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Abstract 

This paper presents an overview ofthe FALCON MATLAB-to-Fortran 90 compiler. 
FA~CON is a programming environment for the development of high-performance 
scientific programa. It combines static and dynamic inference methods to translate 
MATLAB programa into Fortran 90. The statit inference is supported with advanced 
value propagation techniques and symbolic algorithms for subscript analysis. The 
experimenta presented in this paper show that FALCON's MATLAB compiler can 
generate code that performs more than 1000 times faster than the interpreted version 
ofMATLAB and substantially faster than a commercially-available MATLAB compiler 
on one processo r o f an SGI Power Challenge. Furthermore, for mosto f the programs we 
have tested, the compiler-generated codes are as fast as the corresponding hand-written 
programa. 

Resumo 

Esse artigo apresenta uma visão geral do compilador de MATLAB para Fortran 90 
desenvolvido para o ambiente de programação para processamento de alto desempenho 
FALCON. Esse compilador utiliza técnicas estáticas e dinâmicas para inferência. Es­
sas técnicas sao otimizadas com análise simbólica e com métodos desenvolvidos para 
determinação do domínio das variáveis. Os testes de desempenho apresentados nesse 
artigo mostram que os programas gerados pelo compilador podem ser executados até 
1000 vezes mais rápidos que a versão interpretada pelo MATLAB. Esses programas 
tambem tem um desempenho muito superior aos programas gerados pelo compilador 
MATLAB disponível comercialmente. Finalmente, para a mairia dos programas tes­
tados, o compilador gerou programas que rodam tão rápido quanto versões escritas a 
mão para os mesmos algoritmos. 

•Thia work wu aupporled in part by ~my contract DABT63-92·C.0033. This work is not neceuarily 
rcpr-ntativc of thc poaitions or policica of tbc Army or tbc Govcmmcnt. 
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1 Introduction 

The development of software for scientific computation on high-performance computers is a 
very difficult and time-consuming task, requiring not only an understanding of the algorithms 
to be implemented, but also a detailed knowledge of the target machine and the software 
environment. We believe the development of scientific programs should start with a language 
as dose as possible to the mathematical description of the problem, albeit in the form 
of a simple and easy-to-use procedural language. The use of a very high-level language 
facilitates the development process by enhancing the ease of programming and portability 
of applications. 

lnteractive array languages such as APL [12J and MATLAB [13J are powerful program­
ming tools for the development of programs for numerical computation. A convenient feature 
in these languages that facilitates prototyping of applications is the lack of specification of 
dimensions and intrinsic type of variables. Moreover, interactive array languages are usually 
contained within problem-solving environments which include easy-to-use facilities for dis­
playing results both graphically and in tabular form [IOJ. Furthermore, the interactive nature 
of these languages provide an environment that tends to increase productivity in software 
development. The trade-off is that in order to provide this nicer prograrnming environment, 
array languages are usually interpreted, with the resulting negative effect on performance. 

The option of prototyping the prograrn in an interactive language like MATLAB and 
then, after program development is complete, rewriting in a compiled language, like C or 
Fortran, is often mentioned as a possibility, but seldom done. The situation in practice is 
that the overhead of reimplementing programs in a different language is sufficiently large 
that most people never get around to doing it. Clearly the best solution is for programmers 
to use a compiler that generates efficient code from MATLAB prograrns. 

FALCON [8, 9J is a programming environment for the development of scientific libraries 
and applications. It attempts to facilitate the development process by taking advantage of 
both the power of interactive array languages and the performance of compiled languages. 
One of FALCON's main components is a MATLAB to Fortran 90 compiler. Some of the 
issues that need to be addressed when compiling MATLAB programs are the lack of intrinsic 
type definitions and specification of dimensions of variables, the possibility that any of these 
variable properties could change during run-time, and the overload of operators that have 
different semantics depending on the rank of the variables being operated. Our ultimate 
goal is to generate parallel code by integrating FALCON with Polaris [3, 4J, a parallelizing 
compiler developed at Illinois. 

