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Abstract 

In t his work we describe our results on identifying the most important over
heads in thc network subsystem of massively parallel processors (MPPs), specially 
t he Intel Paragon . We show how poor implementation techniques currently prevent 
performance of applications using TCP / IP protocols to commu nicate between Sl,l 

percomputers connected by high performance networks from achieving data rates 
dose to t he capacity of the medium. 

We identify some of the possible solutions to the problem, and discuss what can 
be expected in future systems. In particular, we present ou r result.s on evaluation of 
some of those solutions, including a user-level protocol implementation which scales 
with t he number of concurrent connections and performance superior to the current 
system. 

Resumo 

Neste artigo apresenta-se resu ltados sobre a identi ficação dos principais gargalos 
em subsistemas de rede de processadores massivamente paralelos, abordando partic
ularmente o Intel Paragon. Demonstra-se como técnicas de implementação correntes 
impedem que aplicações que utilizem protocolos como TCP / IP entre supercom
putadores interligados por redes de alta velocidade alcancem taxas de transferência 
próximas à capacidade do meio de t ransmissão. 

Algumas possíveis soluções para o problema são sugeridas, e discute-se o que 
pode ser esperado de sistemas futuros. Em particular, resultados de avaliação dos 
benefícios de a lgumas técnicas são apresentados, des tacando-se uma implementação 
de protocolos no espaço da aplicação que apresenta performance e capacidade de 
expansão para multi pias conexões superior aos s istemas atuais. 

' Spon:sored by Conselho N"cional <.1~ Ocscnvolvin~enLo Cicnlífoco e Tcrnoló~ico (CNPq), Brazil, Process 
110. 200861/93-0 
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1 Introduction 

Over thc last few years thc devclopments in the area of massively parallel processors 

(MPPs) havc shown that we are now capable of huilding largc scalable systems with 

peak performance in the TeraFLOPS range. Such machines are based on lhe use of high 

performance commodity proccssors connected by a high speed proprietary interconnection 

nctwork. Examplcs of such syslcms are the IBM SP systems !Gcr95] and the Intel Pa.ragon 

1Int91]. 

What guarantees the high performance of such systems is t he availa.bili ty of inter

procc:ss communication primiti ves (!PC) which allow processes in different nodes of the 

machinc to cxchange information at very high rales wilh minimum delays. Whether lhe 

syslcm provides a mcssage passing interface ora distributed sha.red memory modcl, appli

cations whcre hnndreds or even thousands of nodcs work logether in a task are possible. 

Now lhe local and wide arca network technologies are starting to reach specd leveis 

comparable to those of some of the current supercomputer inlerconnects, in the Gigabit 

per second range. These developments make it possible for us to think of building our 

own supercomputers by connecting our own workstations with a fast network. On lhe 

other hand, we can also imagine connecting our already powerfull MPPs to others in other 

laboralories. Thc need for such connection comes from the ever increasing need lo share 

informalion among differenl sites anel diffcrent computers, as well as from the need lo 

work on even larger prohlems. 

Out although we ha.ve very high performance supercomputers and very fast network 

interconnecls avai lable today, like HiPPI ITR93] and ATM !Vet95], there has been only 

limited success on putting t hem togethcr. In t he application rcalm, one would expect to 

be able to exlcnd a parallel application across multi pie computers hy using some already 

designed communication packagc, like PVM!Sun92] or MPIIGLS95], and some stable pro

toco! suíte like TCP / IP1• But things are not that simple. 

The problems begin when we try to use any TCP /IP based code to pus h data ovcr 

a connection between two MPPs linked by some high speed network. The user would 

bc shocked by the low bandwidth achieved in most cases. Many solutions today tend 

lo adopt spccialized approaches !Dun96], which unfortunately do nol scale well for a 

more general network. For example, the use of raw HiPPl connections is common in the 

supercompnter world, but such techniquc is limitetl to local HiPPI networks. When we 

intcnd to connect systerns at different sites, separated by possibly multi pie networks with 

differenl technologies, TCP / IP is still the easiest way to go(Com95]. 

