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Abstract 

This paper presents a visual programming environment for parai/e/ software development. 
Parai/e/ Alchemist is based on multithreaded programming and uses shared memory for 
communication. The software deve/opment process is a/most visual, al/owing users to build 
complex programs based on primitive programming blocks. Parai/e/ Alchemist works upon 
meta-schemes of parai/e/ programming models and generates code in any model the user 
describes with these meta-schemes, inc/uding the Mulplix native programming model, under 
development for the Multiplus distributed shared memory multiprocessar. Parai/e/ Alchemist 
is implemented in Java and is currently available on Solaris platjorm. Examples of meta­
schemes and generated code are presented and discussed 

Resumo 

Este artigo apresenta um ambiente de desenvolvimento visual de software paralelo. 
Alquimista se baseia em multithreading e utiliza memória compartilhada como o meio de 
comunicação entre as threads. O processo de desenvolvimento de software é integralmente 
visual, permitindo a construção de programas complexos a partir de blocos de programação 
primitivos. Alquimista utiliza meta-esquemas de modelos de programação paralela e gera 
código em qualquer modelo descrito por um meta-esquema, inclusive o modelo nativo de 
programação paralela Mulplix, em desenvolvimento para o multiprocessador Multiplus. 
Alquimista está implementado em Java e disponivel para a plataforma Solaris. Exemplos de 
meta-esquemas e código gerado são apresentados e discutidos neste artigo. 

Keywords: software development tools, parallel computing, multithreading 
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l. Introduction 

Software development, as stated by Barry Boelun [BOE76) in the late 1960's, is a difficult 
task. In the last three decades, this scenario has not changed. As programming languages and 
environments evolve, software complexity evolves even faster. The need for distributed and 
parallel computation increases such complexity considerably. 

On the other hand, visual programming is a potentially powerful and appealing technique for 
building complex applications. As a consequence, an increasing number of research works on 
visual programming languages [HIL92, REP95) and environments [KAR95, ING88) has been 
reported lately. 

Nevertheless, the application of visual programming techniques to the development of 
parallel programs is an area that needs further development. A few efforts on the use of these 
techniques have been reported. P-Rio [CAR9S) and VPE [NEW9S) are visual environments 
designed for the generation of PVM-based code for parallel systems. The Linda Program 
Builder [AHM:94] is a user-friendly programming environment that allows the construction of 
parallel programs from frameworks and code templates. Code [BR09S) is a visual 
environment that allows the composition of a parallel program from sequential ones. Code can 
produce parallel programs for shared-memory and distributed-memory architectures, using 
PVM, MPI and Pthreads. Enterprise [SCA93) is a programming environment that allows the 
visual composition of parallel programs from sequential programs. Enterprise uses the 
message-passing paradigm, handling communication and synchronization between the 
sequential parts o f the parallel program. 

This work describes the development of Parallel Alchemist, a visual environment that 
generates C code for shared memory based parallel programming models. Parallel Alchemist 
helps software developers with little expertise on parallel programming. Alchemist's features, 
however, are also useful for experienced parallel programmers, who need code portability 
across different parallel programming models. 

The environment is an evolution and a generalization of a previous development effort, 
Parallel Wizard, which is a parallel software development environment, designed only for the 
Mulplix parallel prograrnming model [AZE93). Parallel Alchemist, however, is able to cope 
with different shared memory based programniing models. 

The environment is based on multithreading. Threads are !ines of control flow that can be 
executed in parallel on different processors. Every program has, at least, one thread, known as 
the main thread, which is responsible for the creation of other threads. Shared memory is used 
for thread communication. 

Parallel Alchemist defines a parallel programming meta-model. This meta-model defines the 
parallel entities and activities used during the software development process. The environment 
uses meta-schemes of existing parallel programming models to translate the meta-model 
representation to a particular model application interface. Parallel Alchemist can generate code 
for any model represented by meta-schemes. Currently three models are implemented: Solaris 
threads [GRA9S), Posix threads {Pthreads) [IEE94] and the Mulplix native model, designed to 
be used within the distributed shared memory Multiplus multiprocessar [AUD96). 