This paper describes the main ideas of FALCON's MATLAB to Fortran 90 compiler and 
presents performance comparisons of Fortran 90 programs generated by FALCON against 
the interpreted MATLAB programs, C programs generated by a commercial MATLAB to C 
compiler (MCC) [14J, and Fortran 90 hand coded programs for the same algorithms. The rest 
of this paper is organized as follows: Section 2 presents an overview of FALCON's MATLAB 
to Fortran 90 compiler. Section 3 discuss experimental results. Finally, our conclusions are 
presented in Section 4. 
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2 FALCON's Compiler Overview 

MATLAB is a procedurallanguage that operates on only one lcind of data structure: a rect­
angular numerical matrix [13]. A MATLAB program consists of one or more Fortran-like 
statements which may involve function calls. There are two types of functions in MATLAB: 
built-ins and M-files. Built-in functions are intrinsic functions, such as SQRT, JNV (for ma­
trix inverse), and EIG (for eigenvalues and eigenvectors). M-files consist of a sequence of 
MATLAB statements, which possibly include references to other M-files. 

The main challenge of the MATLAB compiler is to perform inference on the input pro­
gram to determine the following variable properties, necessary to generate the Fortran 90 
declarations and to optimize the output code: 

intrinsic type: which could be COMPLEX, REAL, INTEGER, or LOGJCAL; 

rank: which could be SCALAR, VECTOR1 or MATRIXj and 

shape: which indicates the size of each dimension. 

FALCON's MATLAB compiler uses conventional data-flow analysis [1], and inference 
techniques that are either static inference mechanisms used to generate declarations at com­
pile time, or dynamic strategies that are applied at execution time when a lack of statically 
available information prevents the automatic generation of a particular variable's declara­
tion. The static inference mechanism was built upon techniques developed for SETL [16] 
and APL [5], extended to deal with peculiarities of the MATLAB language. Also, additional 
techniques were used to improve accuracy and performance. Examples of these additional 
techniques are advanced value propagation techniques and symbolic algorithms for subscript 
analysis [7] . 

FALCON's static inference algorithms are applied to a Static Single Assignment (SSA) [6] 
representation of the MATLAB program in the form of an abstract synt~a tree (AST) [1]. 
Before the AST is generated, all function calls to M-files are inlined in the program. Inlining 
makes it easier to perform the program analysis on a function for the correct combination 
of input variables, as subsequent calls to the same function may have input variables with 
different types or ranks. 

The static inference mechanism extracts information from four main sources: input files; 
program constants; operators; and built-in functions. From input files the compiler extracts 
the initial intrinsic type and rank of the variables being loaded. Variable shapes are not 
extracted from the input files because they are much more likely than intrinsic type and 
rank to differ between runs. Program constants are used for the inference of intrinsic type, 
rank, and shape. From MATLAB operators we extract intrinsic type information, in the 
case of operators that produce logical values, and rank and shape information, by talcing into 
consideration the conformability requirements imposed by the operators. Finally, the fourth 
source of information comes from MATLAB built-in functions that can provide inference 
information for their output parameters based on type of the input parameters. 
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Although MATLAB operates on REAL and COMPLEX values only, FALCON's static infer­
ence mechanism also considera INTEGER and LOGICAL values. The intrinsic types are inferred 
according to the following type hierarchy: LOGICAL -< INTEGER -< REAL -< COMPLEX. 

This hierarchy means that it is correct for variables with INTEGER values to be declared 
as REAL or COMPLEX and for variables with REAL values to be declared as COMPLEX. In fact, 
intrinsic type inference could be avoided if all variables were considered COMPLEX. This, 
however, would affect the performance o f the code due to the number of additional arithmetic 
operations required by COMPLEX variables. Hence, the determination of the correct variable 
intrinsic type during compile time is very important for the efficiency of the generated code. 

