Network Subsystems in MPPs:
Where Did All the Performance Go?

Dorgival O. Guedes* Larry L. Peterson

Department of Computer Science
University of Arizona
Tucson, AZ 85721, USA

E-mail: {dorgival,llp}@cs.arizona.edu

June 1997

Abstract

In this work we describe our results on identifying the most important over-
heads in the network subsystem of massively parallel processors (MPPs), specially
the Intel Paragon. We show how poor implementation techniques currently prevent
performance of applications using TCP/IP protocols to communicate between su-
percomputers connected by high performance networks from achieving data rates
close to the capacity of the medium.

We identily some of the possible solutions to the problem, and discuss what can
be expected in future systems. In particular, we present our results on evaluation of
some of those solutions, including a user-level protocol implementation which scales

with the number of concurrent connections and performance superior to the current
system.

Resumo

Neste artigo apresenta-se resultados sobre a identificagio dos principais gargalos
em subsistemas de rede de processadores massivamente paralelos, abordando partic-
ularmente o Intel Paragon. Demonstra-se como técnicas de implementagio correntes
impedem que aplicagdes que utilizem protocolos como TCP/IP entre supercom-
putadores interligados por redes de alta velocidade alcancem taxas de transferéncia
proximas i capacidade do meio de transmissao.

Algumas possiveis solugées para o problema sido sugeridas, e discute-se o que
pode ser esperado de sistemas futuros. Em particular, resultados de avaliagdo dos
beneficios de algumas técnicas sao apresentados, destacando-se uma implementagao
de protocolos no espaco da aplicagdo que apresenta performance e capacidade de
expansao para multiplas conexdes superior aos sistemas atuais.

*Sponsored by Conselho Nacional de Desenvolvimento Cientifico e Teenoldgico (CNPq), Brazil, Process
no. 200861/93-0

333

1 Introduction

Over the last few years the developments in the area of massively parallel processors
(MPPs) have shown that we are now capable ol building large scalable systems with
peak performance in the TeraFLOPS range. Such machines are based on the use of high
performance commodity processors connected by a high speed proprietary interconnection
network. Examples of such systems are the IBM SP systems [Ger95] and the Intel Paragon
(Int91].

What guarantees the high performance of such systems is the availability of inter-
process communication primitives (IPC) which allow processes in different nodes of the
machine to exchange information at very high rates with minimum delays. Whether the
system provides a message passing interface or a distributed shared memory model, appli-
cations where hundreds or even thousands of nodes work together in a task are possible.

Now the local and wide area network technologies are starting to reach speed levels
comparable to those of some of the current supercomputer interconnects, in the Gigabit
per second range. These developments make it possible for us to think of building our
own supercomputers by connecting our own workstations with a fast network. On the
other hand, we can also imagine connecting our already powerfull MPPs to others in other
laboratories. The need for such connection comes from the ever increasing need to share
information among different sites and different computers, as well as from the need to
work on even larger problems.

But although we have very high performance supercomputers and very fast network
interconnects available today, like HiPPI [TR93] and ATM [Vet95], there has been only
limited success on putting them together. In the application realm, one would expect to
be able to extend a parallel application across multiple computers by using some already
designed communication package, like PYM([Sun92] or MPI[GLS93], and some stable pro-
tocol suite like TCP/IP'. But things are not that simple.

The problems begin when we try to use any TCP/IP based code to push data over
a connection between two MPPs linked by some high speed network. The user would
be shocked by the low bandwidth achieved in most cases. Many solutions today tend
to adopt specialized approaches [Dun96], which unfortunately do not scale well for a
more general network. For example, the use of raw HiPPI connections is common in the
supercomputer world, but such technique is limited to local HiPPI networks. When we
intend to connect systems at different sites, separated by possibly multiple networks with
different technologies, TCP/IP is still the easiest way to go[Com95].

But where does the performance go? A TCP/IP connection between two Intel Paragon

"Although an implementation of PVM in the Paragon may usec its internal IPC for communication
between nodes, communication with other machines must rely on TCP/IP Lo cross the external network

334

over a HiPPI switch, for example, usually gets just about two percent of the available
bandwidth, pushing data at 2 MB/s, when the network bandwidth is 100 MB/s. In this
work we intend to discuss what the problems are today that prevent us from using all the
available bandwidth of such systems, and to present some results achieved by applying
techniques to avoid them.

