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Abstract - In order to make shared memory programming possible in parallel or distributed
architectures where no physical shared memory exists, we must create a shared memory abstraction
that parallel processes can access. The behavior of this abstraction is dictated by the memory
consistency model. It has been observed that simulating exactly the real shared memory behavior in
such architectures creates a huge network traffic. Several relaxed memory models have been
proposed to reduce this traffic. We claim that no single memory model will be able to provide both
performance and ease of programming for all classes of parallel applications. Hence, we must allow
programmers to choose the memory model that best fits to his parallel application needs.

This article describe the design and implementation of a shared virtual memory system that supports
multiple user-defined memory consistency models. The idea here is to allow programmers to choose
the memory model that best fits to its parallel application sharing patterns. The programmer can also
define a memory model by his own. This article is divided in three parts. In the first part, we
introduce the problem of memory consistency model definition and define formally what is a memory
consistency model. In the second part, we describe the design of a general model manager that
supports multiple memory models. In the last part, we present the implementation of a prototype of the
system in a parallel machine and examine some preliminary results.

1 Introduction

Programming loosely coupled parallel architectures has been traditionally
achieved by message passing. However, the use of the shared memory paradigm in such
architectures has received a lot of attention last years. This is basically for two reasons.
First, the shared memory programming model is often considered easier than message
passing, since communication is implicit. Second, this can be the first attempt in order
to make portable parallel programs that are independent of the parallel architectures
families.

In order to make shared memory programming possible in parallel architectures
where no physical shared memory exists, we must create a shared memory abstraction
that parallel processes can access. This abstraction is called Distributed Shared Memory
(DSM) and can be implemented basically by two different approaches: shared objects
and shared virtual memory (SVM). In the first approach, we treat the shared memory
abstraction as an object or a set of objects. Operations in this shared memory are
methods that access the memory object. The second approach was first proposed by

[Li86]. In this case, we use the virtual memory mechanism to map the shared memory
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abstraction into the virtual space of each parallel process. Operations in the shared
memory are issued by memory addressing mechanisms.

Even though these two approaches are quite different, they both suffer from the
same problem: memory consistency. The first DSM systems tried to give parallel
programmers the same guaranties they had when programming uniprocessors. It has
been observed that providing such a memory model creates a huge coherence overhead,
slowing down the parallel application and bringing frequently the system into a trashing
state [NL91] [Mos93]. To alleviate this problem researchers have proposed to relax
some consistency conditions, thus creating new memory behaviors that are different
from the traditional one. Many new memory consistency models have been proposed in
the literature but, by now, none of them has achieved the goal of providing both
performance and ease of programming.

We claim that no single memory model will be able to achieve this goal for all
categories of parallel applications. The best memory behavior for a given application
depends on its own shared memory access patterns. Indeed, each parallel application
must be given the opportunity of choosing a memory model that best fits to its
performance and ease of programming wills.

In this article, we describe the design and implementation of a shared virtual
memory system where multiple user-defined memory models can be used. In order to
do this work, we had to go through three different stages:

1) Elaborate a general and formal memory consistency model definition. The
objective of this part of the work is to identify the characteristics that are
inherent to all memory consistency models and the characteristics that are
model-specific. A simple and general definition of memory consistency
model is proposed.

2) Design of a system architecture that supports multiple user-defined memory
consistency models. We propose a system that uses the general memory
consistency model definition produced in the preceding stage to guide the
design of a general model manager that will control parallel executions.

3) Implementation of a prototype of the system. In order to validate our ideas, we
implemented the proposed system in a 52-node Intel Paragon parallel
machine. With this prototype, we were able to examine some parallel

executions and have some preliminary results.
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The rest of this paper is organized as follows. In section 2, we introduce the
problem of memory consistency models definition and propose our own general
memory model definition. Some well-known memory models are then defined using
this definition. Section 3 describes the design of a model manager that supports multiple
user-defined memory models. Section 4 describes the implementation of the prototype
of a complete shared virtual memory system and presents some preliminary results.

Finally, related work and conclusions are presented in sections 5 and 6.

2 Memory Consistency Models

Ideally, a SVM system must provide to its users all the consistency guarantees
of a real shared memory. Unfortunately, it has been observed that systems that offer
such guarantees suffer from significant efficiency problems. To reduce the cost of
maintaining consistency, researchers have proposed to weaken consistency conditions.
Following this approach, many relaxed consistency models have been proposed in the
literature.