The static mechanism for intrinsic type inference propagates intrinsic types through ex­
pressions using a type algebra similar to that described in [16J for SETL. For the case of 
logical operators, the result is always considered to be of intrinsic type LOGICAL. For the 
other operators and built-in functions, this algebra operates on the intrinsic type o f MATLAB 
objects and is implemented using tables for all operations. For each operation these tables 
contain the intrinsic type of the result as a function of the intrinsic type of the operands. 
When the intrinsic types of the operands are different, the static type inference promotes the 
output of the expression to be of an intrinsic type that subsumes the intrinsic types of both 
operands, according to the intrinsic type hierarchy described above. In some cases, such as 
division, the output is promoted to a higher intrinsic type from the type hierarchy, even if 
the intrinsic type of the operators are the same. for example, the division of two INTEGER 
variables result in an output of intrinsic type REAL. 

In some cases, the outcome of an expression or a built-in function can be of different 
intrinsic types, depending on the values of the operands (such as the power operator, square 
root, and inverse trigonometric functions) . For example, the outcome of J1 -A would 
be REAL if A $ 1, and COMPLEX otherwise. We refer to these expressions as ambiguous­
typed expressions. In these cases, to improve the accuracy of the intrinsic type inference, we 
perform value-propagation analysis [7J . This value-propagation analysis keeps track statically 
of the range of possible values for each variable in the program. If this range of values is 
not sufficient to determine the intrinsic type of an arnbiguous-typed expression, the output 
intrinsic type of the expression is promoted to COMPLEX. 

Rank and shape information are obtained with the use of conformability analysis. We de­
fine the operators that require conformability for only one of the dimensions of the operands 
(e.g., "•" , "/", and "\") as a single-dimension conformable operator, and operators that 
require both operands to have the same shape (e.g., +, -, and logical operators) as a shape 
conformable operator. The conformability analysis uses tables such as Table 1 for the rank 
and shape inference for the multiplication operator (a single-dimension conformable opera­
tor) and Table 2 for the shape inference of a shape conformable operator. In these tables 
the shape information is indicated with the letters (m, n, p, and q) that represent the exact 
values for the number of rows or the number of columns. Column VECTORS and row VEC­
TORS are represented as VECTOR(p,1) and VECTOR(1,q) respectively, and UNKNOWN values 
are represented with "?" . 

If any of the variable attributes necessary for the generation of the Fortran 90 declarations 
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A•B B 
A SCALAR VECTOR(p,1) VECTOR(1 ,q) MATRIX(p,n) 

SCALAR SCALAR VECTOR(p,l) VECTOR(1 ,q) MATRIX(p,n) 
VECTOR(p,1) VECTOR(p,l) erro r MATRIX(p ,q) erro r 
VECTOR(1,q) VECTOR(1,q) SCALAR1 erro r VECTOR(1,m)1 

MATRIX(n,q) MATRIX(n,q) VECTOR(n,1)1 erro r MATRIX(n,m)1 

10nly if p = q; otherwise error. 

Table 1: Rank and shape inference for the multiplication operator. 

A+B B 
SCALAR VECTOR NOTMATRIX NOTSCALAR MATRIX UNKNOWN 

A (1,1) (p,1) (1,q) (1,?) (?,1) (p,?J (?,q) (p,q} (?,?) 
(1,1) (1,1) (p,1) (l,q) (1,?) (? ,1) (p,?) (?,q) (p,q) (?,?) 
(p,l) (1,1) (p,1) erro r (p,1) (p,1) (p,1) erro r erro r (p,1) 
(1,q) (1,q) erro r (1,q) (1,q) (1,q) erro r (1,q) erro r (1,q) 
(1,?) (1,?) (p,l) (l,q) (1,?) (?,?) (p,?) (?,q) (p,q) (?I?) 
(? ,1) (?,1) (p,1) (1,q) (?,?) (?,1) (p,?) . (?,q) (p,q) (? ,?) 
(p,?) (p,?) (p,1) erro r (p,?) (p,?) (p,?) erro r (p,q} (p,?} 
(?,q} (?,q} erro r (l,q} (?,q) (? ,q) erro r (?,q) (p,q) (? ,q) 
(p,q) (p,q) erro r erro r (p,q) (p,q) (p,q) (p,q) (p,q) (p,q) 
(?, ?) (? ,?) (p,1) (1 ,q) (?, ?) (?,?) (p,?) (?,q) (p,q) (?,?) 

