
Benchmarking FALCON's MATLAB-to-Fortran 90
Compiler on an SG I Power Challenge

Luiz De Rose and David Padua •
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, U.S.A.
({ derose,padua}@cs.uiuc.edu)

Abstract

This paper presents an overview ofthe FALCON MATLAB-to-Fortran 90 compiler.
FA~CON is a programming environment for the development of high-performance
scientific programa. It combines static and dynamic inference methods to translate
MATLAB programa into Fortran 90. The statit inference is supported with advanced
value propagation techniques and symbolic algorithms for subscript analysis. The
experimenta presented in this paper show that FALCON's MATLAB compiler can
generate code that performs more than 1000 times faster than the interpreted version
ofMATLAB and substantially faster than a commercially-available MATLAB compiler
on one processo r o f an SGI Power Challenge. Furthermore, for mosto f the programs we
have tested, the compiler-generated codes are as fast as the corresponding hand-written
programa.

Resumo

Esse artigo apresenta uma visão geral do compilador de MATLAB para Fortran 90
desenvolvido para o ambiente de programação para processamento de alto desempenho
FALCON. Esse compilador utiliza técnicas estáticas e dinâmicas para inferência. Es
sas técnicas sao otimizadas com análise simbólica e com métodos desenvolvidos para
determinação do domínio das variáveis. Os testes de desempenho apresentados nesse
artigo mostram que os programas gerados pelo compilador podem ser executados até
1000 vezes mais rápidos que a versão interpretada pelo MATLAB. Esses programas
tambem tem um desempenho muito superior aos programas gerados pelo compilador
MATLAB disponível comercialmente. Finalmente, para a mairia dos programas tes
tados, o compilador gerou programas que rodam tão rápido quanto versões escritas a
mão para os mesmos algoritmos.

•Thia work wu aupporled in part by ~my contract DABT63-92·C.0033. This work is not neceuarily
rcpr-ntativc of thc poaitions or policica of tbc Army or tbc Govcmmcnt.

285

1 Introduction

The development of software for scientific computation on high-performance computers is a
very difficult and time-consuming task, requiring not only an understanding of the algorithms
to be implemented, but also a detailed knowledge of the target machine and the software
environment. We believe the development of scientific programs should start with a language
as dose as possible to the mathematical description of the problem, albeit in the form
of a simple and easy-to-use procedural language. The use of a very high-level language
facilitates the development process by enhancing the ease of programming and portability
of applications.

lnteractive array languages such as APL [12J and MATLAB [13J are powerful program
ming tools for the development of programs for numerical computation. A convenient feature
in these languages that facilitates prototyping of applications is the lack of specification of
dimensions and intrinsic type of variables. Moreover, interactive array languages are usually
contained within problem-solving environments which include easy-to-use facilities for dis
playing results both graphically and in tabular form [IOJ. Furthermore, the interactive nature
of these languages provide an environment that tends to increase productivity in software
development. The trade-off is that in order to provide this nicer prograrnming environment,
array languages are usually interpreted, with the resulting negative effect on performance.

The option of prototyping the prograrn in an interactive language like MATLAB and
then, after program development is complete, rewriting in a compiled language, like C or
Fortran, is often mentioned as a possibility, but seldom done. The situation in practice is
that the overhead of reimplementing programs in a different language is sufficiently large
that most people never get around to doing it. Clearly the best solution is for programmers
to use a compiler that generates efficient code from MATLAB prograrns.

FALCON [8, 9J is a programming environment for the development of scientific libraries
and applications. It attempts to facilitate the development process by taking advantage of
both the power of interactive array languages and the performance of compiled languages.
One of FALCON's main components is a MATLAB to Fortran 90 compiler. Some of the
issues that need to be addressed when compiling MATLAB programs are the lack of intrinsic
type definitions and specification of dimensions of variables, the possibility that any of these
variable properties could change during run-time, and the overload of operators that have
different semantics depending on the rank of the variables being operated. Our ultimate
goal is to generate parallel code by integrating FALCON with Polaris [3, 4J, a parallelizing
compiler developed at Illinois.