Section 2 presents the Alchernist's development process, describing how software is built 
within the environment. Section 3 presents the basic programming blocks, which are primitive 
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visual constructors used to define the software behavior. Section 4 describes the parallel meta­
model used by the environment. Section 4.1 presents a brief description of the Mulplix native 
programming model. Section 5 presents meta-schemes already generated within Alchemist. 
Section 6 demonstrates how code is generated by the environment. Section 7 presents two 
programming examples. Section 8 presents the Alchemist's current implementation. 
Conclusion and directions for future work are presented in Section 9. 

2. The Development Process 

Parallel Alchemist is based on the structured software development paradigm [PRE92] and 
uses the C programming language [KER88]. The structured paradigm states the functional 
decomposition of a complex problem into smaller, much simpler, problems. The program 
execution flow is decomposed into severa! routines and controlled by a master routine, where 
execution starls and ends. 

The C language implements the structured paradigm. The environment uses this language 
for code generation, due to its wide acceptance among developers and its availability on many 
operating systems. 

On Parallel Alchemist, each parallel program consists of a set of shared variables, 
representing the shared memory, and a set of modules, representing the functional pari of the 
system. Each module consists of a set of routines. Figure I presents the hierarchical 
representation o f a program. 

Module I 

I Routinc I I 
I Routine 2 I Declarations 

I Routine 3 I 

Modulc2 

I Routine 41 
I Routine S I 

Shared Memoty 

Modulc3 

I pmain 

Figure I - Hierarehical representation of a program 

Each shared variable is treated as an atomic element, described by its name and type. This 
type must conform to any type defined by the C language, declared in libraries used by the 
program or declared by the user. The type of a shared variable consists of a type prefix and a 
type suffix. 

The type prefix is the primary type of the variable, such as integer types, single or double 
precision floating point, structures, unions, enumerations or pointers. The type suffix is used in 
array declarations, indicating the number of elements in the arrays. 

Each module consists of a declaration section and a set of routines. Within the declaration 
section, the user can define types, create macros and constants, include header files and inseri 
coriditional compilation code, using C language statements . 

. - l" 
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Each routine is described by a behavioral graph, a directional graph that expresses the 
semantics o f the routine using visual constructors. The nodes o f a behavioral graph are called 
basic programming blocks. The connections between nodes represent possible execution flows 
inside the routine. 

The program execution flow starts and ends in a routine called pmain, that receives two 
parameters, argc and argv, as the main function o f the C language. The parameters indicate, 
respectively, the number of arguments within the program command line and a list of strings 
containing these arguments. 

3. The Programming Blocks 

Behavioral graphs are the central part o f the software development process within Parallel 
Alchernist. Each behavioral graph describes a routine. The graph composition process is almost 
visual: the user selects the desired programming block, indicates where it must be inserted into 
the routine and the environment automatically creates connections from existing blocks to the 
newly created one. 

Every programming block contains a set of properties. These properties are used during 
code generation. They describe details about the semantics of each specific programming 
block. 

Every behavioral graph contains, at Jeast, one programming block: the function declaration 
block. This block is created automatically by the environment, when a new routine is declared. 
lt has a single property, called declarations, where the user must define the routine prototype 
and local variable declarations, using C code. 

There are four types of common activity blocks. They define the one-dimensional flow of 
control, that is, the flow of execution inside a single thread . 

.J-. . . "·~·~ Statement blocks allow the user to specify commands to be executed 
~l·.:Sta~e~~n.r,;:~ when that programming block is reached. These commands may 

include mathematical computation, file system I/0 and calls to the C 
library routines. This prograrnming block has a single property, called commands, in which the 
C statements to be executed are specified. 