Bnt wlwre does the performance go? i\ T CP / IP conneclion between two Intel Paragon 

1 Although an implemenlation of PVM in thc Paragon may use its internai IPC for comm unication 
between nodes, communication with other machincs musl rely on T C'P / IP to cross lhe externai network 
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over a HiPPI swilch, for example, usually gets just about lwo percent of lhe available 

bandwidth, pushing data al 2 MB/s, when lhe network bandwidth is LOO MB/s. In this 

work W<' intend to discuss whal lhe problems are loday that prevent us from using allthe 

available bandwidth of such systems, and lo presenl some results achieved by applying 

techniqucs to avoid them. 

The resto f this papcr is organized as follows: In the next section we prcsent numbcrs lo 

show lhe mismatch belween the performance achieved between two nodes inside an MPP 

and hf'tween nodes in different computers over TCP /IP. By doing that we can identify 

points where performance drops occur, and l ry to identify lhe reasons for lhat. After that 

wc discuss some of the techniques which can be used to avoid lhose problems, and present 

som~> results of our work which improved the overall performance. Finally, we present 

some conclusions and discuss some other options for fu turc work. 

2 The Network Subsystem in Current MPPs 

As mentioned carlier, today supercomputers are baseei on the interconnection of high 

performance cornmodity processors using a high speed interconnect. Such interconncct 

may be a swilched network (IBM SP), tree-based nctworks (Thinking Machines CM-5), 

a regular mcsh (Intel Paragon) , or some other design. The important aspect is that the 

prograrnmer has direct access to communication primitives which makc full use of the 

network capacity. In this research we focus on lhe Intel Paragon a~ a reasonable example 

of snch a system, but most of the discussion presented here can be easi ly applied to others. 

2.1 The Paragon Mesh 

Thc compnt.e nodes in lhe Intel Paragon are composed of two or three Intel i860 processors 

in each nodc, coupled with a custom designed mesh connection chip, lhe mesh processor, 

which is responsible for routing messages in t ransit in the mesh anel to handle messages 

from or lo that node. It has a five input crossbar switch, connecting lhe processors in each 

node to lhe four immcdiate ncighbor nodes. Each connection link is capable of carrying 

data at 160 rnegabytes per second (MB/s). 

One of the i860 in a node is the message processar, responsible for handling messagcs 

frorn anel to the node, interfacing to the rnesh processor. The remaining i860 (one or 

two, depending on the hoard model) are available for lhe application. Communication 

betwecn lhe app!ication processor(s) and lhe rnessage processor is performed through 

shared rnemory struclures, and is controlled by the inlerproccss communicalion (IPC) 

interface, called NX [In t93]. 

Thc opcraling system on cach node can be cither Intel's OSF/ I, derived directly 

from thc Mach operating system [RBG+9J, RBF+89], or SUNMOS, a light weighl kernel 
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devcloped at Sandia Labs [SS94]. OSF I 1 provi de~ lhe applicalion running on any nade 

with a complete interface to ali syslem resources, while SUNMOS offers only a limited 

interface, allowing nades in an application litlle more lhan message exchange, but with 

higher performance, due to lhe smaller overhead. That limited interface does not allow 

applications lo acccss mosl devices, including externai network interfaces, so SUNMOS is 

of littlc use if we inlend to writc network aware applications. 

The Paragou systems avai lable for ou r use at the University of Arizona and at Caltech 

were configured to run with OSF I 1 only, so all numbers we got are for t hat system. When 

resulls for SUNMOS differ in a noliceable way we mention numbcrs from the literature. 

2 .2 Interprocess communication through the mesh 

Application programs can makc dircct use of NX primilives lo exchange data, or use 

speciallibraries which in lurn sil on top of NX. One such library is lhe PVM package, for 

cxample. Sincc in this work we are interested in l he maximum performance possible, we 

focus ou lhe NX primitives directly. 