This paper describes the main ideas of FALCON's MATLAB to Fortran 90 compiler and
presents performance comparisons of Fortran 90 programs generated by FALCON against
the interpreted MATLAB programs, C programs generated by a commercial MATLAB to C
compiler (MCC) [14J, and Fortran 90 hand coded programs for the same algorithms. The rest
of this paper is organized as follows: Section 2 presents an overview of FALCON's MATLAB
to Fortran 90 compiler. Section 3 discuss experimental results. Finally, our conclusions are
presented in Section 4.

286

2 FALCON's Compiler Overview

MATLAB is a procedurallanguage that operates on only one lcind of data structure: a rect
angular numerical matrix [13]. A MATLAB program consists of one or more Fortran-like
statements which may involve function calls. There are two types of functions in MATLAB:
built-ins and M-files. Built-in functions are intrinsic functions, such as SQRT, JNV (for ma
trix inverse), and EIG (for eigenvalues and eigenvectors). M-files consist of a sequence of
MATLAB statements, which possibly include references to other M-files.

The main challenge of the MATLAB compiler is to perform inference on the input pro
gram to determine the following variable properties, necessary to generate the Fortran 90
declarations and to optimize the output code:

intrinsic type: which could be COMPLEX, REAL, INTEGER, or LOGJCAL;

rank: which could be SCALAR, VECTOR1 or MATRIXj and

shape: which indicates the size of each dimension.

FALCON's MATLAB compiler uses conventional data-flow analysis [1], and inference
techniques that are either static inference mechanisms used to generate declarations at com
pile time, or dynamic strategies that are applied at execution time when a lack of statically
available information prevents the automatic generation of a particular variable's declara
tion. The static inference mechanism was built upon techniques developed for SETL [16]
and APL [5], extended to deal with peculiarities of the MATLAB language. Also, additional
techniques were used to improve accuracy and performance. Examples of these additional
techniques are advanced value propagation techniques and symbolic algorithms for subscript
analysis [7] .

FALCON's static inference algorithms are applied to a Static Single Assignment (SSA) [6]
representation of the MATLAB program in the form of an abstract synt~a tree (AST) [1].
Before the AST is generated, all function calls to M-files are inlined in the program. Inlining
makes it easier to perform the program analysis on a function for the correct combination
of input variables, as subsequent calls to the same function may have input variables with
different types or ranks.

The static inference mechanism extracts information from four main sources: input files;
program constants; operators; and built-in functions. From input files the compiler extracts
the initial intrinsic type and rank of the variables being loaded. Variable shapes are not
extracted from the input files because they are much more likely than intrinsic type and
rank to differ between runs. Program constants are used for the inference of intrinsic type,
rank, and shape. From MATLAB operators we extract intrinsic type information, in the
case of operators that produce logical values, and rank and shape information, by talcing into
consideration the conformability requirements imposed by the operators. Finally, the fourth
source of information comes from MATLAB built-in functions that can provide inference
information for their output parameters based on type of the input parameters.

287

Although MATLAB operates on REAL and COMPLEX values only, FALCON's static infer
ence mechanism also considera INTEGER and LOGICAL values. The intrinsic types are inferred
according to the following type hierarchy: LOGICAL -< INTEGER -< REAL -< COMPLEX.

This hierarchy means that it is correct for variables with INTEGER values to be declared
as REAL or COMPLEX and for variables with REAL values to be declared as COMPLEX. In fact,
intrinsic type inference could be avoided if all variables were considered COMPLEX. This,
however, would affect the performance o f the code due to the number of additional arithmetic
operations required by COMPLEX variables. Hence, the determination of the correct variable
intrinsic type during compile time is very important for the efficiency of the generated code.