Condition blocks create a pair of branches on the behavioral graph, 
associated with the value of a condition, specified by the single 
property ofthis programming block. 

Loop blocks create a single branch on the behavioral graph. This 
branch is repeatedly executed, until an associated condition evaluates 
as false. The properties of this programming block define a statement 

to be executed before the loop, a statement to be executed after each loop step, the condition 
associated with the loop and the moment when the condition is evaluated (after or before each 
loop step). 

Routine call blocks specify the execution of a routine defined by other 
behavioral graph. These nodes allow the environment to determine 
which routines are executed in parallel. The properties of this 
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programming block specify the routine to be executed, its parameters and the recipient o f the 
routine resulting value. 

There are six types of parallel activity blocks. They define the life cycle of the threads, 
indicating when they are created or destroyed. 

The thread spawn block allows the creation of a single thread 
executing a routine, specified by another behavioral graph. The 
properties of this programming block are the thread routine, the 

parameter to be passed to the thread, a recipient to the thread identification and the kind of 
thread to be created: detached or non-detached. The differences between these kinds ofthreads 
will be presented in the next section. 

~. ·;q , .:,'-,l!:~k5j The synchronous thread spawn block allows the creation of a group of 
it ..â.T.~~~Ill threads, ali executing the same routine, specified by another behavioral 

graph. The current thread wiU suspend its execution and wait for the 
conclusion of the new threads. The properties of this programming block specify the thread 
routine and the number o f threads to be created. 

The thread identification block allows a thread to know its own 
identifier. Each thread has a unique numerical identifier. This block 
has a single property, indicating a recipient for the thread identifier. 

The thread wait block suspends the execution of the current thread 
until the conclusion of a specific non-detached thread. The single 
property of this programming block specifies the desired thread, 
through its identifier. 

I f - · I The thread kill block cancels a running thread. The single property of 
x Thre~dK~I~, ·"~ this programming block is the identifier ofthe thread to be canceled. 

The thread termination block indicates the termination of the current 
thread. lt has no properties. If this block is reached in a routine not 
associated with a thread, the whole program execution is concluded. 

4. Alchemist's Parallel Meta-Model 

The parallel programming blocks described in Section 3 define part o f the Alchemist' s 
parallel meta-model, an abstract progranuning model used to generate software code for any 
particular parallel model. 

We call a parallel progranuning model a set of routines that act as interface between an 
application program and the parallel resources of an operating system. Examples of parallel 
programming models are POSIX Threads (Pthreads), Parallel Virtual Machine (PVM) 
[GEI94], Message Passing Interface (MPI) [MPI95), Mulplix native parallel system calls, 
Solaris Light Weight Processes (LWP) [SUN95) and Solaris Threads. 

The currently available parallel progranuning models can be classified into two groups: 
shared memory based models and message-passing based models. Shared memory based 
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models use a global memory to keep information accessible to every thread of a program. 
Pthreads, Mulplix and Solaris Threads are examples of shared memory based models. 

Message-passing based models use information channels to send messages between threads. 
Each thread has buffers, where any message is kept until the thread attempts to receive it. 
PVM and l'viPI are examples ofmessage-passing based parallel models. 

Parallel Alchemist uses multithreading and shared memory. The environment does not 
assume a specific parallel programming model. It works upon meta-schemes of parallel 
programming models and generates code for any model described by a meta-scheme. 

The Alchemist's meta-model describes what functionality a particular parallel programming 
model must have and the developer's interface to that functionality. The meta-model considers 
two related entities - threads and mutual exclusion semaphores - and activities related to these 
entities. 

Threads are the basic source for parallel processing. A thread runs a particular routine in 
parallel with other threads ofthe program. Each thread has a unique numerical identifier, which 
is used in activities upon the thread. These activities refer to the creation of new threads, 
waiting for a thread conclusion, cancellation of a running thread and getting the thread 
identifier. 