NX throughput 

...----
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Figure I: NX performance 

Figure I shows lhe throughput achieved by an applicalion transfering data between 

two nades in messages of various sizes using NX primitives. The maximum rate achieved 

in this test, 66 MBis, is well below the link capacily, so here we fimlthe firsl point where 

performance is lost. The problem here is l he operating system overhead. OSFil (and 

Ma.ch , for lhat matter) has a lot of bookkeeping to do when handling memory around , 

and message sending and receiving requires message buffers lo be allocated, filled anel 

passeei between the applicalion processar and lhe messagc processar. i\11 lhis limits lhe 

maximum lhroughput. 

ll is easy to show lhal OSF/1 is the culpril here by comparing lhose numbers wilh 

measurt•menls of the same transfer undcr SUNMOS as mentioned in [Dun94]. Under 
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SUNMOS Lhe transfer reaches up to 150 MB/s, very close to the link capacity. Obviously 

Llw overhead of OSF /1 limits Lhe bandwidth between t he application processar and the 

message processar. Nevertheless, OSF/l offers many advantages over SUNM OS, like a 

much richer interface to operating systcm services, which justifies its use. 

lt. is worth mentioning that although OSF f I limils the maximum bandwidth o f a single 

connedion, it does not limit link utilization by conneclions from differenl nodes which 

happen to be routed Lhrough a common link. In that case ali Lhe capacity of the link 

is a.vailable (160 MB/s), and multiple transfers may take place concurrent ly, sharing the 

link capacity. 

2.3 Raw HiPPI 

From Lhe previous section, it is clear that we cannol use att the bandwidth of a HiPPI 

cha nnel from a compute node if Lhe message has to travei lhe mesh to rcach thc network 

irllc-r facc, which is usuatty lhe case. But can we get even d ose lo those 66 MB/s? In order 

lo answer Lhat wc must firsl determine t he maximum throughput possible Lhrough Lhe 

Paragon HiPPI interface. The experi ment used to verify that was performed by running 

an apJ>Iication to push data between the nodes containing each endpoint of a HiPPI link. 

In t.his way, data from one node lo lhe other had to go only from Lhe application processor 

in one node to the HiPPI in terface, across t he cable anel into Lhe other node. 

T hat is not cxactly what happens when a compute node sends data lo t he HiPPI 

inlPrface, though. In our test, data goes from an application processor to t he interface. 

In the case;: of a compute node sendi ng data, t hat data would go from the compute node, 

in to lhe mesh, then to lhe mesh processor in lhe 1/ 0 node, which would store t he data in 

memory. Finatly the message processor in turn handles it to thc interface. Neverthcless, 

out tesl should show a dose upper bound to thc maximum possible rale. In order to 

be exact, though, we must also repeat the same test moving Lhe endpoints of the data 

lransfer from the nodes containing the HiPPI boards lo lwo com pute nodes inside lhe 

mesh. The throughput measured thal way would be the actual maximum throughput 

available for an application using the HiPPI interfaces, and would identify lhe overhead 

dueto remot e dcvice access lfGB91] . 

Pigure 2 shows the rales achieved by both t he conneclion belween 1/ 0 nodes and lhe 

conncclion bctween generic compute nodes. 

In lhe 1/0 node case lhe maximum ra te is 24 MB/s, already wett below NX maximum 

throughput. In this case again the problem is dueto operating system ovcrhead. Although 

t.lw applicalion executes in the same node where lhe interface is located, each message to 

bt> sent must be placed in <L Mach message and passed to the OSF/ l (Mach) kernel in tha t 

nodC' for processing and delivcry to the interface. T he kernel musl perform some security 

t<·sts to verify if the message represcnts a valid requcst, and att this adds a lot of overhead 
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Raw HiPPI Throughput 
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Figme 2: Raw HiPPI performance 

in th~ çase of Mach. Finally, data must be moved between lhe kcrncl and the interface. 

In many cases, whcn the data arrives before the application is able lo define a buffer to 

hold il, additional copies are necded lo move it from the interface or mesh processor to 

a syslem huffer, and later from lhat buffer to the one provided by the application. Ali 

lhose çost:; add up noliceably. 

