
Automated Scalability Prediction via

Data Parallel Compiler Support

Celso L. Mendes'

lmage Processing Division

lnstitute of Space Research

São José dos Campos, SP 12201

E-mail: celso@dpi.inpe.br

ABSTRACT

Daniel A. Reedl

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

E-mail: reed@cs.uiuc.edu

Deepilc thc performance potential of multicomputers, several factors bave limited their widespread adoption.

Of these, performance variability is among the most significant. Execution of some programa may yield only a

small fraction of peak system performance, whereas otbers approach tbe system's theoretical performance peak.

Moreover, tbe observed performance may change subatantially as application program parameters vary. Data

parallellanguages, which facilitate the programming of multicomputers, increase the semantic diatance between

the program's source code and its observable performance, thus aggravating the performance problem.

In thia paper, we propoae a new methodology to automatically predict the performance scalability of data

par aliei applications on multicomputers. Ou r technique representa the execution time of a programas a aymbolic

expreasion that is a function of the number of processou (P), problem sise (N), and othcr ayatem-dependent

parameters. This methodology is baaed on information collected at compile time. By extending an existing

data parallel compiler (Fortran 095), we derive, during compilation, a symbolic model that representa the cost

o(each high-level program aection and, inductively, of the complete program. Tbese symbolic expresaiona may

be simplified externally with current symbolic tooU.. Predictiog performance of tbe program for a given pair

(P, N) requires aimply the evaluation of i ta correaponding coat expreasion. We validate our implementation by

predicting scalability of a variety of loop nesta, witb distinct computation and communication patterns.

•Supportcd bythc Bruilian l nttitutc or Spacc Rucar<h (INPE) and by a acholanhip from CNPq/Bruil.
ISupported in part by lhe Advanccd Rucarch Projecll Ascncy undtr ARPA conlract numbcra DAVTU-91-C-0039 a nd DABT63-

93-C-0040, by lhe National Scicncc Foundation undcr STORII NSF lRI 9Z-U97hnd NSF CDAS7-ZZ835, by thc National Aeronaut ica

and Spacc Adminiatration undcr NASA contract numbera NAG· 1·813and USRA 5555·22,and by a co11aboratinruca.td\ agrecmcnt

with the Intel Supercomputcr S7atcma Divition.

349

1 Introduction

Multicomputers bave been aucceasfully used on a variety of scientific applicationa recently. Macbinea have been

built with over a thousand proceason, and tbere are no insurmountable technological obstaclea that would preveni

multicomputers from acaling to sises with multiple teratlop performance. However, some facton bave limited

their wideapread adoption. Among tbeae, performance variability is one of the moat important. Execution of

some programa may yield only a amall fraction of peak syatem performance, whereaa others approacb the aystem'a

theoretical performance peak. Moreover, tbe obaerved performance may change subatantially as application

program parameters vary.

In this paper, we present a methodology to automatically predict tbe performance scalability of data parallel

applications on multicomputers. Ou r tecbnique representa tbe execution time of a programas a aymbolic expres

aion that ia a function of tbe number of processou, problem aize, and otber syatem-dependent parametera. We

derive these expreasions uaing support provided by lhe compiler and by a symbolic manipulator. By integrating

compilation, performance analyais and symbolic manipulation tools, we ahow that it ia ponlble to correctly

predict the variations in behavior of a data parallel program writlen in a bigh-levellanguage.

1.1 Motivation

Performance prediction can be a valuable tool in parallel program development and tuning. By offering eatimatea

of tbe potential performance achievable by a program on a given system, it can help programmen asaeas tbe

performance impact of selected conatructa in tbeir aource codea even before tbe complete program ia executed

in a real system.

However, to maximize its potential benefits, the prediction mecbaniam must be closely integrated with the

other programming tools available to tbe user. TigbUy coupling the prediction, compilation and performance

analysis componenh has lhe following advanlages:

• Predictions can help in lhe code generalion process;

• The compiler can evaluate the performance implicationa of a given data diatribution;

• Bottlenecks in the program can be automatically identified and tracked.

A key feature of this integrated approach is automated performance prediction. With automation, the pre

diction module may become an integral part of the compilation mechaniam. It can evaluate the code ayntbeaised

by other modules in the compiler, and provide the resulta of this evaluation as feedback information to those

modules. This could posaibly lead to the decision of syntheaiaing a new code, if other optiona exist. Tbus,

the data parallel compiler, extended with prediction capabilities, might be able to improve its code generation

decisions, guided by lhe expected performance from each possible option.

Bottleneck identification is one of the most important phases in program optimization, as it allows one to

concentrate optimisation efforts on those program aections for wbicb there might be the best potential gains in

performance. We define a botUeneclc, in a generic form, as tbe fragment with the greatest execution cost among

tbe fragmenta comprising a certain program. Given the automatically generated costa of eacb program fragment

350

a.a a funclion of the number of procenora (P) and the problem aise1 (N), the compiler can euily determine

the botUeneck ociated witb a particular ayatem witb a configuration (Po, No) by evaluating tbe individual

coat functiona; the function witb tbe greateat coat correaponda to the bottleneck fragment for that (Po, No)· For

different valuea of N and P, the new bottlenecka can be identified in a similar form.

