
Supporting Multiple Memory Consistency Models on a Shared Virtual

Memory Parallel Programming Environment

A lha Cristina Magalhães de Melo Balaniuk
UnB - Universidade de Brasília - Brazil

albamm@cic.unb.br

Abstract - In arder to 11Ulkt slwrtd memory programming possiblt in parai/ti or distributed
archittctures whert no physical slwrtd memory exists, wt must create a shartd memory abstraction
that parai/ti processes can access. Tht btlwvior of this abstraction is diclattd by the memory
consisltncy model. lt has bun obstrved lhat simulating e:wclly lhe real slwrtd memory btlwvior in
such archiltclures crtalts a huge network lraffic. Severa/ relaxed mtmory modtls have bun
proposed lo reduce this lraffic. Wt c/aim lhal no singlt mtmory modt l wi/1 bt able 10 provide both
performance and tas e of programming for ali classes o f parai/e/ applications. Henct, we must allow
programmers lo choose lhe memory modtl tlwl besl fits to his para/lei application nuds.

This arliclt dtscribt lhe design and impltmenlalion of a slwrtd virtual mtmory syslem lhal supporls
mulliplt user-defined memory consislency modtls. Tht idta here is 10 al/ow programmers to choose
lhe memory modtl tlwl btst fits lo its parai/ti application sharing patterns. The programmer can also
define a memory model by his own. This article is divided in three parts. In the first part, we
introduce the problem o f memory consistency model definition and define formally wlwt is a memory
consisttncy modtl. In the second part. we describe the design of a general model 11Ulnager tlwt
supports multiple memory mode/s. In the /ast pari, we prestnl lhe impltmtntation of a prototype o f lhe
l)'Stem in a parai/e/ machine and examine some preliminary results.

1 Introduction

Programming loosely coupled parallel architectures has been traditionally

achieved by message passing. However, the use of the shared memory paradigm in such

architectures has received a lot of attention last years. This is basically for two reasons.

First, the shared memory programming model is often considered easier than message

passing, since communication is implicit. Second, this can be the first attempt in order

to make portable parallel programs that are independent of the parallel architectures

families.

In order to make shared memory programming possible in parallel architectures

where no physical shared memory exists, we must create a shared memory abstraction

that parallel processes can access. This abstraction is called Distributed Shared Memory

(DSM) and can be implemented basically by two different approaches: shared objects

and shared virtual memory (SVM). In the first approach, we treat the shared memory

abstraction as an object or a set of objects. Operations in this shared memory are

methods that access the memory object. The second approach was first proposed by

[Li86]. In this case, we use the virtual memory mechanism to map the shared memory

365

abstraction into the virtual space of each parallel process. Operations in the shared

memory are issued by memory addressing mechanisms.

Even though these two approaches are quite different, they both suffer from the

same problem: memory consistency. The first DSM systems tried to give parallel

programmers the same guaranties they had when programming uniprocessors. It has

been observed that providing such a memory model creates a huge coherence overhead,

slowing down the parallel application and bringing frequently the system into a trashing

state [NL91] [Mos93]. To alleviate this problem researchers have proposed to relax

some consistency conditions, thus creating new memory behaviors that are different

from the traditional one. Many new memory consistency models have been proposed in

the literature but, by now, none of them has achieved the goal of providing both

performance and ease o f programming.

We claim that no single memory model will be able to achieve this goal for ali

categories of parallel applications. The best memory behavior for a given application

depends on its own shared memory access pattems. Indeed, each parallel application

must be given the opportunity of choosing a memory model that best fits to its

performance and ease o f programming wills.

In this article, we describe the design and implementation of a shared virtual

memory system where multiple user-defined memory models can be used. In order to

do this work, we had to go through three different stages:

I) Elabora te a general and fonnal memory consistency model definition. The

objective of this part of the work is to identify the characteristics that are

inherent to ali memory consistency models and the character\stics that are

model-specific. A simple and general definition of memory consistency

model is proposed.

