and multi pie partitioning (MS­
SP and MS-MP, respectively). 

In both master-slave strategies, neighborhood partitions are distributed to ali the 
slaves. The master is responsible for selecting the best move at the end of each 
iteration among ali partia! results. The best move is then sent to ali the slaves 
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in arder to start the next iteration from a new current solution. In the MS-MP 
approach, to attend load balancing requircments, the distribution of the domain 
partitions is dane on a work-demand-basis. The neighborhood is divided in equal size 
partitions, but thc number of partitions is significantly grcater than the number of 
slaves. Whcn a slave ends its partia! search over a certain partition, the master may 
eventually send to it a new partition, if there are any stillleft to be searched. More 
work will be then given to the slaves wbich are less loaded (and are thus working 
faster) , and the master dedicates itself exclusively to the partition distribution. 

The promising results obtained through parallelization led to the possibi!ity of more 
effectively evaluating solution quality of the proposed tabu search task scheduling 
algorithm using its parallel implementation. Considering both sequential and parai­
lei implementation, solution quality was analyzed according to different parameters 
and strategies, which needed to fully specify the tabu search algorithm with a cer­
tain variety of application model parameters (such as task graph structures, number 
of tasks, serial fraction and task service demands) and system configurations (such 
as number of processors and architecture heterogeneity measured by the processar 
power ratio). It was shown that the tabu search algorithm obtained better results, 
i.e. shorter completion times for parallel applications, improving up to 40% the 
makespan obtained by the DES+MFT algorithm, which in fact is the most appro­
priate grecdy algorithm previously published in the literature (12, 14]. We have used 
the MS-MP parallel version to carry out the experimentation reported here, because 
it has demonstrated the best speedup results in most of the studied cases (13]. 

4 Experimental Results 

In this section, we depict some experimental results obtained from the execution 
of synthetic parallel programs scheduled with both the greedy and tabu search al­
gorithms. We first present some results derived from the estimated improvement 
analysis of tabu search schedules over those generated by the DES+MFT, which 
is the initial solution for the tabu search algorithm. The performance criterium is 
the makespan (solution cost) estimated by both algorithms. In the following, we 
describe ANDES [8], a framework for performance evaluation using parallel pro­
gram models and synthetic programs. Finally, using this framework, we compare 
execution times of synthetic parallel programs scheduled by DES+MFT and TSpar 
algorithms. 

4 .1 Estimated Performance Analysis 

DES+MFT and TSpar scheduling algorithms were implemented using ANSI C and 
PVM (Parallel Virtual Machine) (16]. The schedule quality is estimated based on 
the computed makespan. In other words, the makespan represents the schedule cost, 
c(.), which isto be minimized. 

Onc of the main goals is to achieve makespan reduction when changing from the 
schedule produced by DES+MFT to the one produced by TSpar. Thus, solution 
quality is measured by relative cost reduction, n, computed as 
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'R.= c(so) - c(s•) 
c(so) 

where s0 is the initial solution obtained by the greedy algorithm DES+MFT and 
s• is the best solution found by the TSpar algorithm. 

In (12}, relative cost reductions of up to 30% were obtained considering applica­
tions modeled by diamond-shaped precedence graphs. In [14}, new results were pre­
sented considering other structures for the parallel applications. Part of the ANDES 
benchmark was then used: other types of diamond-shaped graphs (Dia.mond3 and 
Diamond4), iterative graphs (FFT and PDE2), divide-and-conquer strategies (Div­
conq), typical matrix computation structures (Gauss), and master-slave rnodels 
(MS3). We can summarize the following results of these above experiments: 

• A parallel application is said to be serialized by a certain processor assign­
ment algorithm when all of its tasks are scheduled to one unique processor. 
When the serial fraction (F,) and/or the processar power ratio (PPR) are 
very high, the best solution is usually obtained through the serialization of 
the application over the heterogeneous processar, which has greater process­
ing capacity. This seems to be clear if we imagine two extreme cases: F, = 1 
or P P R ~ oo. In the first case, we face a totally serial application, which 
must be executed on the heterogeneous processar (F, corresponds to the serial 
fraction defined as the fraction of the total parallel execution time when just 
one task is executing even if infinite processors were available) . In the latter 
case, the heterogeneous processor is able to execute any task in infinitesimal 
time, consequently serialization determines again the best performance. 

In certain circumstances, serialization will be performed by the DES+MFT 
algorithm, when there is still available parallelism to be explored in the par­
aliei application. In these cases, the tabu search algorithm will start from a 
scrializcd initial schedule, and more easily will be capable of finding differ­
ent assignments which greatly reduce the overall makespan of the application, 
augmenting the relative cost reduction. 