The static mechanism for intrinsic type inference propagates intrinsic types through ex
pressions using a type algebra similar to that described in [16J for SETL. For the case of
logical operators, the result is always considered to be of intrinsic type LOGICAL. For the
other operators and built-in functions, this algebra operates on the intrinsic type o f MATLAB
objects and is implemented using tables for all operations. For each operation these tables
contain the intrinsic type of the result as a function of the intrinsic type of the operands.
When the intrinsic types of the operands are different, the static type inference promotes the
output of the expression to be of an intrinsic type that subsumes the intrinsic types of both
operands, according to the intrinsic type hierarchy described above. In some cases, such as
division, the output is promoted to a higher intrinsic type from the type hierarchy, even if
the intrinsic type of the operators are the same. for example, the division of two INTEGER
variables result in an output of intrinsic type REAL.

In some cases, the outcome of an expression or a built-in function can be of different
intrinsic types, depending on the values of the operands (such as the power operator, square
root, and inverse trigonometric functions) . For example, the outcome of J1 -A would
be REAL if A $ 1, and COMPLEX otherwise. We refer to these expressions as ambiguous
typed expressions. In these cases, to improve the accuracy of the intrinsic type inference, we
perform value-propagation analysis [7J . This value-propagation analysis keeps track statically
of the range of possible values for each variable in the program. If this range of values is
not sufficient to determine the intrinsic type of an arnbiguous-typed expression, the output
intrinsic type of the expression is promoted to COMPLEX.

Rank and shape information are obtained with the use of conformability analysis. We de
fine the operators that require conformability for only one of the dimensions of the operands
(e.g., "•" , "/", and "\") as a single-dimension conformable operator, and operators that
require both operands to have the same shape (e.g., +, -, and logical operators) as a shape
conformable operator. The conformability analysis uses tables such as Table 1 for the rank
and shape inference for the multiplication operator (a single-dimension conformable opera
tor) and Table 2 for the shape inference of a shape conformable operator. In these tables
the shape information is indicated with the letters (m, n, p, and q) that represent the exact
values for the number of rows or the number of columns. Column VECTORS and row VEC
TORS are represented as VECTOR(p,1) and VECTOR(1,q) respectively, and UNKNOWN values
are represented with "?" .

If any of the variable attributes necessary for the generation of the Fortran 90 declarations

288

A•B B
A SCALAR VECTOR(p,1) VECTOR(1 ,q) MATRIX(p,n)

SCALAR SCALAR VECTOR(p,l) VECTOR(1 ,q) MATRIX(p,n)
VECTOR(p,1) VECTOR(p,l) erro r MATRIX(p ,q) erro r
VECTOR(1,q) VECTOR(1,q) SCALAR1 erro r VECTOR(1,m)1

MATRIX(n,q) MATRIX(n,q) VECTOR(n,1)1 erro r MATRIX(n,m)1

10nly if p = q; otherwise error.

Table 1: Rank and shape inference for the multiplication operator.

A+B B
SCALAR VECTOR NOTMATRIX NOTSCALAR MATRIX UNKNOWN

A (1,1) (p,1) (1,q) (1,?) (?,1) (p,?J (?,q) (p,q} (?,?)
(1,1) (1,1) (p,1) (l,q) (1,?) (? ,1) (p,?) (?,q) (p,q) (?,?)
(p,l) (1,1) (p,1) erro r (p,1) (p,1) (p,1) erro r erro r (p,1)
(1,q) (1,q) erro r (1,q) (1,q) (1,q) erro r (1,q) erro r (1,q)
(1,?) (1,?) (p,l) (l,q) (1,?) (?,?) (p,?) (?,q) (p,q) (?I?)
(? ,1) (?,1) (p,1) (1,q) (?,?) (?,1) (p,?) . (?,q) (p,q) (? ,?)
(p,?) (p,?) (p,1) erro r (p,?) (p,?) (p,?) erro r (p,q} (p,?}
(?,q} (?,q} erro r (l,q} (?,q) (? ,q) erro r (?,q) (p,q) (? ,q)
(p,q) (p,q) erro r erro r (p,q) (p,q) (p,q) (p,q) (p,q) (p,q)
(?, ?) (? ,?) (p,1) (1 ,q) (?, ?) (?,?) (p,?) (?,q) (p,q) (?,?)

Table 2: Shape inference for a conformable operator.