1.2 Paper Organization

The remaining of this paper ia organised a.a follows. §2 reviews related work in the area, and puts our work in

thia context. We then deacribe, in §3, the compilation infrutructure required to extrad aymbolic information

for derivation of coai models for each program fragment . §4 illuatratea the conatruction of theae coat modela.

In §5, we show the generality of our approacb, by applying tbe automated proceaa to predict performance of a

wide variety of loops with diatinct computation and communication patterna. §6 concludea our preaentation.

2 Related Work

Performance acalability prediction on parallel ayatems hu been aUracting great intereat recently. Many re

aearchera have propoaed techniques in the form of toola tbat predict tbe acalability of an applicationfayatem

combination. Most of the propoaed toola, however, atill require conaiderable use r intervention.

Clement and Quinn (5) preaented an analytical modeling technique to predict the apeedup of applications

written in Dataparallel C (8), a SIMD model of parallel programming with explicit paralle\ extenaions to tbe C

language. They decomposed the execution time of an application into a aequential component, a parallelizable

component, and some overhead due to communication. Their compiler generated an expreasion for the program

speedup u a function of tbe number of proceuora, under a fixed problem size, by auociating costa to each of

thoae three components, regarding execution on a certain paralle\ ayatem. However, some of their usumptions

(e.g. that communication time ia independent of measage length, or that the number of cacbed and uncached

memory accesses can be obtained from aource code) seem too optimistic. Their technique wa.a also limited to the

case where parallelism ia already explicit in the source program, and they did nol originally conduct any study

of acalabilily under variations in problem aize. More recently, they extended tbis work (6) to sludy scalabilily of

both lhe problem aize and lhe number of procenora, and build a symbolic model that repreaents lhe predicled

execulion time a.a a function of lhose paramelers. The derivation of this model, however, required alatialical

methods and aeveral experimental runs o f the program with different problem sisos and numben of processora.

Fahringer (7) designed a performance prediclion tool named PPPT (Parameter-ba.aed Performance Prediclion

Tool), which analyzes a aet of parametera thal characterire lhe behavior of a parallel program, including work

distribution, amount of communication and data locality. The too\ correlates atatically compuled information

with actual performance measuremenh to provido the program's performance eatimates both to a compilation

syslem and to general uaers. Such eatimates, however, are preaented in terms of predicted values for those

aelected parametera, instead of lhe execulion time of the program or ita component sections.

1 In &cneral1 the problcm ti se may includc multiplc dimcnsiont. For •implici&.y, we will reprnent it in a ainale dâmcNion.

1tn 1eneral, thc problcm tice may includc multiplc dimcn•iont. Fo r timplicity, wc will rcprucnt it in a tinalc dimcntion.

351

Adve et ai (1) provided an overview of the varioua cballenges involved in creating an environmenl for eflicienl

programming in data parallellanguages. They proposed an environmenl containing the compiler that we used

in our work; in thal environment, however, the analysis guiding the compilation proceas was to be provided

by a separate tool named "Oata-Mapping Aasistant•. This tool would enable um interaction, and would

evaluate candidate dislributions using an integer-programming framework [4); the expected performance from

each candidate distribution would be derived using the previoualy observed computation and communic:ation

behavior of troining seu [2), consisting of small meta-bencbmarks witb the various constructs that are common

in data parallel programa.

Some of the existing methods provide extremely accurate predictions, bul at the cost of intensive analytical

and experimental preparation. Given lhe increasing adoption of bigher-level programming modela for parallel

systems, performance prediction methoda relying on user intervention become even more undesirable. The

increased distance between the slrudures in the source code of the application and the objed code executed

in lhe system places one more degree of complexity in tbe development of performance modela. It seema clear

that automation is lhe key factor to ma.ke this procw feasible. Some of the more recent studies have been

conduded in this direction, trying to intcgrate automatic predidion and compilation too)s. However, that ell'ort

bas not yet reacbed an ideal stage. Some methods derive a prediction for a specific combination of number of

processors (P) and problem size (N), like in [1) and (7). Others provide a symbolic model that can be evaluated

at desired combinations of N and P, but either have a very limited applic:ation domain, as in (12] , or require

severa! executiona of the program for model calibration, as in (6).

There has been no proposed method, ao far, that provides a first-order, easily derivable model o f lhe appli

cation's execution time (and of lhe execution times for internai code sections) as a function of lhe number of

processors and problem size. Our symbolic scalability prediction method targets precisely thia area. Because

it is automated, it c:an be integrated in other compilation and analysis tools. Inslead of aiming at extremely

accurate predictiona, we derive models tbat reliably bound tbe expected performance. The derivation of sucb

models does not depend on instrumenled executions; when available, these executions provide information to

improve the predictions. Thua, the modela can be obtained quickly, by properly leveraging on the capabilities

of a data parallel compiler and of a symbolic manipulator.

3 Compilation Infrastructure

To derive scalability modela automatically, we uaed lhe infrastrudure of the new Fortran 095 compilation

syatem (10). This system was designed to support research on data parallel programming in High Performance

Fortran (HPF) and to explore extensions tbat would broaden HPF's applicability or enhance performance.