Memory consistency models, strong or relaxed ones, have not been originally
formally defined. In most cases, the semantics of memory behavior has to be induced
from the protocol that implements the memory model. The lack of a unique framework
where memory models can be formally defined makes it difficult to compare and
understand the memory model semantics. This fact was also observed by other
researchers and some work was indeed done in the sense of formal memory model
definitions. [Adv93] has proposed a quite complete methodology to specify memory
models. Nearly all known memory models were considered. The aim of her work,
however, was to define relaxed models in terms of strong consistency. The central
hypothesis of this study is that all parallel programmers would prefer to reason as if they
were programming a time-sharing uniprocessor. A set of formal definitions was also
proposed in [RS95]. The objective of this study was to understand memory models and
compare them. The following memory models were defined using the proposed
notation: atomic consistency, sequential consistency, causal consistency and PRAM
consistency. [KNA93] also proposed a formal framework to relate memory models

where sequential consistency, TSO, processor consistency and release consistency were
defined.
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In our case, we need a general, simple and formal framework where memory
models can be defined. As we consider that the programmer can define his own memory
models, we must consider even memory models that do not exist yet. For such a degree
of generality, we must define the minimal properties that a memory model should have.
Every memory model that fits these minimal properties could be defined in our system.
2.1 System Model

To describe memory models in a formal way, we propose a history-based system
model that is related to the models described in [Adve93] and [KNA93]. In our model, a
parallel program is executed by a system. A system is a finite set of processors. Each
processor executes a program that is composed by a set of operations on the shared
global memory M. The shared global memory M is an abstract entity composed by all
addresses that can be accessed by a program. Each processor p; has its own local
memory m;. Each local memory m; caches all memory addresses of M. There are two
basic operations on M: read (r) and write (w). Each memory operation is first issued and
then performed, i. €., memory operations are non-atomic. At the end of the execution,
all memory operations must be performed. For the sake of simplicity, we assume that
each processor executes only one process.

Each process running on a processor p; is described by a local execution history
Hpi, that is an ordered sequence of memory operations issued by pi. An execution

history H is the union of all Hy. An example of an execution history is shown in figure
L.

PI: w(x)0 w(x)l w(y)l

po: )1 r(x)0

Figure I - An Execution History

In this figure, the notation w(x)v represents the instant where the write of the
value v on memory position x was issued and r(x)v represents the instant where the read
of value v on memory position x was performed by p;.

In our definitions we often use the notion of linear sequences. If Q is a history, a

linear sequence of Q contains all operations in Q exactly once. A linear sequence is
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legal if all read operations r(x)v return the value written by the most recent write
operation. For the complete description of the system model please refer to [Bal96].

In execution histories, we have some operation orderings that are allowed and
some orderings that are forbidden . The decision of which orderings are valid is made

by the memory consistency model. This observation leads to our memory consistency

model definition: @ memory consistency model (MCM) defines an order relation ( ->.R
) on the set of shared memory accesses. One execution history is possible on a memory
consistency model if it is possible on the relation order defined by the model.

In the rest of this section, we describe four well-known memory consistency
models (atomic consistency, sequential consistency, causal consistency and release
consistency) using this generic memory consistency model definition. For the
definitions of PRAM, processor consistency and slow memory please refer to [Bal96].
2.2 Atomic Consistency

Atomic consistency is the strongest and the oldest memory consistency model.

Our definition of atomic consistency is derived from the definition presented in [RS95]:

A history H is atomically consistent if there is a legal linear sequence
-->,AT of the set of operations on H such that:
. AT
i) Vo, 0,whereo;..,” oztheno, -->,  o©;and

ii) V 04, 0, where t(perform(o,)) < t(perform(o,)) then o, -->.AT 0z

In this definition, the function f(x) returns the real time when the operation x is

g AT
performed. Above, we defined a new order relation (-, ) where all processors must
perceive the same execution order of all shared memory accesses (legal linear sequence

of H). In this order, all operations performed by a process must respect the program

order ™ ' (i). Also, non-overlapping memory accesses must respect real-time order
(ii).