Table 2: Shape inference for a conformable operator. 

(i.e., intrinsic type, number of rows, and number of columns) have an UNKNOWN value at 
the end of the static inference phase, dynamic code to determine the necessary attribute at 
run-time is generated. FALCON associates tags for each variable that have any UNKNOWN 
attribute value. These tags are updated at execution time. Based on these tags, which are 
stored in shadow variables, conditional statements are used to allocate the necessary space 
and to select the operation on variables of the appropriate intrinsic type. 

To avoid the excessive number of conditional tests necessary to detect the intrinsic type of 
the outcome of an expression, the dynamic inference mechanism considers only two intrinsic 
types: REAL and COMPLEX. If the intrinsic type of a variable can be determined statically, 
a Fortran declaration for the inferred intrinsic type is generated. Otherwise, a conditional 
statement is generated to test during run-time the shadow value for the intrinsic type. Each 
branch of the conditional statement receives a clone of the operation that uses the variable 
requiring the shadow test. In one branch the variable is assumed to be of type COMPLEX, 
while in the other it is assumed to be of type REAL. In addition, the variable is renamed 
md declared twice, once for each dynamic intrinsic type. 

Dynamic code is also generated to compute during run-time the necessary space for 
dynamic allocation. To this end, two shadow variables are used to keep track of variable 
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51: if (L.D1 .ne. B.....D1 .or. A.....D2 .ne. B.....D2) then 
52: if (ALLOCATED(A)) DEALLOCATE(A) 
53: A .....Di = B.....D1 
54: L . .D2 = BJ2 
55: ALLOCATE(A(A.....D1,A.....D2)) 
56: end if 
57: A = B + 0.5 

Figure 1: Example of shadow variables for shape. 

dimensions during execution-time. So, for example, if the shape of B in an assignment of the 
form A=B+O. 5 were UNKNOWN after the static phase, the compiler would generate the code 
presented in Figure 1. This code uses shadow variables A.....D1, A.....D2, B.....D1, and B.....D2, to 
store the run-time information about the size of each dimension of A and B. These shadow 
variables are initialized to zero at the beginning of the program. This figure shows the general 
form for the dynamic allocation. However, only the necessary statements are generated. If, 
for example, this were the first definition of variable A, statements S1 and S2, that are needed 
only to reallocate the variable, would not be generated. 

Some optirnizations in the shape inference mechanism are necessary to avoid the excessive 
number of tests and allocations. To this end, two static techniques were developed to support 
dynarnic shape inference: coverage analysis and efficient placement o f dynamic allocation [7]. 
The objective of the first technique is to determine whether an indexed array assignment 
may increase the size of the array. If this information is known at compile time, it is not 
necessary to generate an allocation test for the indexed assignment. To determine whether 
there is definition coverage, we use a simplified version of a demand-driven symbolic analysis 
algorithm developed by Tu and Padua [17]. When an allocation test is required, the second 
technique is used to place the test where it will minimize the overhead. 

3 Experimental Results 

To evaluate the overall effectiveness of the compiler, twelve MATLAB programa were tested. 
These programs implement algorithms including the iterative solution of linear system, the 
solution of differential equations, and matrix factorizations. Where possible, the program 
parameters were set so that the time required to execute the program as a MATLAB M-file 
would be around 60 seconds. A brief description of each program is presented next. 

AQ - This code uses the Simpson's rule in conjunction with adaptive quadrature [15] to 
numerically approximate the integral: 
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CG - An iterative method for the solution of linear systems that uses the preconditioned 
Conjugate Gradient method with a diagonal preconditioner (2]. The input data is a 
420 x 420 stiffness matrix from the Harwell-Boeing Test Set (BCSSTK06). 

CN - A numerical approximation method for the solution of parabolic differential equations 
(the heat equation) [15]. The problem size is a 321 x 321 grid. 