Unlike Fortran D, which only extcnded Fortran with directives for data alignment and distribution, the

Fortran 095 language contains nearly ali lhe features of HPF, including ayntax for array operations and support

for parallelloops using tbe "FORALL" construct. Figure 1 shows the general organization of the Fortran 095

compiler; for more details about its internai structure, aee (10].

352

I ··--------- - ----- - ----------- ----- ,

Dts c._u.r I

(Rl.gh-Level l
\ Coda 1

f
-.,

Co4e r • a.•ratloa

I
I
I
I
I
I
I
I

---'
(

llPIID
Co4e

Figure 1: Fortran D95 compiler organisation.

C High-level code C Synthesized SPKD code

CHPF$
CHPF$
CHPF$
CHPF$
CHPF$

real a{1024) ,b(1024)
proceasors proc(16)
template t(1024)
align a(i) vith t(i)
align b(i) vith t(i)
diatribute t(block) onto proc

do i = 1 , 512
a(i) = 6 • b(i) + b(i+612)

enddo

real a(64), b(64), r(64)
if (MyNodeiD >= 8) then

--<send b to node MyNodeiD-P/2>-
endif
if (MyNodeiD <= 7) then

--<receive r from MyNodeiD+P/2>-
do i = 1 , 64

a{i) = 5 • b(i) + r(i)
enddo

endif

Figure 2: Example of SPMD code aynthesization by lhe Fortran D95 compiler.

3.1 Code Translation Model

Aner selecting a specific computation partitioning, lhe D95 compiler generates message passing calls to com·

municale lhe nonlocal references in a given atatement. To undersland how this code translation process occurs,

consider lhe D95 code fragmenl in Figure 2, with lhe corresponding pseudocode for its SPMD equivalent.

Becauae both arrays are dislributed in a blocked form, the D95 compiler recognisea that there are two

candidate computation partitions for this loop: the first partition would assign loop ileration io to the processar

thal owns a(io) and b(io), which would require a remole acceu to read b(io + 512); lhe second partilion would

assign loop iteration io to the processor that owns b(io + 512), thus requiring remote acesses to read b(io) and

to write a(io). The D95 compiler appliu a aimple deciaion rule that minimises lhe number of remote accesaes;

hence, it aelects the first partition, and implemenll lhe appropriate mesaage passing calls to accesa b(io + 512)

remotely, aa indicated in the SPMD code. Notice that, in this particular case, this has the same effect of

applying lhe "owner-computes" rule. Also, in the communication refinement process, the compiler optimizes

communication by hoisting it out of the loop, grouping the remote accesses from ali iterations into a single

message.

In general, the crealion of SPMD code followa a similar approach: the compiler translates the computation

353

High-Leve1 Loop Body I Pattern

a.(i) = b(i-1) abin

a.(i) = b(1) broadcaal

do j=1,N {a(i) = a(i) + b(j)} aU-to-ali

a(i) = b(N+1-1) unknown, regular

Table 1: Communicalion pallerDJ implemenled by lhe Forlran D95 compiler.

aegmenl in each loop of lhe high-level code, then inserls the required communication code (before or after lhe

compulation, aa appropriate), oplimising it if possible. Sedions with condHional execution in the SPMD code

are protected by i/ statements that specify wbich nodes execute that section.

For this apecific loop, the required communication pattern ayntheaized by the D95 compiler is a 1hi{t, where

node k receives data from node k + P /2. ThiJ compiler is capable of implcmcnting a few distinct communicalion

patterna, aa indicatcd in Table 1, according lo the body oflhe loop in the high-level aource code.

We can aaaociate a apecific cost model wilh each particular communication patlern. In lhe abin, lhal coat

ia one mesaage send and one message receive. For a broadcaat, there are P - 1 mesaage sends, and one mesaage

receive. In the ali-to-ali pattern ali P processou communicale wilh each other; each procesaor executes P- 1

mesaage send3 and P - 1 message receives. Finally, tbe unknown pattcrn corresponds to the aitualions where

the precise lype of communication is not known until runtime. In tbis caae, we aasume a cost model with a

range of values varying from a minimum of one message aend and one mcasage receive to a maximum of P - 1

sends and P - 1 receives.

3.2 Compiler Extensions for Scalability Prediction

We extendcd the Fortran D95 compiler with the appropriate funclionality lo extract informalion regarding

the execulion cost, in symbolic form, of ali the loops and mesaage paasing ac!ivity in lhe lranalaled program.

Spccifically, we capture, during lhe compilalion process, the following piecea of informalion:

• Loop limils for every loop in the program;

• Numbcr o f aritbmetic operalions in tbe righ~hand aide ·of an asaignmenl;

• Type of communication pattern for every remote acceaa resulting in a aend/receive mcsaage pair in the
tranalated code;

• Lcngth of every message in the program, if known at compile time;

• Number of procesaors declared in a processors directivc;

• Problem aize, represented by tbe tcmplate extent declared in a template directivc.

Figure 3 showa the organization of the new Forlran D95 compiler 1 extended with the featurea to aupport

performance prediction. The Parameter Extraction module converts loop limits and message lengths in the

aynlheaized code to tbeir aymbolic cquivalents. The Cost Model Conalruction module receivea these aymbolic

354

---- - - ---------- --- ----- - --- ---,
ltxtaz>ded D95 COIII:'I.ler

Bl.gh-l:..vel)
Code .