For very low and very high PPR values low or null makespan improvements 
are obtained. A low PPR value means low heterogeneity degree, and, in 
this case, the greedy algorithm improvements are suflicient (it is suitable for 
homogeneous configurations). On the other end of the heterogeneity range, 
very high PPR values mean that serialization on the very fast processar is the 
best solution. In these cases both the DES+MFT and TSpar algorithms are 
able of serializing the application, so makespan improvements are not observed; 

• Between the two extremes of the PPR value range, we find a mountain-like 
peak of improvements, culminating with a PPR that gives the best relative 
performance achieved by the TSpar algorithm. This point is referred as the 
P P R,eak point. The P P R,eok point is highly dependent on the shape of the 
input task graph. Groups of similar task graphs have a similar behavior. For 
example, diamond-shaped graphs present a low PPR,eok (around 5). On the 
other hand, iterative graphs produce a more smooth improvement curve, with 
higher P P Rpeo~; ( around 20 o r 30), depending on the size o f the task graph; 
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• Not only the structure of the task graph is criticai in the relative quality 
improvement analysis. The number of processors available for scheduling as­
signments infiuence the results. The relationship between solution quality 
improvements and the number of processors is variable depending on the struc­
ture of the task graph. On one hand, the greater the number of processors 
we have, the less heterogeneous the system becomes and thus lower relative 
cost reduction is achieved. However, a greater number of processors also rep­
resents more available parallelism and therefore a greater number of different 
scheduling possibilities arise. 

Figure 2 presents some estimated relative cost reductions computed between DES+MFT 
and TSpar algorithms. In (14J, Porto et al. measured improvements for discrete val-
ues of PPR {2, 5, 10, 20, ... , depending on the input) . Figure 3 presents a more 
detailed experiment, with a fine variation of PPR values and number of processors, 
considering the Diamond3 benchmark with 66 tasks . 
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Figure 2: Relative cost reduction n versus P P R for two different sizes of Diamond3, 
· Divconq, FFT, Gauss, and MS3 graphs (m corresponds to the number of processofli· 
to which the tasks are scheduled). 
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Figure 3: Detailed relative cost reduction n versus PPR for Diamond3 graph (m 
corresponds to the number of processors to which the tasks are scheduled) . 

4.2 The Experimental Framework 

The ANDES Environment - ANDES [14) is a PVM-based parallel tool that sup­
ports performance evaluation of parallel programs at the prediction levei. ANDES 
considers the cxisting complex overheads of parallel computers. This is achieved 
through the use of synthetic parallel executions directly on the parallel machine. In 
a synthctic parallel execution, the resources of the parallcl computer are used in a 
controlled way, but no code is generated. All the steps from the interpretation of the 
parallel program graph-based and of the parallel machine models to the synthetic 
execution on the target parallel machine are automatically managed by ANDES. 
ANDES finally computes performance metrics from the execution of that workload 
implemented according to mapping and/or scheduling strategies. Synthetic execu­
tion is the chosen performance technique due to the easy contrai of parameters as 
well as the real environment in use. The idea is to conjugate the best of model­
based approaches with the best of realistic parallel executions. ANDES has been 
!ISed to refine analytical and simulation analysis. With the current high availability 
of parallcl systems, the results of ANDES have been proved to be precise and useful. 

The Parallel System - ANDES along with the synthetic parallel programs were 
executed on an IBM SP multicomputer composed of 32 RS6000 RISC microproces­
sors with 64 megabytes of RAM. The processors are interconnected by a high-speed 
switch (bidirectional with nominal speed of 80 megabytes per second). 
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The Benchmarks - In order to compare estimated and observed improvements 
of the overall execution times of real parallel synthetic programs, we have used the 
following benchmark (part of the ANDES package): (i) Diamond3 with 66 tasks; {ii) 
FFT with 194 tasks; {iii)Gauss with 192 tasks; and {iv) Divconq with 46 tasks. 