We do not have examples of shared virtual memory systems that implement
atomic consistency. Preserving real time order is very difficult (if not impossible) in a

system where no global physical clocks exists.

po

' Program order: 0, .,” 0, if and only if: a) both operations are issued by the same processor and o,

immediatcly precedes o, or b) 3 o5 such that o, ..,,'” o3and 03.," 0y

369



2.3 Sequential Consistency

Sequential Consistency was proposed by [Lam79] as a correctness criterion for
shared memory multiprocessors. Many shared virtual memory systems proposed in the
literature implement sequential consistency. Ivy [Li86], Mirage [FP89] and KOAN
[LP92] are examples of sequentially consistent shared virtual memory systems.

Our definition of sequential consistency is derived from the definition presented
in [A+92]:

A history H is sequentially consistent if there is a legal linear sequence
-->.Sc of the set of operations on H such that:

i) V oy, 0, where 0;.," o, then o, -->.SC 0.

For sequential consistency, we define a new order —>,SC . The only difference

between --).AT and -->.SC is that real-time order is no longer necessary in sequential
consistency. These two models are called strong memory models because they pose
restrictions on the order of all shared memory accesses issued by parallel processes.
2.4 Causal Consistency

Causal consistency is a relaxed memory model that is based upon the potential
causal relation defined by [Lam78). Causal consistency was implemented by the
researchers that proposed it [AHJ90] and was also implemented in the system Clouds
[TA93].

For the formal definition of causal consistency, we must use a new history -
Hyisw - that is called the History of the write operations seen by p;. Hpisy is a subset of
the operations of H that contains all memory accesses issued by p; and all write accesses
issued by every other processes. Our definition is derived from the one proposed by
[JA93]:

A history His causally consistent if there is a legal linear sequence -->.CA
of the set of operations on Hy,. for all processor p; where:

i) V o0y, 0, where 0;.." o then o, -->.CA 0, and
ii) ¥ 0y, 0, where 0 .,"™ o, then o, -->.CA 0, and

CA
iii) ¥ 0y, 05, 03 where o0, ., ** 0, and 0,.,°* osthen oy -->, ~  0a.
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By this definition, we can see that it is no more necessary for all processors to

agree on the order of all shared memory operations. Instead of using H, we use a subset

of it, Hyisw. We have one Hy,y for each processor and the order > is defined for

these histories. In this order, the order read-by’ must be respected. Also, the transitivity

CA
of the new order -->,”  must be preserved.

2.5 Release Consistency

Release consistency is one of the most popular relaxed memory models and we
find in the literature many systems that implement it: Munin [Car93] and
ThreadMarks[K+92] are examples of release consistent distributed shared memory
systems. DASH [L+93] is a release consistent parallel architecture.

Our definition of release consistency is derived from the one presented by
[KNA93]. In this definition, release accesses are seen as special write accesses.

Similarly, acquire accesses are treated as special read accesses.

A history His release consistent if there is a linear sequence -->,HC of the set of
operations on Hy,, for all processor p; where:

i) V o0y, 0z 05whereo;.,* 0, ..,7" 05 inH and type(o,) = refeaseand type(o;) =
acquire and type(os) € {r.w} then o, —>.RC 0z and
ii) ¥ 04, 0, where 04...,"*" 0, on Hy,. and type(os) € {r,w} and type(o,) = release

then o, -->,RC 0;.

In short, the definition of s imposes that synchronization order’ _,* must
be preserved. In addition, all basic memory operations that follow the acquire must be
issued after the acquired is performed (i) and all basic memory operations must be

performed before the release is issued (ii).

3 Diva: a SVM System that Supports Multiple Memory Consistency Models

% Read-by order: if the operation r(x)v, issued by processor p;, reads the value written by the operation

w(x)v issued by processor p; and i # j then w(x)v ..,fb r(x)v
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In the preceding section, we showed that generically a memory consistency
model can be defined in terms of ordering relations. To prove that this generic model
definition can be used, we defined some well-known memory models using the notation
we proposed. In this section, we describe the design of a shared virtual memory system,
called DIVA®, that guarantees that all ordering restrictions imposed by a particular
memory model will be observed in the execution of a parallel application. For this, we
use the memory model definition to guide parallel execution.

We must note, however, that there are several possible implementations of the
same memory consistency model. At this design level, we only provide the basic
mechanisms to make possible the execution of parallel applications under memory
model implementations. Providing the best memory model implementation for a

particular memory model definition is beyond the scope of our work.