2) Design of a system architecture that supports multiple user-defined memory

consistency models. We propose a system that uses the general memory

consistency model definition produced in the preceding stage to guide the

design of a general model manager that will control parallel executions.

3) /mplementation of a prototype of the system. In order to vali date our ideas, we

implemented the proposed system in a 52-node Intel Paragon parallel

machine. With this prototype, we were able to examine some parallel

executions and have some preliminary results.

366

The rest of this paper is organized as follows. In section 2, we introduce th.e

problem of memory consistency models definition and propose our own general

memory model definition. Some well-known memory models are then defined using

this definition. Section 3 describes the design of a model manager that supports multiple

user-defined memory models. Section 4 describes the implementation of the prototype

of a complete shared virtual memory system and presents some preliminary results.

Finally, related work and conclusions are presented in sections 5 and 6.

2 Memory Consistency Models

Ideally, a SVM system must provide to its users ali the consistency guarantees

of a real shared memory. Unfortunately, it has been observed that systems that offer

such guarantees suffer from significant efficiency problems. To reduce the cost of

maintaining consistency, researchers have proposed to weaken consistency conditions.

Following this approach, many relaxed consistency models have been proposed in the

literature.

Memory consistency models, strong or relaxed ones, have not been originally

formally defined. In most cases, the semantics of memory behavior has to be induced

from the protocol that implements the memory model. The lack of a unique framework

where memory models can be formally defined makes it difficult to compare and

understand the memory model semantics. This fact was also observed by other

researchers and some work was indeed done in the sense of formal memory model

definitions. [Adv93] has proposed a quite complete methodology to specify memory

models. Nearly ali known memory models were considered. The aim of her work,

however, was to define relaxed models in terms of strong consistency. The central

hypothesis o f this study is that ali parallel programmers would prefer to reason as i f they

were programming a time-sharing uniprocessor. A set of formal definitions was also

proposed in [RS95]. The objective of this study was to understand memory models and

compare them. The following memory models were defined using the proposed

notation: atomic consistency, sequential consistency, causal consistency and PRAM

consistency. [KNA93] also proposed a formal framework to relate memory models

where sequential consistency, TSO, processar consistency and release consistency were

defined.

367

In our case, we need a general, simple and formal framework where memory

models can be defined. As we consider that the programmer can define his own memory

models, we must consider even memory models that do not exist yet. For such a degree

of generality, we must define the minimal properties that a memory model should have.

Every memory model that fits these minimal properties could be defined in our system.

2.1 System Model

To describe memory models in a formal way, we propose a history-based system

model that is related to the models described in [Adve93] and [KNA93]. In our model, a

parallel program is executed by a system. A system is a finite set of processors. Each

processar executes a program that is composed by a set of operations on the shared

global memory M. The shared global memory M is an abstract entity composed by ali

addresses that can be accessed by a program. Each processar p; has its own local

memory m;. Each local memory m; caches ali memory addresses of M. There are two

basic operations on M: read (r) and write (w). Each memory operation is first issued and

then performed, i. e., memory operations are non-atomic. At the end of the execution,

ali memory operations must be performed. For the sake of simplicity, we assume that

each processor executes only one process.

Each process running on a processor p; is described by a local execution history

Hp;. that is an ordered sequence of memory operations issued by p;. An execution

history H is the union of ali Hpi· An example of an execution history is shown in figure

I.

Pl: w(x)O w(x)l w(y)l

P2: r(y) I r(x)O

Figure I - An Execution History

In this figure, the notation w(x)v represents the instant where the write of the

value v on memory position x was issued and r(x)v represents the instant where the read

o f value v on memory position x was performed by p;.

In ou r definitions we often use the notion o f linear sequences. I f Q is a history, a

linear sequence of Q contains ali operations in Q exactly once. A linear sequence is

368

legal if ali read operations r(x)v retum the value written by the most recent write

operation. For the complete description of the system model please refer to [Bal96].