(i.e., intrinsic type, number of rows, and number of columns) have an UNKNOWN value at
the end of the static inference phase, dynamic code to determine the necessary attribute at
run-time is generated. FALCON associates tags for each variable that have any UNKNOWN
attribute value. These tags are updated at execution time. Based on these tags, which are
stored in shadow variables, conditional statements are used to allocate the necessary space
and to select the operation on variables of the appropriate intrinsic type.

To avoid the excessive number of conditional tests necessary to detect the intrinsic type of
the outcome of an expression, the dynamic inference mechanism considers only two intrinsic
types: REAL and COMPLEX. If the intrinsic type of a variable can be determined statically,
a Fortran declaration for the inferred intrinsic type is generated. Otherwise, a conditional
statement is generated to test during run-time the shadow value for the intrinsic type. Each
branch of the conditional statement receives a clone of the operation that uses the variable
requiring the shadow test. In one branch the variable is assumed to be of type COMPLEX,
while in the other it is assumed to be of type REAL. In addition, the variable is renamed
md declared twice, once for each dynamic intrinsic type.

Dynamic code is also generated to compute during run-time the necessary space for
dynamic allocation. To this end, two shadow variables are used to keep track of variable

289

51: if (L.D1 .ne. B.....D1 .or. A.....D2 .ne. B.....D2) then
52: if (ALLOCATED(A)) DEALLOCATE(A)
53: ADi = B.....D1
54: L . .D2 = BJ2
55: ALLOCATE(A(A.....D1,A.....D2))
56: end if
57: A = B + 0.5

Figure 1: Example of shadow variables for shape.

dimensions during execution-time. So, for example, if the shape of B in an assignment of the
form A=B+O. 5 were UNKNOWN after the static phase, the compiler would generate the code
presented in Figure 1. This code uses shadow variables A.....D1, A.....D2, B.....D1, and B.....D2, to
store the run-time information about the size of each dimension of A and B. These shadow
variables are initialized to zero at the beginning of the program. This figure shows the general
form for the dynamic allocation. However, only the necessary statements are generated. If,
for example, this were the first definition of variable A, statements S1 and S2, that are needed
only to reallocate the variable, would not be generated.

Some optirnizations in the shape inference mechanism are necessary to avoid the excessive
number of tests and allocations. To this end, two static techniques were developed to support
dynarnic shape inference: coverage analysis and efficient placement o f dynamic allocation [7].
The objective of the first technique is to determine whether an indexed array assignment
may increase the size of the array. If this information is known at compile time, it is not
necessary to generate an allocation test for the indexed assignment. To determine whether
there is definition coverage, we use a simplified version of a demand-driven symbolic analysis
algorithm developed by Tu and Padua [17]. When an allocation test is required, the second
technique is used to place the test where it will minimize the overhead.

3 Experimental Results

To evaluate the overall effectiveness of the compiler, twelve MATLAB programa were tested.
These programs implement algorithms including the iterative solution of linear system, the
solution of differential equations, and matrix factorizations. Where possible, the program
parameters were set so that the time required to execute the program as a MATLAB M-file
would be around 60 seconds. A brief description of each program is presented next.

AQ - This code uses the Simpson's rule in conjunction with adaptive quadrature [15] to
numerically approximate the integral:

290

CG - An iterative method for the solution of linear systems that uses the preconditioned
Conjugate Gradient method with a diagonal preconditioner (2]. The input data is a
420 x 420 stiffness matrix from the Harwell-Boeing Test Set (BCSSTK06).

CN - A numerical approximation method for the solution of parabolic differential equations
(the heat equation) [15]. The problem size is a 321 x 321 grid.

Di - An iterative method for the solution of Laplace's equations [15]. Thc problem size is
a 41 x 41 grid.

FD - A numerical approximation method for the solution of hyperbolic differential equations
(the wave equation) [15] . The problem size is a 451 X 451 grid.

Ga - A numerical approximation method to solve the Poisson equations in two dimensions
using the Galerkin method (11] . The problem size is a 40 x 40 grid.