Whrn we consider lhe generic compute node, though, the situation is even worse: 

the maximum haudwidlh is limited to 11 MB/s now, already around just ten percenl of 

t he dmnrwl capacity. Here we see costs piling up. The raw HiPPI interface available to 

the application programmer is based on Mach NORMA IPC messages, messages used by 

Mach kernels in a cooperativc network to communicate [Bar91] . Whrn lhe application iu 

lhe compute node has to send a message it issues a system call lo detiver the message 

to thc kernel in ils own node, which causes the first overhead. Then the message is 

aulhcnticated, encapsulated in a Mach NORMA message, anel shipped over the mesh to 

the uode rontaining the HiPPI interface. Thcre il is copicd from the mesh interface lo 

memory, processcd by lhe OSF'/1 kernel in that node, and finally copied to the interface. 

The processing during delivery is similar. 

2.4 Good old TCP /IP 

But programming using raw HiPPI calls poses two problems for the application developcr: 

First, il is a new API which has to be maslcrcd. It would be easier if we could just use 

ali tlw code already devcloped for more cornmon network stacks, like TCP /IP. Second, 

raw HiPPlusc is limited to computers connected to a single HiPPI domain . lt does not 

provide any routing inforrnation across domains, no error control in case routers along 

tlw wa.y drop a packct, and cannot b<' passed on to other kinds of networks. We need é\ 

mor<' Oexible transport protocols, which can take care of dropped packets, routing, and 

which is supporled ovcr diffcrent network mediums. Currently, no protocol suíte can do 
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i L hett.cr Lhan TCP /IP. 
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Figure 3: OSF f 1 TCP performance 

• 

~esul ls appcar in figure 3 for thc lransfcr of large data sets (8 MB) using various 

tnf'ssage sizes using OSF/ 1 TCP / IP. To understand whal happens to make performance 

so low compareci to the previous numbers, we must note three points: Segment size, 

proLocol stack implementation and protocol processing cost. 

Firsl of ali, Lhe standard for TCP / IP implementation over HiPPI networks slate t hat 

lhe maximum scgmcnt size allowcd in l his case is a little under M Kbyte [Ren97J. So 

we cannoL benefit from sending data as huge 1 MB packets, as in previous tests. This 

limiLaLionmakes the packetizalion overhead (headers, HiPPI burst transfer setup and tear 

clown) much higher, reducing lhe maximum achievable rate. For the compute node raw 

lliPPI test we got approximately 6 MB/s for 64 I<B messages, so we cannot expect TCP 

lo t•xcccd t hat. But our resulls are slill much lower, with a maximmn of just aboul 1.96 

1\IB/s. 

Next factor to justify such low numbers is lhe structure o f the pro toco I stack implemen

tation, rcpresented in figure 4. As a Mach deri vative, In~el OSF /1 implemenls ali protocol 

processing functions inside the Unix server, a process running in one of the nodes of the 

MPP, called the service node [LR94J. The rcason for that is to simplify thc managcment 

of host wide protocol information, like ports and sequence numbers. Using a centralized 

server, a li this information is kept in one place. The problem is that such solut ion has two 

clrawbacks: It adds an extra hop for every message, and an expensivc one, since a Mach 

messagc has to go from lhe application addrcss space, to the local kernel, to lhe kcrncl in 

lhe scrvice nocle, and finally lo Lhe Unix server address space. Besides t haL, there is also 

th<' fact that thc Unix scrver becomes a bottleneck when multiple nodes slart concurrent 

TCP connections through the nelwork interface. Ali data from ali connections has to be 

processecl in a single node, by a single process. That restricts performance. 

Finally, there is the protocol processing cosL iLsclf. Evcry data in a TCP conncction 
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Figure 1\: The Intel Paragon nelwork subsyslem 

has to go through a checksum computation process. Since lhcrc is no hardware support 

for that in the interface, it requires data lo cross the memory bus twice, and rcquircs Lhal 

computation bc performed in the CPU for every bytc Lransfered. 

3 Where did it go? 

So that is the bad ncws. Although a programmer can cxpecl transfcr rales on the ordcr 

of tens of megabyles per seçond when communicating bctween nodes in an MPP, lhe 

effcctive rale available to transfer data to olher computers across a fast network as HiPPI 

is lower than two megabytes per second. The main overhead factors were identified as: 

System call overhead: Mach message construction and domain boundary crossings add 

a lot of overhead, as seen by comparing OSF/l and SUNMOS NX performance. 