The rest of this paper is organized as follows: In the next section we present numbers to
show the mismatch between the performance achieved between two nodes inside an MPP
and between nodes in different computers over TCP/IP. By doing that we can identify
points where performance drops occur, and try to identify the reasons for that. After that
we discuss some of the techniques which can be used to avoid those problems, and present
some results of our work which improved the overall performance. Finally, we present

some conclusions and discuss some other options for future work.

2 The Network Subsystem in Current MPPs

As mentioned carlier, today supercomputers are based on the interconnection of high
performance commodity processors using a high speed interconnect. Such interconnect
may be a switched network (IBM SP), tree-based networks (Thinking Machines CM-5),
a regular mesh (Intel Paragon), or some other design. The important aspect is that the
programmer has direct access to communication primitives which make full use of the
network capacity. In this research we focus on the Intel Paragon as a reasonable example

of such a system, but most of the discussion presented here can be easily applied to others.

2.1 The Paragon Mesh

The compute nodes in the Intel Paragon are composed of two or three Intel i860 processors
in each node, coupled with a custom designed mesh connection chip, the mesh processor,
which is responsible for routing messages in transit in the mesh and to handle messages
from or to that node. It has a five input crossbar switch, connecting the processors in each
node to the four immediate neighbor nodes. Each connection link is capable of carrying
data at 160 megabytes per second (MB/s).

One of the i860 in a node is the message processor, responsible for handling messages
from and to the node, interfacing to the mesh processor. The remaining i860 (one or
two, depending on the hoard model) are available for the application. Communication
between the application processor(s) and the message processor is performed through
shared memory structures, and is controlled by the interprocess communication (IPC)
interface, called NX [Int93].

The operating system on each node can be either Intel’s OSF/1, derived directly
from the Mach operating system [RBG*93, RBF*+89], or SUNMOS, a light weight kernel

335

developed at Sandia Labs [SS94]. OSF/1 provides the application running on any node
with a complete interface to all system resources, while SUNMOS offers only a limited
interface, allowing nodes in an application little more than message exchange, but with
higher performance, due to the smaller overhead. That limited interface does not allow
applications to access most devices, including external network interfaces, so SUNMOS is
of little use if we intend to write network aware applications.

The Paragon systems available for our use at the University of Arizona and at Caltech
were configured to run with OSF/1 only, so all numbers we got are for that system. When

results for SUNMOS differ in a noticeable way we mention numbers from the literature.

2.2 Interprocess communication through the mesh

Application programs can make direct use of NX primitives to exchange data, or use
special libraries which in turn sit on top of NX. One such library is the PVM package, for
example. Since in this work we are interested in the maximum performance possible, we
focus on the NX primitives directly.

NX throughput

Thrvmghpet (MDA
2 5

|lWRﬂl“?ﬂi‘}lllkl‘!l‘:“:l;ﬂ;ﬂlll
Mg kength (byies)

Figure 1: NX performance

Figure 1 shows the throughput achieved by an application transfering data between
two nodes in messages of various sizes using NX primitives. The maximum rate achieved
in this test, 66 MB/s, is well below the link capacity, so here we find the first point where
performance is lost. The problem here is the operating system overhead. OSF/1 (and
Mach, for that matter) has a lot of bookkeeping to do when handling memory around,
and message sending and receiving requires message buffers to be allocated, filled aned
passed between the application processor and the message processor. All this limits the
maximum throughput.

It is easy to show that OSF/1 is the culprit here by comparing those numbers with
measurements of the same transfer under SUNMOS as mentioned in [Dun94]. Under

336

SUNMOS the transfer reaches up to 150 MB/s, very close to the link capacity. Obviously
the overhead of OSF/1 limits the bandwidth between the application processor and the
message processor. Nevertheless, OSF/1 offers many advantages over SUNMOS, like a
much richer interface to operating system services, which justifies its use.

It is worth mentioning that although OSF/1 limits the maximum bandwidth of a single
connection, it does not limit link utilization by connections from different nodes which
happen to be routed through a common link. In that case all the capacity of the link
is available (160 MB/s), and multiple transfers may take place concurrently, sharing the
link capacity.