IC - Calculates the incomplete Cholesky factorization of a matrix.1 The input data is a
400 x 400 matdx.

EC - A numerical approximation method to solve ordinary differential equations. Th.is
program solves the orbit of a comet around the sun using the Euler-Cromer method (11].
The program executes 6240 steps.

RK - A numerical approximation method to solve ordinary differential equations. This

program solves the orbit of a comet around the sun using a 4th order Runge-Kutta
method [11]. The program executes 3200 steps.

QMR - An iterative method for the solution of linear systems that uses the Quasi-Minimal
Residual method [2]. The input data is the 420 x 420 stiffness matrix BCSSTK06.

SOR - A third iterative method for the solution of linear systems that uses the Successive
Overrelaxation method (2]. The input datais the 420 x 420 stiffness matrix BCSSTK06.

3D - Generates a three-dimension surface based on calculating Eigenvalues within a triply
nested loop.1 The dimensions of the surface are 51 x 31 x 21.

Table 3 presents the best execution times in seconds for ali programs in our test set.
The Fortran 90 programs were compiled using the SGI native Fortran 90 compiler with
the optimization ftag "03". The C programs generated by the Math Works MATLAB to
C Compiler (MCC) were compiled both with the SGI native C compiler using the highest
possible optimization ftag ("02") and with the GNU C compiler using the optimization flag
"03" . For each program, the best execution time out of the two coinpilers was chosen. MCC
does not support the load statement; hence, the input data was loaded using interpreted
MATLAB commands (not timed) and provided to the C programs as function parameters.

1Code was provided by a colleague.

291

Program MATLAB MCC FALCON Hand coded
AQ 19.95 2.30 1.477 0.877
CG 5.34 5.51 0.588 0.543
CN 44.10 0.70 0.098 0.097
Di 44.17 1.50 0.052 0.050
FD 34.80 0.37 0.031 0.031
Ga 31.44 0.56 0.156 0.154
IC 32.28 1.35 0.245 0.052
3D 34.95 11.14 3.163 3.158
EC 8.34 3.38 0.012 0.007
RK 20.60 5.77 0.038 0.025

QMR 7.58 6.24 0.611 0.562
SOR 18.12 18.14 2.733 0.641

Table 3: Execution times (in seconds) running on an SGI Power Challenge.

1000

400

~ 100
li!
g 40
Q.
:::>
-g

'* 10

4

SGI Power Challenge

- FALCON
Cl M CC

SOA CG 30 OMR AO IC Ga CN RK EC DI FD

Figure 2: Speedup of compiled programs over MATLAB, running on the SGI Power Chal
lenge.

292

Assertions indicating the intrinsic type and rank of the loaded variablea were added to the
M-files to provide MCC with the same information that was extracted by our compiler from
the loaded variables.

Figure 2 presents the speedups of the compiled codes over the interpreted MATLAB
execution. The darker bars represent the speedup of FALCON's compiler over MATLAB,
while the lighter bars represent the speedup of MCC over MATLAB. Due to the large
difference in performance for some of the programs, the speedups are shown in logarithmic
se ale.

The following sections discuss the performance of FALCON's compiler with respect to the
interpreted MATLAB programs; the hand-written Fortran 90 programs; and the performance
of the C programs generated by MathWorks MCC Compiler.

3.1 Comparison of Compiled Fortran 90 Programs to MATLAB

Our experimental results show that for ali programs in the test set, the performance of the
compiled Fortran 90 code is beUer than the respective interpreted execution, and the range
of speedups is heavily dependent on the characteristics of the MATLAB program.

Programs that have execution time dominated by built-in functions (CG, SOR, QMR, and
3D) have a small speedup compared to MATLAB. In these programs, the speedup obtained
is small because in general, the built-ins use the same optimized library functions that are
called by FALCON's compiler and by MCC. Programs that perform mostly elementary scalar
operations using SCALARS or element-wise access of VECTORS or MATRICES (FD, Di, EC,
RK, and CN) are the ones that benefit the most from compilation. This improvement is due
to the more efficient loop control structure of the compiled code and the larger overhead of
the indexed assignments within the interpreted code.