Remate node syst em calls: Worse yet, syslern calls issued by applications in one node 

which have Lo be processed by another, like writing to a remete device or opening 

a TCP connection require many boundary crossings, with high overhead. 

Cent ralized protocol processing: The use of the Unix server as the rcsponsiblc for 

ali TCP processing adds extra mcssagcs and creales a bottleneck to concurrent 

conncctions. 

Ali-software protocol processing: Computing checksums in software, for example, 

crcatc Ci>U overhead. 

Once ali lhese points ha.ve been identified, we can sla.rt to addrcss Lhe problems they 

reprcscnt. 
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4 How can we improve it? 

Therc are solutions already proposed to some of lhe problems mentioned earlier, while 

others still rcquire furthcr investigation. In this section we sumarize some of lhe research 

in lhe area, and prcscnl our resulls in studying some of the topics. 

4.1 Operatiug system structure 

Thc elifference in IPC performance between SUNMOS anel Intel OSF /1 points clearly to 

the first point to hc aeldressed: OSF/l's Mach heritage. Allhough il wa~ an imporlanl 

project, with many contributions, Mach structure poses problems duc to the high overhead 

it rcquires to allow applications to access systems rcsources, both on t he local node anel, 

more severely, on rcrnote nodes (MU92). SUNMOS can be pointcd out a~ a possihlc 

solulion when applications requirc just intra-MPP communication, but the lack of access 

to othcr systcrn scrviccs likc rernote devices prevents it frorn being used when inter-MPP 

romrnunication is a must. 

There has hcen some research in the last few years poinling oul that microkernel 

designs nced not aeld such high overhead to systcm scrvices (Lie95], and such results may 

eventually bc relrofitted into the MPP arena. For example, thc next gencration Intel 

supcrcomputcr (Cor] does not use the Mach kernel in lhe compute nodes, replacing it by 

a lighter, faster kernel, yet maintaining access to system resources for ali nodes. 

4.2 Integratiou of primitives 

Cornparisons between NX bandwidth and Mach NORMA IPC show how differcnt per

formance is between rcstricted, application levei limited comrnunication and lhe more 

powerfull and secure inter-kernel cornmunication schemes. Systems should bc designed 

so thal ali leveis could benefit frorn the faster technique. In particular, Mach NORMA 

IPC is a general solution, designed to work both on the MPP realm as in wide arca net

works connecting disperseel Mach machines. Tuning the inter-kernel communication and 

device access primitivcs to the features of lhe proprietary interconnect (and extending the 

interconnect with features like hardware based aulhentication anel access control) would 

certainly yicld faster systems (TB94]. 

We devised an cxperiment to try to identify how much Mach NORMA !PC limits 

the overall conncction bandwidth: In stead of writin"g a simple data transfer program to 

bc run in lhe compute nodes which would use lhe raw HiPPI device interface provided 

by OSF/1 (what would require Mach NORMA !PC rnessages between compute nodes 

anel the 1/0 node with the actual device) we ran a dislributed program composed of two 

processes, one executing in lhe I/0 node and Lhe olher in lhe compute node. In such 

sdup, lhe process in the compute node would not use raw HiPPI directly, but would 
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in~kad use NX to transfer thc data to the process in the 1/0 node. That process in turn 

would execute a local system call to write to Lhe interface. 

In this case, wc would expect the final performance for the t ransfer between two 

compute nodes to get closcr to t hat achieved when the t ransfer occurred between 1/0 

nodcs, since the NX used from compute node to I/0 node should not be a limiting factor. 