There are two kinds of threads: detached and non-detached. When a detached thread is 
created, no other thread can wait for its conclusion. The only possible contrai upon this thread 
is cancellation. When a non-detached thread is created, another thread can wait for its 
conclusion. This is useful for program synchronization. 

Mutual exclusion semaphores, also called mutexes, are used to preveni multiple accesses to 
criticai regions of code, that is, segments of code where shared resources can be accessed in 
parallel by severa! threads. The activities related to a semaphore are its declaration, creation, 
destruction, locking and unlocking. 

4.1.The Mulplix Parallel Programming Model 

The Mulplix native parallel programming model is part of the Mulplix operating system, a 
UNIX-Iike system designed to support medium-grain parallelism and to provide an efficient 
environment for running parallel applications within the Multiplus multiprocessar [AUD96]. 
Currently, we also have a Mulplix implementation under the Solaris platform. 

The Mulplix native programming model is implemented at kemel levei and accessed as 
system calls. These system calls are divided into three classes: thread manipulation, mutual 
exclusion semaphores and partia! arder semaphores. 

The thr _ spawn system c ali is provided for the creation o f a group o f threads. Mulplix 
threads are always created in groups andare always detached. To allow compatibility with the 
Alchemist's parallel meta-model, externai routines have been implemented to create non­
detached threads. 

The Ih r_ spawns system call allows the creation o f threads in synchronous mo de. I f the 
thread creation is synchronous, the parent thread will suspend its execution until execution 
completion by ali the children threads it has started. 

Three additional system calls for thread contrai have also been made available within 
Mulplix. The first one, thr _id, returns the identification number of the current thread. Mulplix 
threads do not publish their identifications: only the thread itself knows its own numerical 
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identifier. Again, to allow compatibility, externai routines have been implemented to create 
threads and wait for them to retum their identifiers. A similar solution was used for the 
implementation ofthe Pthreads model on top ofMulplix [BAR96). 

The second system call, lhr _ ki/1, allows any thread to kill another thread within the sarne 
process. Ali the descendants of the killed thread are also killed. The last system call, lhr _lerm, 
allows a forced termination ofthe current thread. 

For the manipulation of mutual exclusion semaphores, system calls are provided for creating 
(mx_creale}, locking (mx_lock), extinguishing (mx_delele) and unlocking (mxJree) a 
semaphore. In addition, the primitive mx_lesl allows a thread to allocate a semaphore if it is 
free without causing the thread to wait ifthe semaphore is still occupied. 

For partia! ordering sernaphores, which implement barrier-type synchronization, system calls 
for creating (e v_ creale ), asynchronous signaling ( ev _ signal), waiting on the event occurrence 
(ev _ wait), synchronous signaling (ev _swait) and extinguishing (ev _de/ele) an event are 
provided. The primitives e v_ sei and ev _ unsel have also been implemented to allow 
unconditional setting and resetting of an event. This may be useful in test, debugging or in 
error recovery procedures. 

5. Alchemist's Meta-Schemes 

Parallel Alchemist generates code using meta-schemes of parallel programming models. 
These schemes determine how the parallel meta-model maps to a particular parallel 
programming model. The environment can generate code for any parallel programming model 
described by a meta-scheme. Figure 2 presents Parallel Alchemist's code generation structure. 

Parallel meta - model 

Available programming models 

Behavioral Graphs 

Common Activity 
Bebavioral Blocks 

Parallel 
Alcbemist 

Figure 2 - The environment code generation structurc 

Each meta-scheme is a text file divided into four sections: headers, objects, mutex 
definitions and thread definitions. 

The header section is a single line indicating the header files (i. e., the .H files) to be included 
in the modules using parallel activities, when code is generated using this parallel programming 
model. 
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The object section is another single line indicating the object files (i.e., the .O files) and the 
libraries to be linked with the modules generated by the environment. Sometimes, the parallel 
programming model does not provide the same interface required by the Alchemist's meta­
model. To solve this problem, externai conversion routines must be written to bridge the way 
between the two interfaces. Tbe object files containing these routines must be indicated on the 
object files section ofthe model meta-scheme. 