2.3 Raw HiPPI

From the previous section, it is clear that we cannot use all the bandwidth of a HiPPI
channel from a compute node if the message has to travel the mesh to reach the network
interface, which is usually the case. But can we get even close to those 66 MB/s? In order
to answer thal we must first determine the maximum throughput possible through the
Paragon HiPPI interface. The experiment used to verify that was performed by running
an application to push data between the nodes containing each endpoint of a HiPPI link.
In this way, data from one node to the other had to go only from the application processor
in one node to the HiPP[interface, across the cable and into the other node.

That is not exactly what happens when a compute node sends data to the HiPPI
interface, though. In our test, data goes from an application processor to the interface.
In the case of a compute node sending data, that data would go from the compute node,
into the mlesh, then to the mesh processor in the [/O node, which would store the data in
memory. Finally the message processor in turn handles it to the interface. Nevertheless,
out test should show a close upper bound to the maximum possible rate. In order to
be exact, though, we must also repeat the same test moving the endpoints of the data
transfer from the nodes containing the HiPPI boards to two compute nodes inside the
mesh. The throughput measured that way would be the actual maximum throughput
available for an application using the HiPPI interfaces, and would identify the overhead
due to remote device access [FGBI1.

Figure 2 shows the rates achieved by both the connection between I/O nodes and the
connection hetween generic compute nodes.

In the I/0 node case the maximum rate is 24 MB/s, already well below NX maximum
throughput. In this case again the problem is due to operating system overhead. Although
the application executes in the same node where the interface is located, each message to
e sent must be placed in a Mach message and passed to the OSF/1 (Mach) kernel in that
node for processing and delivery to the interface. The kernel must perform some security
tests to verify if the message represents a valid request, and all this adds a lot of overhead

337

Raw HiPPI Throughput
One-way

25 . /./"'_.
15

- / B

Throughput {MDJs)

8 1K 2K 4K BK 16 X2 &4 128 256 512 M

Mg Benpliippliy © K K

Figure 2: Raw HiPPI performance

in the case of Mach. Finally, data must be moved between the kernel and the interface.
In many cases, when the data arrives before the application is able to define a buffer to
hold it, additional copies are needed to move it from the interface or mesh processor to
a system buffer, and later from that buffer to the one provided by the application. All
those costs add up noticeably.

When we consider the generic compute node, though, the situation is even worse:
the maximum bandwidth is limited to 11 MB/s now, already around just ten percent of
the channel capacity. IHere we see costs piling up. The raw HiPPI interface available to
the application programmer is based on Mach NORMA IPC messages, messages used by
Mach kernels in a cooperative network to communicate [Bar91]. When the application in
the compute node has to send a message it issues a system call to deliver the message
to the kernel in its own node, which causes the first overhead. Then the message is
authenticated, encapsulated in a Mach NORMA message, and shipped over the mesh to
the node containing the HiPPI interface. There it is copied from the mesh interface to
memory, processed by the OSI/1 kernel in that node, and finally copied to the interface.
The processing during delivery is similar.

2.4 Good old TCP/IP

But programming using raw HiPPI calls poses two problems for the application developer:
First, it is a new API which has to be mastered. It would be easier if we could just use
all the code already developed for more common network stacks, like TCP/IP. Second,
raw HiPPl use is limited to computers connected to a single HiPPI domain. It does not
provide any routing information across domains, no error control in case routers along
the way drop a packet, and cannot be passed on to other kinds of networks. We need a
more flexible transport protocols, which can take care of dropped packets, routing, and

which is supported over different network mediums. Currently, no protocol suite can do

338

it better than TCP/IP.

Throughput (MD/s)

0 = Byl

T8 18 32 64 2 286 512 1K 2K 4K 8K 18K 2K
Msg kengih (hyics)

Figure 3: OSF/1 TCP performance

Results appear in figure 3 for the transfer of large data sets (8 MB) using various
mess.a.ge sizes using OSF'/1 TCP/IP. To understand what happens to make performance
so low compared to the previous numbers, we must note three points: Segment size,
protocol stack implementation and protocol processing cost. '

First of all, the standard for TCP/IP implementation over HiPPI networks state that
the maximum segment size allowed in this case is a little under 64 Kbyte [Ren97]. So
we cannot benefit from sending data as huge 1| MB packets, as in previous tests. This
limitation makes the packetization overhead (headers, HiPPI burst transfer setup and tear
cdown) much higher, reducing the maximum achievable rate. For the compute node raw
IIiPPI test we got approximately 6 MB/s for 64 ICB messages, so we cannot expect TCP
to exceed that. But our results are still much lower, with a maximum of just about 1.96
MB/s.