This benchmark picks representative task graphs from the ones studied in [14]. 
Small and larger task graphs are used. The TSpar was executed using 4 processors 
of the IBM SP. The estimated quality of both TSpar and DES+MFT algorithms is 
computed using a conventional C procedure for computing the makespan of the task 
graphs, detailed in Figure 4 (very similar to the DES+MFT description). The final 
value of clock is the actual makespan. Each graph of the benchmark is scheduled to 
2, 4, 8, and 16 processors. 

makespan computation algorithm 
begin 

Let s = (A,(tl), ... ,A,(tn)) be a fcasible solution for the scheduling problem, i.e., 
for every k = 1, ... , n , A,(t.t) = PJ for some Pi E P 

clock i- o 
state(pi) +-- free '1/pi E P 
.!tart(t.t), finish(t.t) i- O Vt.t E T 
while (3t.t E T I state(t.t) ~ executed) do 
begin 

for (each t.t E T I state(t.t) = executable) do 
if (state(A,( t.t)) = free) then 
begin 

state(t.t) +-- executing 
state(A,(t.t)) i- busy 
start(t.t) +-- clock 
fínish(t.t ) i- start(t.t) + ll(t,t,A,(t.t)) 

end 
Let i be such that finish(t ;) = min,.eTf.tate(t•)=executing{/inish(t,t)} 
clock i- fini.sh(t;) 
for (each t.t E T I state(t.t) = executing and f inish(tt ) = clock) do 
begin 

state( t.t) i- executed 
state(A,(t.t)) +-- free 

end 
end 
c(s) i- clock 

end 

Figure 4: Computation of the makespan of a given schedule. 

The gencrated schedules are read by ANDES which generates the synthetic load to 
be interpreted by ANDES-Synth, the synthetic execution kernel. Synthetic loads 
are then executed according to the given schedules. 

In order to simulate heterogeneity, the size of synthetic loops corresponding to tasks 
allocated to the faster processar are reduced by a factor corresponding to the PPR 
itsclf. Thus, a PPR of 2 means that loops to be executed on the heterogeneous 
processar are reduced by half. The scheduling algorithms consider communications 
with zero overhead. This corresponds in ANDES to communications of a single byte 
{in the IBM SP machine, such message transmitted through the switch determines 
a latency of around 47.03 microseconds [11)). 
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Preliminary experiments were performed on an idle machine. The standard devia­
tion was always under 1% for 10 consecutive executions. Considering this low degree 
of variability, we have performed measures using a sample of size 5. 

4.3 Results and Analysis 

Figures 5, 6, 7, and 8 present, in the same graphic, estimated and measured rei­
ative cost reductions. The chosen PPR value range includes, for all graphics, the 
higher relative cost reductions achieved by TSpar. Differences between estimated 
and observed improvements are under 5% for all experiments. 

Our results demonstrated by the similarity between estimated and observed relative 
cost reductions that the makespan computation used in both scheduling algorithms 
is in fact reliable. This is a complctely deterministic computation. On the otber 
hand, the observed execution times are definitely non-deterministic due to overheads 
from the operating system and the communication subsystem. However, the execu­
tion times presented very low variability. Therefore, these overbeads do not influence 
significantly tbe experimental execution times, i.e. the makespan algorithm shows 
itself to be very useful to the static scheduling decisions based on estimated data. 
Although intuitive, this conclusion is not obvious and experiments were necessary 
to validate it. 

Taking into account a precise makespan computation, one important consequence is 
that tabu search improvements are real and significant. This was foreseen from pre­
vious works, based on the estimated relative cost reductions between DES+MFT 
and TSpar algorithms. In this paper, we demonstrate that these improvements also 
occur in more realistic execution environments. 

Another interesting result is that the P P J4ea~c is not always the same. As a matter 
of fact, there is a range of P P R values where the best relative cost reductions 
vary. This irregular behavior occurs due to the irregular searcb through the solution 
space performed by the tabu search algorithm, which depends on different heuristic 
parameters such as tabu list size, number of iterations without improvements, and 
aspiration criteria. Metabeuristics, sucb as tabu search, frequently depend on a 

· fine tuning stage, where parameters are tested and calibrated. After this step, they 
remain uncbanged, and in some test cases thcy are not always set to achieve the 
best results. 

Finally, ANDES bas been proven to be a useful tool in the validation of scbeduling 
algorithms. The direct combination of both scheduling algorithms and the synthetic 
execution runtime system provided an environment where response time measure­
ments could be quickly obtained. 
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Figure 5: Estimated (est) and observed (obs) relative cost reduction 'R versus PPR 
for Diamond3 graph (m corresponds to the number of processors on which the tasks 
are scheduled). 
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Figure 6: Estimated (est) and observed (obs) relative cost reduction 'R versus PPR 
for FFT graph (m corresponds to the number of processors on which the tasks are 
scheduled). 
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Figure 7: Estimated (est) and observed (obs) relative cost reduction n versus PPR 
for Divconq graph (m corresponds to the number of processors on which the tasks 
are scheduled). 
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Figure 8: Estimated (est) and observed (obs) relative cost reduction n versus PPR 
for Gauss graph (m corresponds to the number of processors on which the tasks are 
scheduled). 
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5 Final Remarks 

This paper presents an experimental validation of makespan improvements of two 
scheduling algorithms: a greedy construction algorithm and a tabu search based 
algorithm. Synthetic parallel executions were performed using the scheduled graph 
costs. These synthetic executions were performed on a real parallel machine (IBM 
SP). The estimated and observed response times improvements are very similar, 
representing the low impact of system overheads on makespan improvement esti­
mation. This guarantees a reliable cost function for static scheduling algorithms 
and confirms the actual better results of the tabu search metaheuristic applied to 
scheduling problems. 