Finally, the speedup obtained by AQ resulted from the better handling of indexed assign
ments and the reallocation of matrices by the compiled program. However, according to a
scalability study to determine how problem size affects the relative speed of the programs [7],
this improvement varies considerably, depending upon the number of reallocations required
by the program, which is in turn dependent upon the input data set and the function being
used for the numerical integration.

3.2 Comparison of Compiler Generated Programs with the Hand-

written Fortran 90 Programs

Figure 3 presents the speedups of the hand-written Fortran 90 programs over the compiler
generated versions. We observe that, for most programs, the performance of the compiled
versions is very close to the performance of the hand-written programs.

The largest performance differences occur with IC and SOR. In both cases, the hand
written code performed more than four times faster than the compiler generated code. The

293

SGI Power Challenge

SOR CG 30 OMR AO IC Ga CN RK EC DI FD

Figure 3: Speedup of hand-coded Fortran 90 programs over the compiler generated versions,
running on the SGI Power Challenge.

50: load Y,(L) (L is initially REAL)
51 : for j = 1:n

52: r= sqrt(L(j,j) - 5);
53: if (r <= O)

54: Error = j;
55: L(j,j) = 1 ;
56 : else
57: L(j,j) =r;
58: end

59: end

Figure 4: MATLAB code segment for the Incomplete Cholesky Factorization (IC).

294

reason for the performance difference with the IC program was the inability of the inference
mechanism to detect that the conditional statement S3, shown in Figure 4, would prevent
the array L to became COMPLEX. Due to the ambiguous-typed expression (sqrt) in S2,
the variable r is inferred to be COMPLEX. Thus, L in S7 is also inferred to be COMPLEX.

However, since both L and S are REAL, the result of the square root function in S2 can
be a REAL non-negative value or a COMPLEX value with its real component equal to zero.
Thus, due to the conditional statement2 S2, S7 will only be executed if r is REAL. Since the
inference mechanism is unable to infer the real intrinsic type for the array L, the compiled
code performs COMPLEX arithmetic for most of the program, while the optimized program
uses REAL variables for the same operations.

The main reason for the performance degradation in the SOR case is attributed to the
computation of the following MATLAB expression inside a loop: x ,. K \ (li * x + b);
where x and b are vectors, K is a lower triangular matrix, and li is an upper triangular matrix.
The hand-coded version considers the shape of M and H and calls specialized routines from
the BLAS library to compute the solve operation (\) and the matrix multiplication (H * x)
for triangular matrices. The compiled version (as well as MATLAB) uses a run-time test
to detect that M is a triangular matrix, and computes the solve using specialized functions.
However, O(n2) operations are needed to detect the triangular structure of the matrix.
Moreover, in both cases, the matrix multiplication is performed using a generalized function
for full matrices that performs 2n2 operations, while the BLAS function for triangular matrix
multiplication performs roughly half the number of operations. Furthermore, it would not be
worthwhile to test if the matrix is triangular during run-time because, as mentioned above,
the test itself has an O(n2) cost.

Other performance differences that are worth mentioning are from EC, RK, and AQ. In
the first two programs, the difference in performance is attributed to the computation of
the built-in "norm". Both EC and RK compute severa! norms of vectors of two elements.
The compiled programs call a library function for the computation of the norm, while the
hand-written programs perform the computation using a single expression which takes into
consideration that the vector has only two elements.

Finally, the performance difference observed with AQ is primarily the result of the code
generated by the compiler for the reallocation of matrices. In the hand-written code, due to
a better knowledge of the algorithm, it was possible to optimize the reallocation process.

3.3 Comparison with the Math Works MATLAB Compiler

Figure 5 presents the speedups of the codes generated by FALCON over MCC's codes. We
observe that ali codes generated by FALCON ran faster than their MCC counterparts. In
similar experiments, running on a SPARCstation 10 [7J , we observed that in three cases (CG,

2MATLAB accepts CONPLEX variables in logical operations, but only take into consideration the real

component of the variable.