In execution histories, we have some operation orderings that are allowed and

some orderings that are forbidden . The decision of which orderings are valid is made

by the memory consistency model. This observation leads to our memory consistency

model definition: a memory consistency model (MCM) defines an order relation (··>,R

) on the sei of shared memory accesses. One execution history is possible on a memory

consistency model if it is possible on the relation order defined by the model.

In the rest of this section, we describe four well-known memory consistency

models (atomic consistency, sequential consistency, causal consistency and release

consistency) using this generic memory consistency model definition. For the

definitions o f PRAM, processar consistency and slow memory please refer to [Bal96].

2.2 Atomic Consistency

Atomic consistency is the strongest and the oldest memory consistency model.

Our definition of atomic consistency is derived from the definition presented in [RS95):

A history H is atomically consistent il there is a legal linear sequence

··>,AT oi the set oi operations on Hsuch that:

1.) h po h AT d V o •• 0:1 w ere o•-•. 0:1 t en o. ··>, 0:1 an

..)) AT
11 V o1, 0:1 where t(perform{o1) < t(perform(~)) then o1 ··>, o2

In this definition, the function t(x) retums the real time when the operation x is

performed. Above, we defined a new order relation (··>,AT) where ali processors must

perceive the same execution order of ali shared memory accesses (legal linear sequence

of H). In this order, ali operations performed by a process must respect the program

order -·>.po 1 (i). Also, non-overlapping memory accesses must respect real-time order

(i i).

We do not have examples of shared virtual memory systems that implement

atomic consistency. Preserving real time order is very difficult (if not impossible) in a

system where no global physical clocks exists.

1 Program ordcr: o 1 •••• po OJ if and only if: a) bolh ppcrations are issued by the same proccssor and o1

immcdiatcly precedes OJ or b) 3 OJ sue h lha! o1 -•.po OJ and OJ ..•. po 02.

369

2.3 Sequential Consistency

Sequential Consistency was proposed by [Lam79] as a correctness criterion for

shared memory multiprocessors. Many shared virtual memory systems proposed in the

literature implement sequential consistency. Ivy [Li86], Mirage [FP89] and KOAN

[LP92] are examples of sequentially consistent shared virtual memory systems.

Our definition of sequential consistency is derived from the definition presented

in [A+92]:

A hislory H is sequential/y consistent if lhere is a legal linear sequence

-->,se o f the set of operations on H such that:

·,) po h se 'V O ~o o2 where o, -•. Oz t en o, -->, Oz.

For sequential consistency, we define a new order ->.se. The only difference

be AT d se . h ai . d . I . . I tween -->, an -->, tS t at re -ttme or er ts no onger necessary m sequenlta

consistency. These two models are called strong memory models because lhey pose

reslrictions on lhe order o f ali shared memory accesses issued by parai lei processes.

2.4 Causal Consistency

Causal consislency is a relaxed memory model that is based upon the potential

causal relation defined by [Lam78]. Causal consistency was implemented by the

researchers that proposed it [AHJ90] and was also implemented in lhe system Clouds

[JA93).

For lhe formal definilion of causal consistency, we must use a new history -

Hpi+w - that is called the History of the write operations seen by p;. Hpi+w is a subset of

the operations o f H lhat contains ali memory accesses issued by Pi and ali write accesses

issued by every other processes. Our definition is derived from lhe one proposed by

[JA93] :

A hislory H is causal/y consistent if there is a legal linear sequence -->, CA

oi lhe set oi operalions on Hpifw for ali processar p1 where:

1.) "' h po h eA d v o, , 0z w ere o, _,. 0z I en o, -->, o2 an

••) m eA
11 'V o,, 0z where o1 -•. 0z then o, -->, o2 and

•••) CA CA eA
ttt 'V o,, Oz, o3 where o, o2 and o2 •.•• o3 then o1 -->, o3•

370

By this definition, we can see that it is no more necessary for ali processors to

agree on the order o f ali shared memory operations. Instead of using H, we use a subset

of it, Hpi+w· We have one Hpi+w for each proc~ssor and the order -->.CA is defined for

these histories. In this order, the order read-b/ must be respected. Also, the transitivity

CA
of the new order -->. must be preserved.