Di - An iterative method for the solution of Laplace's equations [15]. Thc problem size is 
a 41 x 41 grid. 

FD - A numerical approximation method for the solution of hyperbolic differential equations 
(the wave equation) [15] . The problem size is a 451 X 451 grid. 

Ga - A numerical approximation method to solve the Poisson equations in two dimensions 
using the Galerkin method (11] . The problem size is a 40 x 40 grid. 

IC - Calculates the incomplete Cholesky factorization of a matrix.1 The input data is a 
400 x 400 matdx. 

EC - A numerical approximation method to solve ordinary differential equations. Th.is 
program solves the orbit of a comet around the sun using the Euler-Cromer method (11]. 
The program executes 6240 steps. 

RK - A numerical approximation method to solve ordinary differential equations. This 

program solves the orbit of a comet around the sun using a 4th order Runge-Kutta 
method [11]. The program executes 3200 steps. 

QMR - An iterative method for the solution of linear systems that uses the Quasi-Minimal 
Residual method [2]. The input data is the 420 x 420 stiffness matrix BCSSTK06. 

SOR - A third iterative method for the solution of linear systems that uses the Successive 
Overrelaxation method (2]. The input datais the 420 x 420 stiffness matrix BCSSTK06. 

3D - Generates a three-dimension surface based on calculating Eigenvalues within a triply­
nested loop.1 The dimensions of the surface are 51 x 31 x 21. 

Table 3 presents the best execution times in seconds for ali programs in our test set. 
The Fortran 90 programs were compiled using the SGI native Fortran 90 compiler with 
the optimization ftag "03". The C programs generated by the Math Works MATLAB to 
C Compiler (MCC) were compiled both with the SGI native C compiler using the highest 
possible optimization ftag ("02") and with the GNU C compiler using the optimization flag 
"03" . For each program, the best execution time out of the two coinpilers was chosen. MCC 
does not support the load statement; hence, the input data was loaded using interpreted 
MATLAB commands (not timed) and provided to the C programs as function parameters. 

1Code was provided by a colleague. 
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Program MATLAB MCC FALCON Hand coded 
AQ 19.95 2.30 1.477 0.877 
CG 5.34 5.51 0.588 0.543 
CN 44.10 0.70 0.098 0.097 
Di 44.17 1.50 0.052 0.050 
FD 34.80 0.37 0.031 0.031 
Ga 31.44 0.56 0.156 0.154 
IC 32.28 1.35 0.245 0.052 
3D 34.95 11.14 3.163 3.158 
EC 8.34 3.38 0.012 0.007 
RK 20.60 5.77 0.038 0.025 

QMR 7.58 6.24 0.611 0.562 
SOR 18.12 18.14 2.733 0.641 

Table 3: Execution times (in seconds) running on an SGI Power Challenge. 
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Figure 2: Speedup of compiled programs over MATLAB, running on the SGI Power Chal­
lenge. 
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Assertions indicating the intrinsic type and rank of the loaded variablea were added to the 
M-files to provide MCC with the same information that was extracted by our compiler from 
the loaded variables. 

Figure 2 presents the speedups of the compiled codes over the interpreted MATLAB 
execution. The darker bars represent the speedup of FALCON's compiler over MATLAB, 
while the lighter bars represent the speedup of MCC over MATLAB. Due to the large 
difference in performance for some of the programs, the speedups are shown in logarithmic 
se ale. 

The following sections discuss the performance of FALCON's compiler with respect to the 
interpreted MATLAB programs; the hand-written Fortran 90 programs; and the performance 
of the C programs generated by MathWorks MCC Compiler. 

3.1 Comparison of Compiled Fortran 90 Programs to MATLAB 

Our experimental results show that for ali programs in the test set, the performance of the 
compiled Fortran 90 code is beUer than the respective interpreted execution, and the range 
of speedups is heavily dependent on the characteristics of the MATLAB program. 