Figure 3: Extended Fortran 095 compiler organization.

.---'---
,' , s,.bolic .. \

'... .. co1t llode~ ,'
...

terms, as well aa the type of communication pattern implemented by the compiler after a computation partition

ia selected; then, for each segment in the generated SPMO code, this module creates a corresponding aymbolic

exprwion, representing the execution cost of that segment. Some of these raw coat expresaions may be combined

and reduced symbolically by a symbolic manipulator, to obtain simpler expresoions representiog larger parta of

the code. The set of ali resulting exprwions constitutes the final cost model for the program. To predict the

program's performance, one simply has to evaluate this cost model for specific valuea o! N and P.

4 Derivation of Symbolic Cost Models

Given the extensions to the 095 compiler presented in the previous section, we now describe how to apply them

for the derivation of cost models that we use to estimate the execution time of a program. Our presentation

i. based on a small example that iUustrates ali tbe relevant aspects involved in tbe automated conatrudion o!

symbolic cost models.

4.1 Code Fragment Costs

Consider again tbe code fragment of Figure 2. Using our extended version of tbe 095 compiler to compile tbi.

fragment, tbe Parameter Extraction module produces the following information:

• Loop iteration space for each processor, in symbolic form:

- Loop index variable: i

- Symbolic lower limit: !f KyNodeiD + 1

- Symbolic upper limit: lf KyNodeiD + ~
- Symbolic stride: I

• Information regarding the body of the loop:

355

- One assignment, two arithmetic operation~;

• Information about communication due to remote accesa in the loop:

- Type of remote acceu: nonlocal read of b(i + 512)
- Communication pattern synthesised: shifi

- Message length in symbolic form: !f; floating-point elements

In tbese expresaioDJ, llyHodeiD representa the procesaor number of eacb node. Tbe information above is passed to

the Cost Model Construction module, which builds a cost expresaion for eacb fragment of the generated SPMD

code, where each term containing a loop limit ora message lengtb is represented by its symbolic equivalent. These

symbolic expreaaions are stored in an externai file, such tbat they can be bandled by a symbolic manipulation

pa.clcage (we are currently using Matbematica, altbougb severa! other similar packages could have been used).

For the program in our example, the predicted execution cost becomes

Co3t(P,N) = S (~)+R(~)+;~ (Ka + 2K,) (I)

where:

• S (~) and R (~) are functioDJ representing the time to send and to receive, respectively, a message with
~ floating-point elements;

• h is !f; KyHodeiD + I, and lu islfr llyHodeiD +!f; i

• K. is the time of an assignment;

• K, is the time of a.n arithmetic operation.

Notice that functions S, R, and parameters K. and K, are system-dependent; we wiU show, in §4.3, how to

determine their values for a particular system. Tbe terms in (I) con~titute what we cal! tbe ratD symbolic cost

model; they can be symbolically reduced to tbe form

Cost(P,N)=S(~) +R(~)+ ~(K. + 2K,) (2)

4.2 Bounds on Predicted Costs

For a program that has its cost represented by an expression similar to (2), predicting the execution time for

a pai r (P1, N1) would simply require lhe evaluation of Cost(P~o N1). However, two problema may prevent lhe

derivation of accurate predictions. The first problem is that some of the constanls may cbange as we scale the

problem sise. AJ an example, tbe data access time ia strongly dependent on whether tbe data item is cached or

uncached. The second problem is that some of tbe terms in the cost model may not be determinable at compile

time. The length of a given mesaage, for example, migbt be unknown until the program is executed.

Although these factors occur in many real applications, it is generally possible to determine minimal and

mozimol values for the parameters that are unknown at compile time. If we use tbeir mini mal values in lhe cost

expression, we can obtain a lower bound on the expected execution time for the prograrn. By the sarne reason,

using their maximal values results in an upper bound estimate for the execution time.

356

Hence, instead of building a aingle cosl model for a given code fragmenl, we build two modeb: one for

the lower bound aod one for lhe upper bound eslimate of tbe execution time. For each of these two modela,

we derive an appropriate sei of paramelers, corresponding to lhe characteriatica of the program and of the

underlying ayatem.

4.3 Determination of System-Dependent Parameters

In our model, we represent lhe coot of a atatement involving aritbmetie operations, T., by

T. = K. + mK.

where K. ia lhe time for ao aasignment, Kr ia lhe time for ao arithmetie operation and m ia the number of

arithmelie operat.iom in the expreuion on the right-band aide of tbe atatement. For communieation, we keep

uaing a model that representa the .end and receive times as linear fundiona of the meuage lengtb. For a apecific

syatem, we can ealimate lhe lower aod upper bound values for computation aod communieation parametera, as

follows.

4.S.l Computation Parameten

We determine eatimatea for the computation parameters, K. and K., using meta-benchmarks where we measure

the time for extreme cases of the correaponding operations. To obtain the lower and upper bound estimatea for

K., we measure the time for auignments with cached and non-eached operanda, reapectively. We eatimate lhe

lower bound on K. as the time for the faateat arithmetic operation between two scalar operands, and its upper

bound aa tbe maximum time for any arithmetic operation between two multidimensional array elements.