2.5 Release Consistency

Release consistency is one of the most popular relaxed memory models and we

find in the literature many systems that implement it: Munin [Car93] and

ThreadMarks[K+92] are examples of release consistent distributed shared memory

systems. DASH [L+93] is a release consistent parallel architecture.

Our definition of release consistency is derived from the one presented by

[KNA93]. In this definition, release accesses are seen as special write accesses.

Similarly, acquire accesses are treated as special read accesses.

A history H is relesse consistent if there is a linear sequence -->, RC o f the set oi

operations on Hf1hw for ali processar p; where:

i) V o1, o2. o3 where o,_,,10 ~ ->.- o3 in H and type(o,) = releaseand type(o2) =

acquire and type(o3) e {r,w} then o1 -->, RC ~ and

ii) V o1, ~ where o,·-· .- o2 on Hp~.w and type(o,) e {r,w} and type(o2) = relesse

RC
then o1 -->, Oz.

In short, the definition of ->,RC imposes that synchronization order3 -·>.so must

be preserved. In addition, ali basic memory operations that follow the acquire must be

issued after the acquired is performed (i) and ali basic memory operations must be

performed before the release is issued (ii).

3 Diva: a SVM System tbat Supports Multiple Memory Consistency Models

2 Read-by order: i f lhe operation r(x)v, issued by processor p;, reads the value wriuen by lhe operalion

w(x)v issued by processor PJ and i~ j lhen w(x)v .. >.rb r(x)v

371

In the preceding section, we showed that generically a memory consistency

model can be defined in terms of ordering relations. To prove that this generic model

definition can be used, we defined some well-known memory models using the notation

we proposed. In this section, we describe the design of a shared virtual memory system,

called DIVA 4 , that guarantees that ali ordering restrictions imposed by a particular

memory model will be observed in the execution of a parallel application. For this, we

use the memory model definition to guide parallel execution.

We must note, however, that there are several possible implementations of the

same memory consistency model. At this design levei, we only provide the basic

mechanisms to make possible the execution of parallel applications under memory

model implementations. Providing the best memory model implementation for a

particular memory model definition is beyond the scope of our work.

3.1 The Model Manager

The execution of a parallel program on the generic memory consistency model is

treated by the Model Manager Module that is illustrated in figure 2:

Model mana er
-~~~------------------~ Conslstency manager

requ sts for ope restn tions
execution

Figure 2 - The model manager

The model manager is activated by the reception of requests for the execution o f

an operation on the shared virtual memory. The module that implements the general

model forwards the request to the memory consistency model that is currently active for

the parallel application. The current memory model decides if there are consistency or

J Synchronization ordcr: o1 ••••
04

1>2 if o 1 and o1 are synchronization opcrations and o 1 is performcd before
Oz is issued.

372

synchronization operations that must be executed before the requested operation can

proceed. After the execution of ali such consistency and synchronization operations, the

model manager sends a message to the module that called him, allowing the operation

to be now issued.

3.2 Definition of New Memory Models

To include new memory models in the DIVA system, the programmer must

follow the model description scheme illustrated in figure 3.

model_New(operation_type)

case (operation_type)

OP_TYPEl: consistency_restrictions_typel();

OP_TYPE2: consistency_restrictions_type2();

OP_TYPEn: consistency_restrictions_typen();

Figure 3 - The model description scheme

In fact, the programmer associates the type of the operation (read, write or any

other one) with the ordering constraints established by the model. After that, the

programmer writes the model description onto a configuration file. This configuration

file will be read into the code of DIVA. The detailed explanation of this incorporation

process is found in [Bal96].