Programs that have execution time dominated by built-in functions (CG, SOR, QMR, and 
3D) have a small speedup compared to MATLAB. In these programs, the speedup obtained 
is small because in general, the built-ins use the same optimized library functions that are 
called by FALCON's compiler and by MCC. Programs that perform mostly elementary scalar 
operations using SCALARS or element-wise access of VECTORS or MATRICES (FD, Di, EC, 
RK, and CN) are the ones that benefit the most from compilation. This improvement is due 
to the more efficient loop control structure of the compiled code and the larger overhead of 
the indexed assignments within the interpreted code. 

Finally, the speedup obtained by AQ resulted from the better handling of indexed assign­
ments and the reallocation of matrices by the compiled program. However, according to a 
scalability study to determine how problem size affects the relative speed of the programs [7], 
this improvement varies considerably, depending upon the number of reallocations required 
by the program, which is in turn dependent upon the input data set and the function being 
used for the numerical integration. 

3.2 Comparison of Compiler Generated Programs with the Hand-

written Fortran 90 Programs 

Figure 3 presents the speedups of the hand-written Fortran 90 programs over the compiler 
generated versions. We observe that, for most programs, the performance of the compiled 
versions is very close to the performance of the hand-written programs. 

The largest performance differences occur with IC and SOR. In both cases, the hand­
written code performed more than four times faster than the compiler generated code. The 
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SOR CG 30 OMR AO IC Ga CN RK EC DI FD 

Figure 3: Speedup of hand-coded Fortran 90 programs over the compiler generated versions, 
running on the SGI Power Challenge. 

50: load Y,(L) (L is initially REAL) 
51 : for j = 1:n 

52: r= sqrt(L(j,j) - 5); 
53: if (r <= O) 

54: Error = j; 
55: L(j,j) = 1 ; 
56 : else 
57: L(j,j) =r; 
58: end 

59: end 

Figure 4: MATLAB code segment for the Incomplete Cholesky Factorization (IC). 
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reason for the performance difference with the IC program was the inability of the inference 
mechanism to detect that the conditional statement S3, shown in Figure 4, would prevent 
the array L to became COMPLEX. Due to the ambiguous-typed expression ( sqrt) in S2, 
the variable r is inferred to be COMPLEX. Thus, L in S7 is also inferred to be COMPLEX. 

However, since both L and S are REAL, the result of the square root function in S2 can 
be a REAL non-negative value or a COMPLEX value with its real component equal to zero. 
Thus, due to the conditional statement2 S2, S7 will only be executed if r is REAL. Since the 
inference mechanism is unable to infer the real intrinsic type for the array L, the compiled 
code performs COMPLEX arithmetic for most of the program, while the optimized program 
uses REAL variables for the same operations. 

The main reason for the performance degradation in the SOR case is attributed to the 
computation of the following MATLAB expression inside a loop: x ,. K \ (li * x + b); 
where x and b are vectors, K is a lower triangular matrix, and li is an upper triangular matrix. 
The hand-coded version considers the shape of M and H and calls specialized routines from 
the BLAS library to compute the solve operation (\) and the matrix multiplication (H * x) 
for triangular matrices. The compiled version (as well as MATLAB) uses a run-time test 
to detect that M is a triangular matrix, and computes the solve using specialized functions. 
However, O(n2) operations are needed to detect the triangular structure of the matrix. 
Moreover, in both cases, the matrix multiplication is performed using a generalized function 
for full matrices that performs 2n2 operations, while the BLAS function for triangular matrix 
multiplication performs roughly half the number of operations. Furthermore, it would not be 
worthwhile to test if the matrix is triangular during run-time because, as mentioned above, 
the test itself has an O(n2) cost. 

Other performance differences that are worth mentioning are from EC, RK, and AQ. In 
the first two programs, the difference in performance is attributed to the computation of 
the built-in "norm". Both EC and RK compute severa! norms of vectors of two elements. 
The compiled programs call a library function for the computation of the norm, while the 
hand-written programs perform the computation using a single expression which takes into 
consideration that the vector has only two elements. 

Finally, the performance difference observed with AQ is primarily the result of the code 
generated by the compiler for the reallocation of matrices. In the hand-written code, due to 
a better knowledge of the algorithm, it was possible to optimize the reallocation process. 