295

151 281 29

12
SGI Power Challenge

10

8
~
Cii
~

8

:z:
8
~ 6

õ
0..

-2 4
~
V)

2

o
SOA CG 30 OMR AO IC Ga CN RK EC DI FD

Figure 5: Speedup of FALCON's compiler over MCC on an SGI Power Challenge.

SOR, and QMR) MCC generated programs that ran slower than MATLAB, while all codes
generated by FALCON ran faster than MATLAB.

Three prograrns generated by FALCON (RK, EC, and Di) had significantly better per
formance than the corresponding MCC versions. The primary reason for these differences, is
the lack of more in depth inference analyses by the Math Works compiler. The Math Works
compiler does not perform use-coverage analysis and simplifies the handling of ambiguous
typed expressions by considering that they always return COMPLEX output. Moreover, as
described in [14J, the code generated by MCC cannot handle COMPLEX values nor perform
subscript checking. To solve these problems, the code generated by MCC calls MATLAB
using "callback functioni' provided in their lihrary.

RK and EC perform severa! elementary vector operations using vectors of size 2. the
code generated by MCC is very inefficient for these kinds of operations because it calls
the MATLAB functions to perform VECTOR and MATRICES operatio.ns. These callback
functions generate an overhead that, in this case, is not amortized due to the size of the
vectors. Furthermore, the lack of pre-allocation of variables3 in the MATLAB code is also
responsible for the degradation of the performance of these MCC codes. FALCON's compiler,
by contrast, is able to allocate all matrices in these programs outside the main loop, due to

3 A common practice of MATLAB programmera ia to pre-allocate VBCTORS and MATRICES using built-ins,

such as zeros, to a.void allocalion overhead inaide ofloops.

296

its symbolic propagation analysis.
Finally, the better performance from Di results from the value-propagation analysis. In

this case, the intrinsic type inference mechanism can determine that the Expression:

(1)

will always return a REAL value between 1 and 2 for w, whereas MCC assumes the output
of this ambiguous-typed expression to be of type COMPLEX. Although w is only a scalar
variable, for performance reasons it is important to be able to infer its intrinsic type; this
variable is used to update an n x m rectangular grid which is in turn used to solve Laplace's
equation in a iterative process. Therefore, if w is assumed to be COMPLEX, the n X m matrix
that contains the grid will have to be declared and operated as COMPLEX. Thus, the code
generated by MCC for Di uses COMPLEX variables for most of its computations, whereas
FALCON's generated code uses only REAL variables.

4 Conclusions

We are building a programming environment for the development of scientific libraries and
applications. By using MATLAB as the source language and producing Fortran 90 as output,
this environment takes advantage of both the power of interactive array languages and the
performance of compiled languages. In order to generate code from the interactive array
language, we developed a compiler that combines static and dynamic inference methods for
intrinsic type, shape, and rank inference, and is optirnized with value and symbolic dimension
propagation.

As shown by our experimental results, the compiled programs performed better than their
respective interpreted executions, with performance improvement factors varying according
to the characteristics of each program. For certain classes of programa, FALCON generates
code that executes as fast as hand-written Fortran 90 programs, and more than 1000 times
faster than the corresponding MATLAB execution on an SGI Power Challenge. Loop-base
programs with intensive use of scalars and array elements are the ones that benefit the most
from compilation.

Finally, comparisons against a commercial MATLAB compiler (MCC) show that pro
grams generated by FALCON performed up to 280 times faster than the programa generated
by the MathWorks compiler, on the SGI Power Challenge. This difference in performance is
attributed to the more enhanced inference mechanism utilized by FALCON's compiler.

297

References

[1) AHO, A., SETHI, R., ANO ULLMAN, J . Compilers: Principies, Techniques and Tools.
Addison-Wesley Publishing Company, 1985.

(2) BARRBTT, R., BERRY, M., CHAN, T., DEMMEL, J., DoNATO, J ., DoNGARRA, J.,
EIJKHOUT, V . , Pozo, R ., ROMINE, C ., ANO VAN DER VORST, H. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.