3.1 The Model Manager

The execution of a parallel program on the generic memory consistency model is
treated by the Model Manager Module that is illustrated in figure 2:

Model manager
Consistency manager

‘ model 1 I model 2 I model n l

requests for opefation
execution |

consistengy restrittions
>

Fs ynchronization operations
synchronization managerl

Figure 2 - The model manager

The model manager is activated by the reception of requests for the execution of
an operation on the shared virtual memory. The module that implements the general
model forwards the request to the memory consistency model that is currently active for

the parallel application. The current memory model decides if there are consistency or

} Synchronization order: 0, ....* 0, if 0, and o, are synchronization operations and o, is performed before
0, is issued.
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synchronization operations that must be executed before the requested operation can
proceed. After the execution of all such consistency and synchronization operations, the
model manager sends a message to the module that called him, allowing the operation

to be now issued.

3.2 Definition of New Memory Models
To include new memory models in the DIVA system, the programmer must

follow the model description scheme illustrated in figure 3.

model_New(operation_type)
{
case (operation_type)
OP_TYPEl: consistency_restrictions_typel();
OP_TYPE2: consistency_restrictions_type2();

OP_TYPEn: consistency restrictions_typen():

Figure 3 - The model description scheme

In fact, the programmer associates the type of the operation (read, write or any
other one) with the ordering constraints established by the model. After that, the
programmer writes the model description onto a configuration file. This configuration
file will be read into the code of DIVA. The detailed explanation of this incorporation
process is found in [Bal96].

3.3 The Synchronization Manager

The decision of supporting multiple memory consistency models led to
transformations in the design of our shared virtual memory system. The most significant
one concerned the design of the synchronization module. There is a class of memory
models - hybrid memory models - that verify consistency constraints when
synchronization operations are issued. Hence, in order to be general, our system must
allow the execution of consistency operations at synchronization time. For this reason,

we conceived two synchronization operations (diva_lock and diva_unlock) that have

* DIVA - DIstributed Virtual memory Approach
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dynamic semantics. In other words, the semantics of these operations depends upon the

current memory consistency model. These two operations are illustrated in figure 4.

diva_lock (lock) diva_unlock (lock)

( {

acquire (lock); c_unlock (memory_model)
c_lock (memory_model) ; release (lock);

} }

Figure 4. Synchronization operations

The primitives diva_lock and diva_unlock have an invariant part that does not
depend upon the current memory consistency model. This invariant part deals with
traditional lock management that is done by the acquire and release operations. The
other part, represented by c_lock and c_unlock is specified by each memory consistency

model in the memory model definition scheme explained in the preceding subsection.

4 Implementation and Results

In order to validate our design and have some performance measures, we
implemented a prototype of the DIVA system on a 52-node Intel Paragon Parallel
Machine [Int93]. The operating system used was the Mach micro-kemnel [Ope92].
DIVA was implemented as memory manager and uses the Mach Server Interface.
Combined with the general memory consistency manager, the prototype of DIVA has
all functionalities a normal shared virtual memory server. The architecture of the

prototype can be seen in figure 5.

DIVA PROTOTYPE

_——=

MACH KERNEL

Figure 5 - The prototype architecture
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We have one full copy of the DIVA server in each node. Each copy is multi-
threaded, composed by four threads. The most important thread is called memory
manager and has the following functions: page table management, page fault
management and memory consistency model management. These three modules can
request remote operations that are issued by the remote operations controller. If local
memory is full or nearly full, the page replacement thread is called to place some local
pages in a remote node. For this, it uses a page replacement algorithm that moves the
page to a neighbor node that has free space in its memory. The detailed description of
this algorithm can be found in [BaM94].

The DIVA prototype is activated by the Mach kernel, in the occurrence of a
page fault, or directly by parallel applications, when they issue diva primitives. We have

eight diva primitives, shown in the following table:

Syntax Description
model_set = diva_set_memory_model Definition of the memory consistency model to be
(model_wanted) used in the execution of a parallel application
result = diva_map (region, address, Creation of a shared memory region in the address
size) space of the parallel process
result = diva_unmap (region, address, Destruction of a shared memory region in the
size) address space of the parallel process
result = diva_prefetch (address) Prefetching of the page that contains the address

<address>

lock_number = diva_get_lock () The user obtains a lock identifier
result = diva_remove_lock The wuser remove the lock identifier
(lock_number) <lock_number> from the system
diva_lock (lock_number) Lock acquisition operation
diva_unlock (lock_number) Lock release operation

Table | - Primitives of the prototype

To evaluate the performance of a single application under more than one
memory consistency model, we implemented two memory models in DIVA: sequential
consistency and release consistency.