There is another computation parameter in our model, x, , thal ia used to represent lhe overhead aasociated

to runtime functions invoked by lhe 095 compiler, for tasks like measage buffer allocation and dealloeation, etc.

We represent such overbead aimply aa the eoat of a dummy function cal! with the aame number of argumenta as

the original cal!. 2

We conducted experimenls to determine tbe computation parametera on two ayaterns, ao Intel Paragon XP /S

and ao IBM SP /2. Table 2 ahowa the values that we obtained.

4.S.2 Communieation Parametera

With repeated executions of communieation benchmarks, one ean take the amallest aod the greateat valuea found

for each para meter as eatimatea of the lower aod upper bounda, reapedively, for tbat particular parameter. From

teats like these on lhe Intel Paragon aod on the IBM SP /2, we obtained the valuea on Table 3. Kslal and Ks.,.

are the latency aod per-byte coats, reapedively, for a aend, while Km.1 and K/Uv are lhe correaponding values

for a receive.

28cc.auac the runtimc aupport o(thc Fortran Des compilcr ia cucn.ntly availablc only for thc Intel Par .. on. wc rcpl.cc thcn

runtimc functiont by dummy eubroutina1 ao that wc ca.n execute thc taU on othu platfonna. Sincc our tctt procrama an: data

indcpcndent, thi• approach dou not chanae thc computation or communication bchaYior in othcr parb of thue prosram•.

357

Intel Paragon XP /S IBM SP/2

Parameter Lower Bound Upper Bound Lower Bound Upper Bound

K. 3.04 X 10-8 6.91 X 10-T 1.50 x to-s 3.68 X 10-B

K. 5.06 X 10-8 6.73 X 10-7 8.90 x to-~ 2.20 X 10-6

x, 3.17 x to-7 3.94 x to-7 1.12 X 10-T 1.61 x to-7

Table 2: Values (in seconda) of computation parameters for an Intel Paragon XP/S and for an IBM SP/2.

Intel Paragon XP /S IBM SP/2

Parameter Lower Bound Upper Bound Lower Bound Upper Bound

Ks,.r 3.65 X 10- 5 5.74 X 10-5 5.01 X 10-5 5.32 x lo-a

Ksw 1.43 x 10-a 1.46 X 10-l 3.67 X 10-a 5.19 X 10-7

KRI•I 5.54 X 10-5 8.44 X 10-5 1.23 X 10-5 1.94 X 10-J

KRw 1.48 X 10-a 1.53 x to-• 1.48 x to-• 1.60 X 10-B

Table 3: Valucs (in seconds) of communication parameten.

5 Generality of the Prediction Method

Earlier in this paper, we had shown the automated derivation of tbe prediction model for the case of a aimple

loop. We now ahow tbat this technique worka for a much wider range of cawJ. We take a large collection o!

loops, with many different computation and communication patterns, and show that our methodology producca

aymbolic acalability exprcsaions for ali of them; also, in almost ali cases, such expressions corrcctly prcdict

performance under varying valucs of N and P on an existing parallel syatem.

5.1 Collection of Loops

We conaider tbe collcction of loops preparcd by Levine d a/ [9]. That collection consista of a variety of loop

nesta tbat reprcsent different conttructs intended to tcst the analysia capabilitiea of a vectorizing compiler. It

compriscs distinct typcs of computations that occur frequently on scientific applications.

Some of the loops in the collection could not be compilcd witb the original Fortran 095 compiler, due

to limitationa in the current compiler veraion. For those loops tbat were compiled corrcctly, we aelected a

represcntative subsct, such that no computation pattern is repeated; this subset includcd twenty-two loops. In

our first tcsts, we used a block diatribution for the various arraya in the loops. After that, we repeated the

tcsts for a few loops, this time using a cyclic distribution. The apecific data distribution determines tbe required

communication between processou, bascd on the data dependences exiating on a given loop.

The aubset of loops that we used in our testa presented a reasonable divenity of featurcs, including the

following:

• Loop nesting levei: The loops in the subsct were either aingly or doubly nested loops; some o{ the doubly

358

nested loops were perfettly3 nested, while othens were imperfectly nested. Also, eome of lhe imperfectly

nuted loops had multiple inoer loops inside the outer loop.

• Type of iteration epace: For lhe double loops, the iteration apate wae either redangular or triangular;

moat of lhe loops had unit •tnae, with a few exteptions where lhe atride was a tonstant greater tban one.

• Number of arithmetic operations: Some of tbe loops tontained a large number of operations, involving

many dif!'erent elemento, while othen tootained only one operation.

• Type of data dependencee: There were ali types of data dependentes between iterations io tbe various

loops: ftow, anti and output dependentes (3); 10m e of tbe loops presented more tban ooe type of dependente.

For most loops, the distante vector of tbe dependente wae tonstant, but for a few of tbem it was variable.