References 

[1) R.S. BARR, B.L. GOLOEN, J .P . KELLY, M.G.C. RESENDE, and W.R. 
STEWART, "Designing and Reporting on Computational Experiments with 
Heuristic Methods", Journal oj Heuristics 1 (1995), 9-32. 

[2) T.G. CRAINIC, M. TOULOUSE, and M. GENDREAU, "Towards a Taxonomy 
of Parallel Tabu Search Algorithms" , Research Report CRT-933, Centre de 
Recherche sur les Transports, Université de Montréal, 1993. 

[3] C.-N. FIECHTER "A Parallel Tabu Search Algorithm for Large Traveling Sales­
man Problems", Discrete Applied Mathematics 51 (1994), 243-267. 

[4] B. GARCIA and M. TouLOUSE, "A Parallel Tabu Search for the Vehicle Rout­
ing Problem with Time Windows" , Computers and Operations Research 21 
(1994), 1025- 1033. 

[5] M .R. GAREY and D .S. JOHNSON, Computers and Intractability: A Guide to 
the Theory oj NP-Completeness, W.H. Freeman and Company, San Francisco, 
1979. 

[6] F. GLOVER and M. LAGUNA, "Tabu Search", Chapter 3 in Modem Heuristic 
Techniques for Combinatorial Problems (C.R. Reeves, cd.), 70-150, Blackwell 
Scientific Publications, Oxford, 1992. 

[7] F. GLOVER, E. TAILLARD, and D. DE WERRA, "A User's Guide to Tabu 
Search", Annals oj Operations Research 41 (1993), 3-28. 

[8) J.P. KITAJIMA, B. PLATEAU, P.BOUVRY, and D. TRYSTRAM, "A method 
and a tool for performance evaluation. A case study: Evaluating mapping 
strategies", Proceedings of the 1994 Cray Users Group Meeting, Tours, 1994. 

[9] D.A. MENASCÉ and V. ALMEIDA, "Cost-Performance Analysis of Hetero­
geneity in Supercomputer Architectures", Proceedings o f the Supercomputing '90 
Conjerence, New York, 1990. 

[10] D.A. MENASCÉ and S.C.S. PoRTO, "Processor Assignment in Heterogeneous 
Parallel Architectures", Proceedings oj the IEEE Intemational Parallel Pro­
cessing Symposium, 186-191, Beverly Hills, 1992. 

267 



. ' 

[11) J. MIGUEL, A. ARRUABARRENA, R. BEIVIDE, and J. A. GREGORIO, "As­
sessing the performance of the new IBM SP2 communication subsystem", IEEE 
Parallel & Distributed Technology 4{1996), 12-22. 

[12) S.C.S. PORTO and C.C. RIBEIRO, "A Tabu Search Approach to Task Schedul­
ing on Heterogeneous Processors under Precedence Constraints" , International 
Journal of High-Speed Computing 7 {1995), 45- 71. 

[13) S.C.S. PORTO and C.C. RIBEIRO, "Parallel Tabu Search Message-Passing 
Synchronous Strategies for Task Scheduling under Precedence Constraints", 
Journal of Heuristics 1 {1996), 207-233. 

[14) S .C.S. PORTO, J .P .W. KITAJIMA, and C.C. RIBEIRO, "Performance EvahJ­
ation of a Parallel Tabu Search Scheduling Algorithm", Solving Combinatorial 
Problems in Parallel (joint workshop with the International Parallel Processing 
Symposium'91), April1-5 1997, Geneva. 

{15) C.R. REEVES, Chapter 1 in Modem Heuristic Techniques for Combinatorial 
Problems (C.R. Reeves, ed.), Blackwell Scientific Publications, Oxford, 1992. 

[16) V . S. SuNDERAM, G. A. GEIST, J. DONGARRA, and R . MANCHEK, "The 
PVM concurrent computing system: evolution, experiences, and trends", Par­
allel Computing 20{1994) , 531-546. 

[17) E . TAILLARD, "Parallel Taboo Search Techniques for the Job Shop Scheduling 
Problem", ORSA Journal on Computing 6 {1994), 108-117 . 

268 