Next factor to justify such low numbers is the structure of the protocol stack implemen-
tation, represented in figure 4. As a Mach derivative, Intel OSF/1 implements all protocol
processing functions inside the Unix server, a process running in one of the nodes of the
MPP, called the service node [LR94]. The reason for that is to simplify the management
of host wide protocol information, like ports and sequence numbers. Using a centralized
server, all this information is kept in one place. The problem is that such solution has two
drawbacks: It adds an extra hop for every message, and an expensive one, since a Mach
message has to go [rom the application address space, to the local kernel, to the kernel in
the service node, and finally to the Unix server address space. Besides that, there is also
the fact that the Unix server becomes a bottleneck when multiple nodes start concurrent
TCP connections through the network interface. All data from all connections has to be
processed in a single node, by a single process. That restricts performance.

Finally, there is the protocol processing cost itsell. Every data in a TCP connection

339

{0000! os#
10000}

0000} [fow]

O UX server

Ea——

HiPPI Node f 0l

s

Figure 4: The Intel Paragon network subsystem

has to go through a checksum computation process. Since there is no hardware support
for that in the interface, it requires data to cross the memory bus twice, and requires that
computation be performed in the CPU for every byle transfered.

3 Where did it go?

So that is the bad news. Although a programmer can expect transfer rates on the order
of tens of megabytes per second when communicating between nodes in an MPP, the
effective rate available to transfer data to other computers across a fast network as HiPPI

is lower than two megabytes per second. The main overhead factors were identified as:

System call overhead: Mach message construction and domain boundary crossings add
a lot of overhead, as seen by comparing OSF/1 and SUNMOS NX performance.

Remote node system calls: Worse yet, system calls issued by applications in one node
which have to be processed by another, like writing to a remote device or opening

a TCP connection require many boundary crossings, with high overhead.

Centralized protocol processing: The use of the Unix server as the responsible for

all TCP processing adds extra messages and creates a bottleneck to concurrent
connections.

All-software protocol processing: Computing checksums in software, for example,
create CPU overhead.

Once all these points have been identified, we can start to address the problems they
represent.

340

4 How can we improve it?

There are solutions alreacdly proposed to some of the problems mentioned earlier, while
others still require further investigation. In this section we sumarize some of the research

in the area, and present our results in studying some of the topics.

4.1 Operating system structure

The difference in IPC performance between SUNMOS and Intel OSF/1 points clearly to
the first point to be addressed: OSF/1’s Mach heritage. Although it was an important
project, with many contributions, Mach structure poses problems due to the high overhead
it requires to allow applications to access systems resources, both on the local node and,
more severely, on remote nodes [MB92]. SUNMOS can be pointed out as a possible
solution when applications require just intra-MPP communication, but the lack of access
to other system services like remote devices prevents it from being used when inter-MPP
communication is a must.

There has been some research in the last few years pointing out that microkernel
designs need not add such high overhead to system services [Lie95], and such results may
eventually be retrofitted into the MPP arena. For example, the next generation Intel
supercomputer [Cor] does not use the Mach kernel in the compute nodes, replacing it by

a lighter, faster kernel, yet maintaining access to system resources for all nodes.

4.2 Integration of primitives

Comparisons between NX bandwidth and Mach NORMA IPC show how different per-
formance is between restricted, application level limited communication and the more
powerfull and secure inter-kernel communication schemes. Systems should be designed
so that all levels could benefit from the faster technique. In particular, Mach NORMA
IPC is a general solution, designed to work both on the MPP realm as in wide area net-
works connecting dispersed Mach machines. Tuning the inter-kernel communication and
device access primitives to the features of the proprietary interconnect (and extending the
interconnect with features like hardware based authentication and access control) would
certainly yield faster systems [TB94].

We devised an experiment to try to identify how much Mach NORMA [PC limits
the overall connection bandwidth: In stead of writing a simple data transfer program to
be run in the compute nodes which would use the raw HiPPI device interface provided
by OSF/1 (what would require Mach NORMA IPC messages between compute nodes
and the 1/O node with the actual device) we ran a distributed program composed of two
processes, one executing in the I/0 node and the other in the cornpute node. In such
setup, the process in the compute node would not use raw HiPPI directly, but would

341

instead use NX to transfer the data to the process in the I/O node. That process in turn
would execute a local system call to write to the interface.