(3) BLUME, W ., DOALLO, R ., EIGENMANN, R., GROUT, J., HOEFLINGER, J.,
LAWRENCE, T., LEE, J., PADUA, D., PAEK, Y., POTTENGER, B., RAUCHWERGER,
L., AND Tu, P. Parallel Programming with Polaris. IEEE Computer ~9, 12 (December
1996), 78-82.

{4) BLUME, W., EIGENMANN, R., FAIGIN, K., GROUT, J., HOEFLINGBR, J., PADUA,
D., PBTERSEN, P ., POTTENGER, B., RAUCHWERGBR, L., Tu, P., AND WEATHER
FORD, S. Polaris: Improving the Effectiveness of Parallelizing Compilers. In Languages
and Compilers for Parallel Computing (August 1994), K. Pingali, U. Banerjee, D. Gel
ernter, A. Nicolau, and D. Padua, Eds., Lecture Notes in Computer Science, vol. 892,
Springer-Verlag, pp. 141- 154. 7th International Workshop, Ithaca, NY, USA.

[5] Buoo, T . An APL Compiler. Springer-Verlag, 1988.

(6) CYTRON, R., FERRANTE, J., ROSBN, B. K., WEGMAN, M. N., AND ZADECK,
F. K. Efficiently Computing Static Single Assignment Form and the Control Depen
dence Graph. ACM 1hmsactions on Programming Language and Systems 19, 4 (October
1991), 451-490.

(7) DE RosE, L. A . Compiler Techniques for MATLAB Programs. PhD thesis, University
of lllinois at Urbana-Champaign, Department of Computer Science, 1996.

(8] DERosE, L., GALLIVAN, K., GALLOPOULOS, E., MARSOLF, B ., ANO PADUA, D.
FALCON: A MATLAB Interactive Restructuring Compiler. In Languages and Compil
ers for Parallel Computing (August 1995), C.-H. Huang, P. Sadayappan, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, Eds., Lecture Notes in Computer Science, vol.
1033, Springer-Verlag, pp. 269-288. 8th International Workshop, Columbus, Ohio.

[9] DEROSE, L., GALLIVAN, K., GALLOPOULOS, E., MARSOLF, B., ANO PADUA, D.
FALCON: An Environment for the Development of Scientific Libraries and Applications.
In Proc. of the KBUP95: First international workshop on Knowledge-Based systems for
the (re)Use of Program libraries (Sophia Antipolis, France, November 1995).

(10] GALLOPOULOS, E., HOUSTIS, E., AND RICE, J. R. Computer as Thinker/Doer:
Problem-Solving Environments for Computational Science. IEEE Computational Scir
ence & Engineering 1, 2 (Summer 1994) , 11- 23.

(11] GARCIA, A . L. Numerical Methods for Physics. Prentice Hall, 1994.

[12] GILMAN, L ., AND RosE, A. APL : An lnteractive Approach. Wiley, 1984.

(13) THE MATH WORKS, INC. MATLAB, High-Performance Numeric Computation and
Visualization Software. User's Guide, 1992.

298

[14) THE MATH WORKS, INC. MATLAB Compiler, 1995.

[15) MATHEWS, J. H. Numerical MethodJ for Mathematics, Science and Engineering,
2nd ed. Prentice Hall, 1992.

[16) ScHWARTZ, J . T. Automatic Data Structure Choice in a Language of a Very High
Levei. Oommunications of the ACM 18 (1975}, 722-728.

[17] Tu, P. , ANO PADUA, D. Gated SSA-Based Demand-Driven Symbolic Analysis for
Parallelizing Compilers. In Proceedings of the 9th ACM Intemational Conference on
Supercomputing (Barcelona, Spain, July 1995}, pp. 414-423.

U\ .. I·,...
""' 'l""

! '· , ...

-· . - ll o·- ... ,,-r· · -- ~~.:·~·:~ lt'JSTITU h99 ,t 1\~r U~'\i\U-· .. e-~ .•

BIBLIOTECA

user
Caixa de texto

user
Texto digitado
 299

user
Texto digitado