3.3 Comparison with the Math Works MATLAB Compiler 

Figure 5 presents the speedups of the codes generated by FALCON over MCC's codes. We 
observe that ali codes generated by FALCON ran faster than their MCC counterparts. In 
similar experiments, running on a SPARCstation 10 [7J , we observed that in three cases (CG, 

2MATLAB accepts CONPLEX variables in logical operations, but only take into consideration the real 

component of the variable. 
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Figure 5: Speedup of FALCON's compiler over MCC on an SGI Power Challenge. 

SOR, and QMR) MCC generated programs that ran slower than MATLAB, while all codes 
generated by FALCON ran faster than MATLAB. 

Three prograrns generated by FALCON (RK, EC, and Di) had significantly better per­
formance than the corresponding MCC versions. The primary reason for these differences, is 
the lack of more in depth inference analyses by the Math Works compiler. The Math Works 
compiler does not perform use-coverage analysis and simplifies the handling of ambiguous­
typed expressions by considering that they always return COMPLEX output. Moreover, as 
described in [14J, the code generated by MCC cannot handle COMPLEX values nor perform 
subscript checking. To solve these problems, the code generated by MCC calls MATLAB 
using "callback functioni' provided in their lihrary. 

RK and EC perform severa! elementary vector operations using vectors of size 2. the 
code generated by MCC is very inefficient for these kinds of operations because it calls 
the MATLAB functions to perform VECTOR and MATRICES operatio.ns. These callback 
functions generate an overhead that, in this case, is not amortized due to the size of the 
vectors. Furthermore, the lack of pre-allocation of variables3 in the MATLAB code is also 
responsible for the degradation of the performance of these MCC codes. FALCON's compiler, 
by contrast, is able to allocate all matrices in these programs outside the main loop, due to 

3 A common practice of MATLAB programmera ia to pre-allocate VBCTORS and MATRICES using built-ins, 

such as zeros, to a.void allocalion overhead inaide ofloops. 
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its symbolic propagation analysis. 
Finally, the better performance from Di results from the value-propagation analysis. In 

this case, the intrinsic type inference mechanism can determine that the Expression: 

(1) 

will always return a REAL value between 1 and 2 for w, whereas MCC assumes the output 
of this ambiguous-typed expression to be of type COMPLEX. Although w is only a scalar 
variable, for performance reasons it is important to be able to infer its intrinsic type; this 
variable is used to update an n x m rectangular grid which is in turn used to solve Laplace's 
equation in a iterative process. Therefore, if w is assumed to be COMPLEX, the n X m matrix 
that contains the grid will have to be declared and operated as COMPLEX. Thus, the code 
generated by MCC for Di uses COMPLEX variables for most of its computations, whereas 
FALCON's generated code uses only REAL variables. 

4 Conclusions 

We are building a programming environment for the development of scientific libraries and 
applications. By using MATLAB as the source language and producing Fortran 90 as output, 
this environment takes advantage of both the power of interactive array languages and the 
performance of compiled languages. In order to generate code from the interactive array 
language, we developed a compiler that combines static and dynamic inference methods for 
intrinsic type, shape, and rank inference, and is optirnized with value and symbolic dimension 
propagation. 

As shown by our experimental results, the compiled programs performed better than their 
respective interpreted executions, with performance improvement factors varying according 
to the characteristics of each program. For certain classes of programa, FALCON generates 
code that executes as fast as hand-written Fortran 90 programs, and more than 1000 times 
faster than the corresponding MATLAB execution on an SGI Power Challenge. Loop-base 
programs with intensive use of scalars and array elements are the ones that benefit the most 
from compilation. 

Finally, comparisons against a commercial MATLAB compiler (MCC) show that pro­
grams generated by FALCON performed up to 280 times faster than the programa generated 
by the MathWorks compiler, on the SGI Power Challenge. This difference in performance is 
attributed to the more enhanced inference mechanism utilized by FALCON's compiler. 
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