In this case, we would expect the final performance for the transfer between two
compule nodes to get closer to that achieved when the transfer occurred between 1/O
nodes, since the NX used [rom compute node to 1/0 node should not be a limiting factor.
Our results, unfortunately, proved to be no better than the original results from figure
2, staying withing 10 percent of the compute node numbers. A more carefull analysis of
the program and its interaction with the kernel provided some explanation. Although we
gained in throughput by using NX in stead of NORMA IPC between compute node and
/O node, we inserted an application program in the I/O node, adding domain crossings
from kernel to the application program and back. Besides that, in the NORMA IPC
case, messages went from the the mesh processor directly to the message processor which
performed all system functions, while our implementation had messages being processed
by the mesh processor, then the message processor, which relaied them to the application
processor, and then back to the message processor for operating system services.

Under such considerations, we can argue that the fact that we could at least achieve
performance similar to that of the Mach NORMA IPC case is in [act promising, since we
are dealing with much higher overheads in the I/O node itself. If we could retrofit our
program which received NX messages and issued system calls into the kernel of the /O

node, we would most likely have got the performance gains we expected.

4.3 Avoid centralized servers

For an MPP, even more important than the performance of a single data transfer is how it
behaves when operating with other connections in parallel. In order to determine that, we
ran a set of experiments in which we started TCP connections between varying numbers
of compute nodes in two separate Intel Paragons. We focused only on 64 KB messages,
since we were interested in maximum throughputs. Figure 5 show our results.

It is clear how big a bottleneck the Unix server becomes. Although many of the
processing costs are due to mesh transfers and to costs in the compute nodes, adding extra
connections does not increase the aggregate throughput by much, reaching a peak at 2.2
MB/s. In fact the server does not scale at all after that since cache and buffer conflicts
in the server actually cause performance to degrade as new connections are added. As
one would expect, the throughput of each individual connection drops quickly as more
connections have to share the limited bandwidth.

We have focused on this problem in our research, where we have succeeded in avoiding
the Unix server bottleneck. The idea we have implemented is illustrated in figure 6, and

is based on the user level implementation of protocol stacks as proposed by Maeda and
Bershad [MB93].

342

Aggregate Throughput Throughput per node
23 2

R A e N : \
3 / ‘—'.\.\' § .
E
17+ 0
1 2 3 4 5 6 7 8 1 2 3 4 § 6 17 8
Number of nodes Number of nodes

e i x-Kemel
coool =T
| : | i
10000 1L s
10000; =
— 1| E™ |}
a3 ez

:
!
i

Figure 6: The user level implementation of the protocol stack

We have ported the x-kernel [OP92] to the Intel Paragon application address space
and used it as the implementation framework to build a user-level TCP/IP protocol
stack, complete with the TCP extensions for high bandwidth networks such as HiPPIL
Our implementation makes use of Intel p-threads libraty [Int93] and the Mach out-of-
kernel device interface [FGB91] to access the HiPPI board. With each node being able
to process its own TCP connections, the Unix server is removed from the data path
completely. The server is accessed only during connection setup and tear down, when the
host wide context of TCP has to be updated. Once the connection is set, data moves
directly between the 1/0O node and the compute node holding the process using each
connection. This is possible by programming the packet filter at the /0 node [YBMM94]
with information to identify the end point of each TCP packet. A more detailed discussion
of our work can be found in [GP97].

At this point we make use of Mach NORMA IPC to reach the I/O node. As we have
discussed, altering the kernel in that node to accept NX requests directly might improve

343

performance even further.

2 e e e ———
L]
1 2 3 4] & 7 L]
Numher of makes
16000 and 64000 byte masisges

Figure 7: Aggregate throughput

We have performed the same connection scalability lests we used before for the OSF/1
protocol stack. Figures 7 and 8 show how our implementation compare to the that system.
Clearly, our system achieves much better scalability, increasing the aggregate throughput

up to 9.2 MB/s, much closer to the maximum of 12 MB/s achieved between 1/O nodes
for 64 KB messages.