By seleding a spetifit data distribution for lhe arrays in each loop, we tonstrain the potential parallelism

existing on a given loop nest. For a selected data distribution, tbe particular data item• accesaed in cacb

iteration, plus the data dependentes across iterations, determine tbe valid translatione of tbe original bigb-level

tode into low-level SPMD tode with explicit message passing. Tbus, given our selected data distributions for

tbe variou loops in our eubset, we obtained representatives for tbe following features:

• Available parallelism: Some of the loops bad no dependente acrosa iteratione, and ali iteratiou tould

proteed io parallel. In eome other loops, because of depeodences acrou iterations executed by dif!'erent

proceuons, tbe execution became partially or even completely aerialised.

• Number of remote r eferencee: For a seletled data distribution, the triteria used by tbe compiler to

partition tbe tomputation may af!'ect tbe number of local and nonlotal referentes on a given statement.

Betause the 095 tompiler currently eeeks partitions that minimize tbe number of remote actesses, our

loops presented eitber no remote referentes or, in lhe majority of caees, small DU!flbens of such referentes.

• Type of communication pattern: For most loops, some form of tommunication was required. Ali those

communication patterns in Table I were used, in at least one of lhe loop nests, by tbe 095 compiler.

• Grain si se o f the plll'allelism: Th<re was a large diversity in lhe resulting computation to tommunita

tion ratio arnong the loops. Some cases required just one message pusing transfer at lhe very begioning,

and the rest of tbe exetution was purely tomputational. For some of the doubly nested loops, however,

each iteration of tbe inner loop required a message exchange, making lhe tomputation grain sise extremely

small.

5.2 Scalability of Individual Loops

Afier tompiling each loop nest in tbe aubset with our extended Fortran 095 compiler, we obtained the tor

responding symbolic cost expressions. Altbougb lhe loop nests are simple, tbeir execution costs vary widdy,

mainly beca use o f lhe dif!'erent communication patter01 imposed by lhe data dependentes in each of them.

3 A pt:r!e.ctly ncllr:d loop i• auch that, ucept for thc innermo1t loop, uc:h loop bodr contairu onc loop e.nd no othcr atatcmenb.

359

C Loop neat a113:
do i = 2 , 11

a(i) = a(1) + b(i)
enddo

C Loop neat a242:
do i = 2 , 11

a(i) = a(i-1) + s1 + s2 + b(i) + c(i) + d(i)
enddo

Figure 4: High-levcl aource code for some of lhe loopa in lhe subsel.

To illustrate lhis process of cosi model generalion, and to serve as a basia for lhe diacussion lhal will follow,

we present lhe detaila for two of our loop nests, a113 and a242. Their high-level aource codes are in Figure 4.

Alllhe arrays in these loop nesta had a block diatribution.

The coat model derived for loop ncat a 113 ia

C, 113(P,N) = ('': -1) K. +c: -1) K. +(i) K1 + R(1) +(P -1)5{1) (3)

where R representa the cosi to receive a mcssage witb one elemenl (o(1)) and 5(1) representa the cost for lhe

firal processar to aend a message wilh thal element to each of lhe remaining P- 1 processou.

For loop nesl s242, the cost modcl created by lhe extended 095 compiler is

C,242{P, N) = P R1(1) + P (i- 1) {3K. + 5K, + K1 + R,(1) + 5,(1)) + PS1(1) (4)

wbere R1, 51, R2 and 52 repreacnl lhe costs of mcssage passing functiona inaerted by lhe 095 compiler for the

remote access to o(i- 1). Nolice that lhis loop neal presents a flow dependence acrou iterations, where array

clement o(io) is written in iteration i= io and read in iteration i1 = io + 1. Thus, processor /c musl wail unlil

proceasor /c- 1 completes ali of ita iterationa, making the loop execution completely aerialised; hence, the terma

in the execution cosi beco me proportional to the number of procesaors P.

5.3 Prediction Experiments

Aner obtaining the scalability expressions for each loop nest, we used the constants described in §4.3 to compute

lower and uppcr bound estimates of thcir execution times for selected values of P and N.

Assuming lhe computation and communication conatants for the Intel Paragon XP /S from Tables 2 and 3,

we computed predictiona for each loop neat, varying the number of processors P auch that P E { 4, 8, 16}

and the problem aise N such that N E {128, 256,512, 1024,2048,4096,8192,16384} for lhe aingle loope, or

N E {32,64,128,256,512, 1024, 2048} for the double loopa. Figure 5 ahowa some of our prcdiction resulta, in

compariaon to the obaerved execution times on the Intel Paragon; the resulta for some of the other loop neats

can be found in [11]. Ali lhe resulta in this aection reflect predictcd and observed behavior for lhe node with the

mazimum execution time.

To quantitatively cvaluale our predictiona, we introduce the error functiona

RatioLB(P,N) ~ LowerBound,.,dich4(P,N)
1

RatioUB(P,N) ~ UpperBound,.dich4(P,N)
T.,..., .. 4(P,N) T.,...,. .. 4(P,N)

360

IH-

.....
'O
c

J 10 1-

! .,
e H-i=

OI-

P=4 !

8 : · a
...........

.
.