3.3 The Synchronization Manager

The decision of supporting multiple memory consistency models led to

transformations in the design of our shared virtual memory system. The most significant

one concemed the design of the synchronization module. There is a class of memory

models - hybrid memory models - that verify consistency constraints when

synchronization operations are issued. Hence, in order to be general, our system must

allow the execution of consistency operations at synchronization time. For this reason,

we conceived two synchronization operations (diva_Iock and diva_unlock) that have

• DIVA - Dlstributed Virtual memory Approach

373

dynamic semantics. In other words, the semantics of these operations depends upon the

current memory consistency model. These two operations are illustrated in figure 4.

diva_lock (lock)

acquire (lock) ;

c_lock(memory_model};

diva_unlock (lock)

c_unlock(memory_model)

release (lock);

Figure 4. Synchronization operations

The primitives diva_Iock and diva_unlock have an invariant part that does not

depend upon the current memory consistency model. This invariant part deals with

traditional Jock management that is done by the acquire and release operations. The

other part, represented by c_lock and c_unlock is specified by each memory consistency

model in the memory model definition scheme explained in the preceding subsection.

4 Implementation and Results

In order to validate our design and have some performance measures, we

implemented a prototype of the DIVA system on a 52-node Intel Paragon Parallel

Machine [Int93]. The operating system used was lhe Mach micro-kemel [Ope92].

DIVA was implemented as memory manager and uses the Mach Server Interface.

Combined with the general memory consistency manager, the prototype of DIVA has

ali functionalities a normal shared virtual memory server. The architecture of the

prototype can be seen in figure 5.

MACHKERNEL

Figure 5 - The prototype architecture

374

We h ave one full copy o f the DIVA server in each node. Each copy is multi­

threaded, composed by four threads. The most important thread is ca\led memory

manager and has the following functions: page table management, page fault

management and memory consistency model management. These three modules can

request remote operations that are issued by the remote operations controller. If local

memory is full or nearly full, the page replacement thread is called to place some local

pages in a remote node. For this, it uses a page replacement algorithm that moves the

page to a neighbor node that has free space in its memory. The detailed description of

this algorithm can be found in [BaM94).

The DIVA prototype is activated by the Mach kemel, in the occurrence of a

page fault, or directly by parallel applications, when they issue diva primitives. We have

eight diva primitives, shown in the following table:

Syntax Description

model_set = diva_set_memory_model Definition of lhe memory consistency model to be
(model_wanted) used in the execution of a parallel application
result = diva_;nap (region , address, Creation of a shared memory region in the address
size) space o f the parallel process
result = diva_unmap (region, address, Destruction of a shared memory region in the
size) address space o f the jlarallel j)I'OCess
result = diva_prefetch (address) Prefetching of lhe page that contains the address

<address>
lock_number = diva_get_lock () The user obtains a lock idcntificr
result = diva_remove_lock The use r remove the lock identifier
(lock_numberl <lock number> from the svstem
diva_lock (lock_number) Lock acquisition operation
diva unlock (lock_number) Lock release operation

Table I- Primltives oftlze prototype

To evaluate the performance of a single application under more than one

memory consistency model, we implemented two memory models in DIVA: sequential

consistency and release consistency.

For the implementation of sequential consistency, we used firstly the

implementation suggested by [Li86). This implementation will be called SC+inv. As

SC+inv suffered from trashing caused by false sharing, we implemented sequential

consistency again in a different way. The implementation now chosen was the one

proposed by [FP89] and will be called SC+timer. Both implementations of sequential

consistency were considered in our evaluation. To implement release consistency, we

chose the implementation proposed by [Car93). We executed a 16xl6 matrix

375

multiplication using these three memory model implementations and the results are

shown in figure 6.

140 .--------------,

120

100
-+--SC+Inv

80
- D - SC+tlmer

po'e 60 --- - ------------------------- ---- · AC
f•uhs

operatlons

40 - - - - - - - -- - - - -- - - -- --- - - - -.r~-_,.r
20 . - - - - --- --- ---- __-: - - --- ------------

2 4 8 16

numbet or processors

SC+Inv SC+tlmer RC

conslstency model

D page fetchlng

C conslstency

•Ide

Figure 6 - Evaluation of the matrix multiplication

In the first graphic, we can see that SC+inv presents a very high number of page

faults, even though matrix multiplication has no write data dependencies. As explained

before, this was due to false sharing. Analyzing only the first graphic, one can

conclude, erroneously, that RC and SC+timer have nearly the same performance. The

data in the second graphic prove that this is not true. Although both models have nearly

the same number of page faults, SC+timer achieves this low number by slowing down

the computation, because it imposes that a page must be in one node for at least n units

of time. This can be easily seen by the high amount of idle time that matrix

multiplication presents under this model. The careful analysis of these graphics lead us

376

to say that matrix multiplication behaves better under release consistency than under

sequential consistency, in a shared virtual memory system that manipulates pages.