** OSFI-64K

7

S
e e
—
L
1 2 3 4 5 . 7 L]
Number of sy
16000 arvd 64000 byte messages

Figure 8: Throughput per node

Our solution scales well, increasing aggregate throughput for up to 6 concurrent node
connections, after what performance of each connection begins to drop as all have to
share the limited bandwidth. Such results show a great improvement over the current
implementation.

4.4 Hardware assisted protocol processing

From figure 7 we can see that we have improved the performance of a single TCP con-
nection by about 50 percent, but the maximum rate of 3 MB/s is still well below the

344

maximum rate achieved for a raw HiPPI connection between compute nodes, which was
around 6 MB/s. To determine which were the limiting factors for a single connection,
we had to investigate the protocol processing which now was taking place in the compute
nodes. We did that by comparing the usual TCP connection performance with that of
an altered TCP stack without checksum computation and with that of an UDP transfer
with similar characteristics.

For 64 KB messages, TCP without checksum computation was able to reach 4.5 MB/s,
another 50 percent gain. That shows that checksum computation is an important cost in
the protocol stack operation. Furthermore, the UDP connection did not improve signifi-
cantly over that: Maximum UDP throughput was 4.7 MB/s, showing that the remaining
TCP processing costs were not as significant. The difference between the UDP num-
bers and the raw HiPPl numbers is due to unavoidable protocol processing costs, like
demultiplexing, and due to the intrinsic overhead associated with the framework run time
support, like p-thread context switching and system call processing.

That confirms what has been suggested by others: TCP/IP implementations in high
performance systems can bennefit heavily from some kind of hardware assisted checksum
computation associated with the network interface [Ste94]. One of the reasons such sup-
port is not present in the Paragon board is that its HiPPI interface was developped having
in mind local access to HiPPI disks and other devices, not internetworking. Our results

suggest that for future implementations such features should be considered.

4.5 Special-purpose protocols

In all our scalability tests we have used TCP as our transport protocol, mainly because of
its widespread availability and its connection oriented service. But TCP was developed
having in mind the Internet world, where connections operate independently, competing
with others with completely different needs along its route. Its flow control techniques
were all developed having such situation in mind.

In the MPP world, we will most likely need several concurrent connections from nodes
in one computer to nodes in another one to carry out some computation®. All those
connections will be competing with each other along the way, and their flow control
mechanisms will be adjusting cach one accordingly, resulting in the reduced per node
rates seen in figure 8. But the flow control computation for each connection has no
information about the cooperative behavior of all those connections: They should not
compete with each other, but instead could cooperate in some way in order to achieve
the best use of the medium. For example, they could use some sort of scheduling among

themselves to avoid conflicts due to packets from different nodes arriving at a given router

*The option to this would be to use one process in each MPP as a centralizer for all communication,
which would repeat the problems of the centralized protocol processor in the Unix server

345

or switch too close together.
That is the problem we intend to attack now. There are no results in this area yet, but

we hope our research can provide some answers about what can be achieved by making
the cooperatiove nature of the connections explicit.

5 Conclusions

We have shown how the high throughput rates available for communication among nodes
in a single MPP get reduced as we add the steps and elements needed to allow simple
communication with other computers, what usually implies a TCP/IP protocol stack. We
were able to identify losses due to system call processing overhead, inter-kernel communi-
cation primitives, overhead due to message fragmentation requirements, centralized server
processors and lack of hardware support for simple tasks.

Based on the problems identified some solutions were proposed and discussed to show

how future network subsystem implementations can avoid the same limitations. Some of

the techniques proposed are:

e Reduction of system call overhead in micro-kernels.

e Better integration of mesh access primitives and inter-kernel communication func-
Lions.

¢ [mplementation of per-node protocol processing (user-level protocol stacks).
o Use of hardware assistance for checksum computation.

e Development of special protocols for cooperative connections.

In particular, we have presented our results with a user-level per node implementation
of the TCP/IP protocol stack, which achieves higher throughput thant the original system,
with good scalability with the number of nodes.

References

[Bar91) Joseph S. Barrera. A fast Mach network IPC implementation. In Proceedings
of the Usenix Mach Symposium, 2560 Ninth Street, Suite 215, Berkeley CA
94710, November 1991. Usenix Association.

[Com95] Douglas E. Comer. Internetworking with TCP/IP, volume 1. Prentice Hall,
3rd edition, 1995.