For the implementation of sequential consistency, we used firstly the
implementation suggested by [Li86]. This implementation will be called SC+inv. As
SC+inv suffered from trashing caused by false sharing, we implemented sequential
consistency again in a different way. The implementation now chosen was the one
proposed by [FP89] and will be called SC+timer. Both implementations of sequential
consistency were considered in our evaluation. To implement release consistency, we

chose the implementation proposed by [Car93]. We executed a 16x16 matrix
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multiplication using these three memory model implementations and the results are

shown in figure 6.

140

120
100
~——4—SC+inv
e — O — SC+timer
Page g0 4 --=-.RC
faults e
40
20
0 +
2 4 8 16
number of processors
operations O page fetching
DOconsistency
Wide

SC+inv SC+timer RC
consistency model

Figure 6 - Evaluation of the matrix multiplication

In the first graphic, we can see that SC+inv presents a very high number of page
faults, even though matrix multiplication has no write data dependencies. As explained
before, this was due to false sharing. Analyzing only the first graphic, one can
conclude, erroneously, that RC and SC+timer have nearly the same performance. The
data in the second graphic prove that this is not true. Although both models have nearly
the same number of page faults, SC+timer achieves this low number by slowing down
the computation, because it imposes that a page must be in one node for at least n units
of time. This can be easily seen by the high amount of idle time that matrix

multiplication presents under this model. The careful analysis of these graphics lead us
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to say that matrix multiplication behaves better under release consistency than under

sequential consistency, in a shared virtual memory system that manipulates pages.

5 Related Work

In the literature, some work has been done to provide users of a distributed
shared memory system with multiple memory models.

[HS93] proposed a formalism and a system - Mermera - that permits multiple
memory models in a single execution. Shared memory is accessed by read and write
primitives. Reads are always local. There is one write primitive for each memory model
offered by the system: CO_write (sequential consistency), PRAM_write (PRAM
consistency), SLOW_write (slow memory) and LOCAL_write (local consistency). This
approach differs from DIVA in three important ways. First, DIVA treats memory
accesses and Mermera deals with primitives. Second, DIVA allows the user to define its
own memory consistency models. In Mermera, the user must choose among a set of pre-
defined models. Third, in a single execution DIVA allows only one memory model to
be active while Mermera allows many models to coexist.

Midway is a DSM system first proposed by [BZ91] and then modified in
[BZ93]. It was introduced to evaluate a new memory model: entry consistency. As this
model was too relaxed, the authors decided to support also some memory models that
offer more consistency guarantees. The models supported are entry consistency,
processor consistency and release consistency. Similarly to Mermera, Midway provides
a pre-defined set of models that can be chosen by the programmer. Multiple memory
models can coexist in a single execution. As DIVA, Midway treats memory access
operations but it needs a particular compiler to deal with these operations.

We consider that our system is more flexible than these two systems. As a user-
defined memory model is added to the set of models accepted by the system, the
programmer can also choose among many memory models in DIVA. Besides, the
programmer can define himself the memory model needed for a particular application
execution. This characteristic is not present in Midway or Mermera. On the other side,
DIVA poses the restriction of only one memory consistency model per parallel
execution. This restriction that is not present in the other two systems. However, this

restriction can be relaxed in DIVA in a relatively simple way [BAL96].
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6 Conclusion

In this article, we presented the formal definition of memory consistency models
and the design and implementation of a shared virtual memory system that uses this
formal definition to provide a multiple memory consistency model support. As our main
goal with this work was to show that the choice of a memory consistency model
depends on how the parallel application accesses the shared memory, we implemented
two memory models (sequential consistency and release consistency) and executed the
same parallel application (matrix multiplication) under these models.

Our experience with the matrix multiplication led us to two main conclusions.
First, the choice of a memory model affects the performance of a parallel application
that uses distributed shared memory to communicate. Second, the choice of an efficient
implementation of the memory model is essential and a bad choice can lead to bad
results that are not produced by the model itself.

The comparison with other systems showed that, as far as we know, DIVA is the
only full SVM system that allows programmers to define generically memory models
and incorporate them into the system. This flexibility allows DIVA to be also used as a

testbed for evaluating and creating new memory models.
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