5 Related Work

In the literature, some work has been done to provide users of a distributed

shared memory system with multiple memory models.

[HS93] proposed a formalism and a system - Mermera - that permits multiple

memory models in a single execution. Shared memory is accessed by read and write

primitives. Reads are always local. There is one write primitive for each memory model

offered by the system: CO_write (sequential consistency), PRAM_write (PRAM

consistency), SLOW _write (slow memory) and LOCAL_write (local consistency). This

approach differs from DIVA in three important ways. First, DIVA treats memory

accesses and Mermera deals with primitives. Second, DIVA allows the user to define its

own memory consistency models. In Mermera, the user must choose among a set o f pre­

defined models. Third, in a single execution DIVA allows only one memory model to

be active while Mermera allows many models to coexist.

Midway is a DSM system first proposed by [BZ91) and then modified in

[BZ93). It was introduced to evaluate a new memory model: entry consistency. As this

model was too relaxed, the authors decided to support also some memory models that

offer more consistency guarantees. The models supported are entry consistency,

processor consistency and release consistency. Similarly to Mermera, Midway provides

a pre-defined set of models that can be chosen by the programmer. Multiple memory

models can coexist in a single execution. As DIVA, Midway treats memory access

operations but it needs a particular compiler to deal with these operations.

We consider that our system is more flexible than these two systems. As a user­

defined memory model is added to the set of models accepted by the system, the

programmer can also choose among many memory models in DIVA. Besides, the

programmer can define himself the memory model needed for a particular application

execution. This characteristic is not present in Midway or Mermera. On the other side,

DIVA poses the restriction of only one memory consistency model per parallel

execution. This restriction that is not present in the other two systems. However, this

restriction can be relaxed in DIVA in a relatively simple way [BAL96).

377

6 Conclusion

In this article, we presented the formal definition of memory consistency models

and the design and implementation of a shared virtual memory system that uses this

formal definition to provide a multi pie memory consistency model support. As our main

goal with this work was to show that the choice of a memory consistency model

depends on how the parallel application accesses the shared memory, we implemented

two memory models (sequential consistency and release consistency) and executed the

same parallel application (matrix multiplication) under these models.

Our experience with the matrix multíplication led us to two maio conclusions.

First, the choice of a memory model affects the performance of a parallel application

that uses distributed shared memory to communicate. Second, the choice of an efficient

implementation of the memory model is essential and a bad choice can lead to bad

results that are not produced by the model itself.

The comparison with other systems showed that, as f ar as we know, DIVA is the

only full SVM system that allows programmers to define generically memory models

and incorporate them in to the system. This flexibility allows DIVA to be also used as a

testbed for evaluating and creating new memory models.

7 References

[Adv93) S. V. Advc, Designing Multiple Memory Consisuncy Models for Shared·Memory Multiprocessors. PhD
thcsis, Univcrsity o f Wisconsin-Madison, 1993.

[AHJ90) M. Ahamad, P. Hutto, R. John, lmp/ementing and Programming Causal Distributed Slwred Mtmory.
Tcchnical Rcpon GIT-CC-90/49, Gcorgia lnstitute ofTechnology, 1990.

)A+92J M. Ahamad ct ai., Tire Powtr of Processar Consistency. Tcchnical repon GIT-CC-92134, Georgia lnsti tute
ofTcchnology, 1992.

(Bal96] A. Balaniuk, Conctption d 'un Systime Supportant dts Modilts de Cohirence Multiples pour lu Machines
Paralliles à Mimoir< Virruellt Partagie, PhD Thesis, Institui National Polytechniquc de Grenoble, Frnnce,
1996.