346

[Cor]

[Dung4]

[Dunds)

[FGBYI]

(Ger95)

|GLS95]

[GPY7)

(Int91]
[Int93]

[Lie95]

(LR94)

[MBY2]

[MBY3]

[0P92]

Intel Corporation. Intel TeraFLOPs supercomputer project home page.
http://www.ssd.intel.com/.

Thomas H. Dunigan. Early experiences and performance of the Intel Paragon.
Technical Report ORNL/TM-12194, Oak Ridge National Laboratory, oct
1994.

Thomas H. Dunigan. Performance of ATM/OC-12 on the Intel Paragon.
Technical Report ORNL/TM-13239, Oak Ridge National Laboratory, may
1996.

Alessandro Forin, David Golub, and Brian Bershad. An 1/O system for Mach
3.0. In Proceedings of the Useniz Mach Symposium, 2560 Ninth Street, Suite
215, Berkeley CA 94710, November 1991. Usenix Association.

Jerry Gerner. Input/output on the IBM SP2— an overview, 1995. Available at
http://www.tc.cornell.edu/SmartNodes/Newsletters/I0.series/intro.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-
ming with the Message Passing Interface. MIT Press, 1995.

Dorgival O. Guedes and Larry L. Peterson. Eliminating the network subsys-
tem bottleneck in MPPs. To appear, jun 1997.

Paragon XP/S product overview. Intel Corporation, 1991.
Intel Corperation. Paragon User’s Guide, oct 1993.

Jochen Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles. ACM, December 1995.

John LoVerso and Paul Roy. The network architecture of OSF/1 AD version
2. In OSF/RI Operating Systems Collected Papers Vol. 3. OSF Research
Institute, February 1994.

Chris Maeda and Brian N. Bershad. Networking performance for microker-
nels. In Proceedings of the Third Workshop on Workslation Operating Sys-
tems, May 1992.

Chris Maeda and Brian N. Bershad. Protocol service decomposition for high-
performance network. In Proceedings of the Fourteenth ACM Symposium on
Operating System Principles, December 1993.

S. W. O’Malley and L. L. Peterson. A dynamic network architecture. ACM
Transactions on Compuler Systems, 10(2):110-143, May 1992.

347

[RBF*89]

[RBG*93)

[Ren97)

[5594)

[Stevd]

[Sun92]

[TBY4]

[TR93)

[Vet9s)

[YBMM94]

Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael
Jones, Daniel Julin, Douglas Orr, and Richard Sanzi. Mach: A foundation
for open systems. In Proceedings of the Second Workshop on Workstalion
Operaling Systems(WW0S2), sep 1989.

Paul Roy, David Black, Paulo Guedes, John LoVerso, Durriya Netterwala,
Faramarz Rabii, Michael Barnett, Bradford Kemp, Michael Leibensperger,
Chris Peak, and Roman Zajcew. An OSF/1 unix for massively parallel mul-
ticomputers. In OSF/RI Operating Sysiems Collected Papers Vol. 2. OSF
Research Institute, Cambridge, MA, October 1993.

J. Renwick. IP over HIPPI. Request for Comments (Experimental) RFC
2067, Internet Engincering Task Force, January 1997.

Subhash Saini and Horst D. Simon. Applications performance under OSF/1
AD and SUNMOS on Intel Paragon XP/2-15. In Procecdings of Supercom-
puting'94, Washington, DC, nov 1994.

Peter A. Steenkiste. A systematic approach to host interface design for high-
speed networks. Computer, 27(3):47-58, March 1994.

Vaidy Sunderam. Concurrent computing with PVM. In Proceedings of
the Workshop on Cluster Compuling, Tallahassee, FL, December 1992. Su-
percomputing Computations Research Institute, Florida State University.
Proceedings available via anonymous ftp from ftp.scri.flsu.edu in directory
pub/parallel-workshop.92.

John Michael ‘Iracey and Arindam Banerji. Device driver issues in high-
performance networking. In Proceedings of the 1994 USENIX Symposium on
High-Speed Networking, August 1994,

Deon Tolmie and John Renwick. Hippi: Simplicity yields success. I[EEE Nel-
work, January 1993.

Ronald J. Vetter. Atm concepts, architectures and protocols. Communica-
tions of the ACM, 38(2), February 1995.

Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss.
Efficient packet demultiplexing for multiple endpoints and large messages. In

USENIX Conference Proceedings, pages 153165, San Francisco, CA, Winter
1994. USENIX.

348