121 511 2041 1191

I I I

P=8

Observed
-~üpjiiiiiõüiid

"PiõdlctõdlÃWer-Bounii

.:"

:
•

~
I I

121 Sl2 2041

P= 16

"'06SUVed
"Pit-iiiéiéCiüi>Püiiõünd
Predicted Lower BOUJ!fi

I

1191

••••• P

-~·

: .. ·· ·:··· · · : ·····:··"·: · ·· ··:·~

(a) Loop all3

H

-

-

-

-
N

H

2.D-

-;;-t..s-

"' c o
~
~1.01-.. e
I=

OJ 1-

OI-

P=4

õii'iõiYCd
"l>ii:dK:iédUpjiiiliõW>d
'Piõilléiii'itõ'Wüiiõiin<I

121 512 2041

I I I

P=8

Observed
. ~iiiêiêêi UWci'Béüiid
-Piü!:;.,ed r.õWü lloÜftd

1191

I

~

:

~ . .
I I I

121 S12 2041

'õbiCiVcd
'PiiodiC'.aiUpjiii liõüiid
-mmm

1192

!

.......... ;

... ···•· ..• ·
121

(h) Loop a242

Figure 5: Predicted and observed execution times for some of the loop neats.

361

H

-

-

-

-

-
N

j

Loop Nest RatioLB RatioUB Loop Neat RatioLB RatioUB

1111 0.112 1.893 s221 0.554 2.341

s\12 0.340 1.463 s233 0.168 2.752

s\13 0.629 2.755 s235 0.101 1.562

sll5 0.629 3.127 s242 0.562 2.370

s119 0.497 1.334 s254 0.444 2.911

s121 0.370 2.165 s256 0.433 1.777

s122 0.345 5.777 s311 0.384 2.855

1131 0.334 1.438 s3112 0.382 2.858

a132 0.860 2.351 s322 0.393 1.6é6

s2102 0.041 0.927 s323 0.554 2.343

s211 0.375 2.135 sllZ-cyclic 0.329 5.799

.Zlll 0.347 1.253 13112-cyclic 0.265 2.047

Table 4: Mean values of ratios between predicted and oserved times on the Paragon.

and compute the geometric means of their values across ali tbe range of variation for P and N used in tbe

experiments. Table 4 contains the resulta of our predictions for lhe Intel Paragon XP /S.

5.4 Analysis of Prediction Results

In general, lhe numbers in Table 4 show that our predictions correctly estimate the intervals bounding the

observed execution times for nearly ali cases. ThiJ ia particularly relevant if we consider that tbe observed

execution times for theae loopa vary by severa! orders ofmagnitude (e.g. a few micro~econds for loop nest a113

and more than twenty seconds for loop nest a233).

As the problem size grows, tbe observed behavior for lhe doubly nested loops tenda toward the upper bound

predictions faster than the single loopa. This is expected; for lhe aame problem aize N, most arrays in lhe double

loop cases have sise N1 , and thus are more susceptible to cache misses than the corresponding unidimensional

arraya in the aingle loops. Our lower bound computation conatants implicitly assume no cache misses for data

acceaa.

Some of lhe loops (e.g. a113) acale well with increuing lhe number of processou. Otber loops, however, do

not preaent the aame acalability, or even ahow a decrease in performance witb more processora, as in tbe case of

loop a242 (note in Figure 5(b) that both the predicted and observed execution times increue as the number of

processora increases, for any problem aiae). Theae loops contain a llow dependente along the aame dimenaion in

which the arrays are distributed, and thus their exccution is completely serialiacd. Nevertheless, our predictions

comctly capture this effect, and providc bounds that clearly expoae tbis bebavior, as one can see in Figure S(b).

In general, we can analyse the loop nests, regarding tbeir scalability witb lhe number of processors, by

considering lhe data dependentes and lhe distribution of tbe arrays involved in those dependentes. We can

classify the loop neats in two groups. The firat group containa those loop nesta with one of these properties:

362

• No deptnJencu bet111etn iterotioru (like in loop ne.t 1113): There may be a preliminary phaae to access

remotely stored data, but then ali the iterations can be executed concunently.

• Only anti-deptndenct8 bet111etn iterotion.r. IC the dependente is between iterations executed on lhe same

processar, lhe processou can execute independently of each other. If there is dependente between iterations

executed on different processou, tbere migbt be a preliminary communication phaae, as in the previous

case; the rest of lhe processing is purely computational. The processou can execute tbis computational

phase independently of each otber.

• Flo111 deptnJence along a direction thot i.! not di.!tribultd: Tbe dependence is between iterations executed

in tbe same proceasor, and the proceason can execute in parallel.

In aU lhe caaes of this firat group, there is polential for nearly full par aliei execution; thus, there is good scalability

witb more processou.

The second group o f loop nesta include. lhose casea that present a flow dependence along lhe same direction

in whicb lhe arrays are distributed. For this group, lhe acalability will depend on lhe nesling levei of lhe loop

carrying lhe dependence, as follows:

• Dtptndence carried by the outer loop (like in loop nest 1242): The computation grain IÍae is maximal, and

lhe execution becomes completely serialised. Because there is no overlap between computation on different

nodes, adding more processara does not reduce lhe total computation time, and only increaaes the total

communication time; thus, performance degrades wilh more processors.

• Deptndence not _ carried by the outtr loop: In lhis case, tbe computation grain me is smaller, and the

execution is pipelined across the processon. There ia potential for overlap between distinct iterations of

tbe outer loop on different processou. The scalabilay depends, basically, on lhe constant ternu associated

to lhe computation and communication costa, and on tbe grain sise.