[BM94] A. Balaniuk and T. Muntean, Programming with Slwr<d Data in Parai/ti Loustly Coupltd Machints: tht
Slrured Virtual Memory Approach, In IEEFJUSP lntemational Workshop on High Pcrfonnance Computing,
pagcs 129-142, 1994.

(BaM94] A. Balaniuk and T. Muntean, Adaptivt Page Replactmtnt in tht DIVA Shared Virtual Memory Parai/c/
Servtr, In Joumw des Jeunes Chercheurs en Architectures de Machines et Syst~mes, Tunísia, 1994.

[BZ91] B. Bcrshad and M. Zckauskas, Midway: Shared Mtmory Parai/ti Programming with Entry Consisrency for
Disrributed Memory Multiprocusors. Technical Repon CMU·CS-91170, CMU, 1991.

[13Z93] B. Bershad and M. Zckauskas, The Midway Distribured Shartd Memory System. COMPCON'93, pages 34-
42, 1993.

[Car93] J. Caner, Efficient Distribured Shared Memory Based on Multi-Protocol Release Consistency, PhD Thesis,
Rice Univcrsity, 1993.

[FP89] B. Fleisch and G. Popek, Mirage: a Cohtrent Disrributtd Slwrtd Memory Dtsign, In 14th ACM
Symposium on Opernting Systems Principies, pages 21 1·221, 1989.

[HS93] A. Hcddaya nnd H. Sinha, An lmpltmtntation of Mennera: a Slwred Mtmory Systtm that Mixes
Cohtrence wirlt Non-Colttrtnct, Technical Report BU-CS-93·006, Boston Univcrsity, 1993.

[lnt93] Intel Corporntion. Paragon Systtm Administrator's Guide, 1993.
[JA93] R. John and M. Ahamad, Causal memory: lmpltmtnlation, Programming Supporr and Exptriences,

Tcchnical Rcpon GIT-CC-93/10, Gcorgia lnstitutc ofTechnology, 1993.

378

[K+92) P. Kelcher et ai. l..azy Release Consistency for Software Distributed Shared Memory, In 19th Symposium
on Computer Architectun:, pages 13-21,1992.

(KNA93)P. Kohli, G. Neiger, M. Ahamad, A Characterir.ation ofSca/able Shared Memories. Tcchnical Repon GIT­
CC-93104, Georgia lnstitute ofTechnology, 1993.

[Lam78) L. Lamport, Time, Clocks and Ordtring of Events in a Distributed System, Communications of the ACM,
pages 558-565, 1978.

[Lam79) L. Lampon, How to Malce a Multiprocessar Computu that Co"ectly Executes Multiprocess Programs,
IEEE Transactions on Computcrs, pages 690·691,1979.

[Li86) K. Li, Shared Virtual Memory on Laouly Coupled Architectures, PhD thcsis, Yale Univcrsity, 1996.
(LP92) Z. Lahjomri and T. Priol, KOA.N: a Sl10red Virtual Memory for the iPSC/2 Hypercube, Lecture Notes on

Computcr Scicnce 634, pages 442-452, 1992.
(L+93) D. Lcnosky ct ai. The DA.SH Protorype: Logic Overhtad and Ptrfonnance, IEEE Transactions on Parallcl

and Distributed Systems, January, 1993.
[Mos9J] D. Mosberger, Memory Consistency Models. Operaling Systcms Revicw, pages 18-26, 1993.
[NL91] B. Nitzbcrg and V. Lo. Distributed Shared Memory: A Survey of /ssues and Algoritluns, IEEE Computer,

pagcs 52-60. 1991.
[Opc92) Opcn Software Foundation and CMU. Mach 3 Server Writer's Guide. 1992.
[RS95) M. Raynal and A. Schiper, A Suite of Formal Definitions for Consistency Criteria in Distribwtd Shared

Memories, Tcchnical Repon PI-968,IRISA, Francc, 1995.

379