Our results, unfortunately, proved to hc no better than the original rcsults from figure 

2, staying wilhing 10 percent of the compute node numbers. A more carefull analysis of 

lhe program and its interaction with the kernel providcd some explanation. Although we 

gaincd in throughput by using NX in stead of NORMA IPC between compute node and 

1/0 node, we inscrted an application program in Lhe I/0 node, adding domain crossings 

from kcrnel to the application program and back. 13esides that , in thc NORMA IPC 

case, mc~sages went from the the mesh processor directly to the messagc proct:ssor which 

perfonned ali syslem functions, while our implcmcntation had messages being processed 

by the mcsh processor, then the mcssage processor, which relaied them to the application 

processor, and then back to the messagc processor for operating system services. 

Under such consideralions, we can argue that the fact that we could at least achievc 

performance similar to that of the Mach NORM A IPC case is in fac t promising, since we 

are dealing with much higher overheads in the I/0 nodc itself. If we could retrofit our 

program which received NX messages and issued system calls into Lhe kernel of the 1/0 

node, w<: would most likely havc gol lhe performance ga.ins we expected. 

4.3 A void centralized servers 

F'or an MPP, even more important than lhe performance of a single data. t ransfer is how it 

behaves whcn operating with other conncctions in para llel. In order to determine that, we 

ra n a sct of experiments in which we started TCP connections betwecn varying numbers 

of compute nodes in two separa.te Intel Pa.ra.gons. We focused only on 64 KB messages, 

since wc werc interested in maximum throughputs. Figure 5 show our results. 

lt is clear how big a bottleneck the Unix server hecomcs. Although many of the 

processing costs are due to mesh t ransfers and to costs in the compute nodes, adding extra 

connections does not increase the aggregate throughput by much, reaching a peak at 2.2 

MB/s. In fact the server does not scale at ali after t hat since cache and buffer conflicts 

in Lhe server actually cause performance to degrade as new connections are added. As 

one would expect, the throughput of each individual conncction drops qui"ckly as more 

connections have to share t he limited bandwidth. 

Wc have focused on this problem in ou r research, where we havc succeeded in avoiding 

t he Unix servcr bottleneck. The idea. we have implementcd is illust rated in figure 6, and 

is based on the uscr levei implementation of protocol st acks as proposed by Maeda and 

Bcrshad [MB93]. 
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Figure 5: Performance of OSF/1 TCP for concurrent connections 
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Figure 6: Thc user levei implementation of the protocol stack 

'vVe have portcd thc .r-kernel [OP92J to the Intel Paragon application address space 

and used it as the implementation framework to build a user-level TCP / IP protoc:ol 

stack, complete with the TCP extensions for high bandwidth networks such as HiPPI. 

Our implementalion makes use of Intel p-threads libraty [Int93J and the Mach out-of

kernel device interface jFGB91] to access the HiPPI board. With each node being able 

to process its own TCP connections, the Unix server is removed from the data palh 

completely. The server is accessed only during conneclion selup and tear down, when the 

host wide context of TCP has to be updated. Once the connection is set, data moves 

directly bctween lhe 1/0 node and the compute node holding the process using each 

connection. This is po~sible by programming the packet filter at the 1/0 node [YBMM94] 

with informalion lo identify lhe end point of each TCP packet. A more delailed discussion 

of onr work can be found in [GP97J. 

At this point we make use of Mach NORMA !PC to reach lhe 1/0 nodc. As we have 

discnssed, altering lhe kernel in that node to accept NX requests directly might improve 
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performance !'VIm further. 

Figure 7: Aggrcgatc throughput 

We have performcd the same connection sca.lability Lcsts wc used before for the OSF/1 

protocol slack. Figures 7 and 8 show how ou r implementation compare to the that system. 

Clearly, our system a.chieves much better scalability, increasing the aggrega.te throughput 

up to 9.2 MB/s, much closer to the ma.ximum of 12 MB/s achieved between 1/0 nodes 

for 64 1\B messages . 

......._ ---

Figure 8: Throughput per node 

Our solulion scales well, increasing aggregate throughput for up to 6 concurrcnl node 

ronncctions, after what performance of each conncction begins to drop as ali have t.o 

~hare the limitcd bandwidth. Such results show a great improvement over the current 

implementation. 