By deriving cost modeh in the extended D95 compiler, ou r predictions tend to match the observed bebavior

for the loops in the first group, because, in general, we assume that ali processors execute allstatements (total

parallelism). We also detect, with the compiler, tbose cases of loops in the second group where tbe dependence

direction is tbe same as tbat of tbe outer loop, and adjuJt tbe cost model to reftect the cosi of their serialised

execution (notice lhe factor P applied to ali terms of equation (4)). For loops in lhe aecond group where there is

partia! parallelism, ou r models would predict execution times slightly smaller than observed in practice; however,

tbe "deviation" from full parallelism in these cases ia proportionallo (P- 1)/N (lhe delay from lhe fint to the

last proceuor in the pipeline, relative lo lhe total work), and that error becomes insignificant when P « N.

6 Conclusion

With automation of lhe scalability cost model derivalion via tbe data paraUel compiler, we have a powerful

mechanism tbat representa the expected execution cost of code fragmenta aa functions of N and P. We can

363

find the ayatem-dependent conJUnta in theae modela using apeei fie benchmarb on lhe ayakm of intereat. Thus,

predidiona for new ayaterDJ can be euily derived once the correaponding conJUnta are available.

The tight connection between the prediction and compilation mecbaniarDJ opena a new aet of opportunitiea

for code optimisation. A data parallel compiler, extended with prcdictive capability, can malce code generation

decisions guided by tbe apecific computation and communication cbaracteriltica of lhe underlying ayatem. Thia

approach can potentially lead to more tlexible data parallellanguagea, where the programmer would be relieved

from tbe (aometimea diflicult) t&sk ofapecifying lhe diatribution of data acrou the proceaaora of a given ayatem.

Under this new acenario, programJ would become even more portable, aa the compilera would automatically find

the best data diatribution for eacb parallel aystem.

Ou r extended data parallel compiler derivea predictiona for totalexecution time aa a aimple concatenation of

predictions for individual code aections. Predictions of total execution time can help in lhe deciaion of porting

the code to different ayatern~. Predictions for individual code aections are useful to identify acaling bottleneck.s

in the program. We have ahown how to obtain theae predictiona, and aucceaafully applied the methodology to a

variely of eode fragmenta with different computation and communication patterna.

References
[1) AOVE, V., CARLE1 A., GRANSTON1 E., HUUNANOANI, S., KENNEOY, K., KOELBBL1 C., MELLOR·

CRUMMEY, J., ANO WARREN, S. Requirements for data parallel programming environmenh. IEEE
Porolltl (J DiJtrihuuJ Technology I, 3 (FaU 1994), 48-58.

(2) 8ALASUNDAIUM1 V., Fox, G., I<ENNEDY, K., AND KREMER, U. A static performance eatimator in lhe
Fortran D progra.mming ayatem. ln Longu4ge•, Compiltrl ond Run-Time Enoironmenú for Dutrihuted
Memory Mochine•. North-Holland, Am.terdam, The Netherlanda, 1992.

[3) BANERJEE, U. Loop Trtl"'forrr141io"' for Rutructuring Compile r.: The Foundotio,.. Kluwer Academic
Publiahera, Norwell, Maasacbusetta, 1993.

(4) BIXBY 1 R., KENNEDY 1 K., ANO KREMIIR, U. Automatic data layout uaing 0-1 integer programming. Tecb.
Rep. CRPC-TR93349-S, CRPC/Rice Univeraity, 1993.

[5) CLEMENT, M. J., ANO QUJNN, M. J. Analytical performance prediction on multicomputers.ln Procuding•
of Supercomputing'93 (Porlland, November 1993), pp. 886-894.

[6) CLIINENT, M. J ., ANO QUJNN, M. J . Symbolic performance prediction of acalable parallel programa. In
Proceeding• of the 91

A /ntemotionol Porollel Proceuing Sympo•ium (April 1995).

[7) FABRINGIIR, T. A.utomotie Performance Predietion of Parollel Programo. Kluwer Academic Publiahera,
Norwell, Musacbusetts, 1996.

[8) HATCBIIR, P . J., AND QuJNN, M. J. Data Porollel Progromming on MIMD Computen The MIT PtesJ,
Cambridge, Massachuaetts, 1991.

[9) LEVINB, 0., CALLABAN, 0 ., AND Oo!IGARIU, J . Tut Suiu for Vutoriling Compiler•. 1991.

(10) MIILLOR-CRUMMEY, J., ANO ADVE, V.
http:/ /www.cs.rice.edu/ mpal/SC95, 1996.

Fortran D95 Compiler Ouerview. Available from

[11) MENDES, C. L. Performonce Scolahility Prediction on Multi<:omputer•. PhD theaia, University of Jllinois
at Urbana-Champaign, May 1997.

[12) VAN GIIMUND1 A. J . C. Compile-time performance prediction of parallel ay•l•m•. In Proceeding• of the
81~ /ntemationol Conferenee on Modeling Teehniquu and Toot. for Computer Performonce Euoluolion
(Heidclberg, September 1995), pp. 299- 313.

364