4.4 Hardware assisted protocol processing 

From figure i we can see that we have improved the performance of a sing1c TCP con

ncction by about 50 percenl , but lhe maximum rale of 3 MB/s is still well below the 
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maximum rale achieved for a raw HiPPI connection between compute nodes, which was 

around 6 MB/s. To determine which were the limiting factors for a single connection, 

we had to invesligale lhe protocol processing which now was taking place in the compute 

nodes. We did thal by comparing lhe usual TCP connection performance with that of 

an altered TCP stack without checksum computation and with that of an UDP transfer 

with similar characteristics. 

For 6·11\B mcssages, TCP without checksum computation was ahle to reach 4.5 MB/s, 

another 50 percent gain. That shows that checksum computation is an important cost in 

the protocol stack operation. Furthermore, Lhe UDP connection did noL improve signifi

cantly over that: Maximum UDP throughput was 4.7 MB/s, showiug that Lhe remaining 

TCP processing costs were not as signilicant. The difference between the UDP num

bers aud lhe raw HiPPI numbers is duc to unavoidable protocol processing cosls, like 

dcmultiplexing, aud due to the intrinsic overhead associated with Lhe framework run time 

supporl, likc p-lhread context switching and sysLem call processing. 

That confirms what has been suggested by oLhers: TCP /IP implementations in high 

performance systems can bennefiL heavily from some kincl of hardware assisted checksum 

romputation associated with Lhe network interface [Ste94j. One of the reasons such sup

porl is not present in lhe Paragon board is that its HiPPI interface was dcvelopped having 

in mind local access Lo HiPPI disks and other devires, not intcrnetworking. Our results 

suggest that for future implementations such featurcs should be considered. 

4.5 Special-purpose protocols 

In ali our scalabi lity tests we have used TCP as our transport protocol , mainly because of 

its widesprcad availability and its connection oriented scrvicc. But TCP was developed 

having in mind the Internet world, where connections operate independently, competing 

with others wiLh completely different needs along its routc. lts fiow control techniques 

were a li dcveloped having such situation in mind. 

In the MPP world, we will most likely need severa! concurrent connections from nodes 

in one computer to nodes in another one to carry out some computation2
• Ali those 

connections will be competing with each other along lhe way, and their flow control 

mechanisms will be adjusting each one accordingly, resulting in the reduced per node 

rates scen in figure 8. Uut the flow control compuLation for each connection has no 

information about thc cooperative behavior of all those connections: They should not 

compete with cach othcr, hut instead could cooperate in some way in order to achieve 

lhe bcst use of the medium. For example, they could use some sort of scheduling among 

themselves to avoid confiicts duc to packets from different nodes arriving ata given router 

~The option to this would bc to use one process in cach MPP as a ccntralizer for ali communication, 
which would rcpeat thc problcms of thc centrali2cd protocol processor in the Unix ser ver 
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o r sw i te h lo o close togethcr. 

That is the problem we intend lo altack now. Therc are no results in this area yet, but 

W(' hope our rescarch can providc some answers about whal can be aclticvcd by making 

the coopcratiove nature of lhe connections explici t. 

5 Conclusions 

We have shown how the high throughput rales available for communication among nades 

in a singlc MPP get reduced as we add the steps and elements necded to allow simple 

communication with other computers, what usually implies a TCP / IP protocol stack. We 

were able to identify tosses dueto system call processing overhead, inter-kerncl communi

cation primitives, overhead dueto message fragmentation requirements, centralized server 

processors and lack of hardware support for simple lasks. 

rlased on thc problems identified some solutions werc proposed and discussed to show 

how fu turc network subsyslem implementations can avoid the same limitations. Some of 

the t.cchniques proposed are: 

• Reduction of system call overhead in micro-kerncls. 

• Aettcr inlegration of mesh acccss primitives and inter-kernel communication func

tions. 

• lmplementalion of per-nade protocol processing (uscr-lcvcl protocol stacks). 

• Use of hardware assistance for checksum computation. 

• Development of special protocols for cooperativc connections. 

In particular, we have presented our results with a user-level per nade implementation 

of lh<' TCP / IP protocol stack, which achieves higher throughput thant the original system, 

with good scalability with the number of nades. 
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