The mutex and thread definition sections consists of code pattems. These code pattems are 
parameterized by variables, which are filled by the environment, when generating code for an 
application. Variables are represented by an identifier, starting with a dollar sign. 

The mutex definition section consists of tive code pattems: declaration, initialization, 
destruction, tocking and unlocking. Each code segment may use a variable, called Name, which 
specifies the mutex to be declared, initialized, destroyed, locked or unlocked. 

The thread definition section consists of six code patterns: single thread creation, 
synchronous thread creation, thread waiting, thread termination, thread cancellation and thread 
identification. 

The single thread creation pattem can use four parameter variables: the routine that will be 
executed within the thread, the argument to be passed to the thread, a recipient to its identifier 
and a flag indicating ifthe thread is detached. 

The synchronous thread creation pattem can use two parameter variables: the routine that 
will be executed in association with the threads and the number ofthreads to be created. When 
synchronous threads are created, the current thread waits until their termination. The routine 

. executed on a synchronous thread receives an integer argument, indicating its order on the 
spawned group. 

The thread wait pattem uses a single parameter variable, the identifier of the thread whose 
conclusion will be waited for. This thread must be non-detached. 

The thread cancellation pattem uses a single parameter variable, the identifier of the thread 
to be canceled. The thread termination pattem must contain code to conclude the execution of 
the current thread and receives no parameter variable. 

The thread identification pattem must contain code to retum the identification ofthe current 
thread. It receives the recipient for the identification, which may be a global or local variable, 
declared with an integer type. Table I presents the meta-schemes for the Pthreads and Mulplix 
parallel programming models. 

IIEADERS pdvads.h 
OOJECTS ·lptbrada pl>ridg<.o 

MllfEX 

Oodmtioo 
pthrud_mutcx_t SName; 

lnit 
if(ptl ... od_mutex_init (ltSName, NUU..) < O) 

print(("lnit mor: SNuneln"); 

Done 
i((pthtud_mutex_dtstroy (SNome) < O) 

print(("Dntroy tm>r. SName\n"); 

l..od< 

Oodmtioo 
MlJfEX SName; 

lnit 
if((SName • mx_uate (I))< O) 

printf("lnit mu: SNamt\n"); 

Dont 
if(mx_dtlde (SNamt) < O) 

printf("Oalroy mor. SNuneln"); 

l..od< 
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printf("l...ocl< nn>r. SNam<ln"); 

Unl<><:k 
if(pthrnd_mutcx_unl<><:k (SNamc) < O) 

printf("Unl<><:k<rTOr: SNamcln"); 

TIIREADS 

Spawn 
if(thr_matc (&STid, Sfunction, SArg) <O) 

printf("Thrcad mation nn>r. Sfundionln"); 
if(SD<Iach<d) 

pchrcad_dclach (STid); 

SyncSpawn 
if(sync_matc (SNumbcr, Sfunction) <O) 

printf("Synchronous mation mor: Sfunclionln"): 

Wait 
if(pthtcadjoin (STid, NUU) < 0) 

printfr'Wait mw: %cf.n", STid); 

Kill 
if(pthrcad_ltill (STid, SIG_KILL) < O) 

prini(("Canc<llation nn>r. %cf.n", STid): 

ThriD 
STid • pchrcad S<lfO;_ 

printr("Lock mw: SNamcln"); 

Unl<><:k 
if(mxJm(SNamc) < 0) 

printf("Unlock mor: SNamcln"); 

11lREADS 

Spawn 
if((STid • spawn (SfUDCtion, SArg. SD<Iachcd)) <O) 

prini(("Thrcad ct<ation crror: Sfundionln"): 

Sync:Spawn 
if(tlr _spawns (SNumbcr, Sfunclion, O, O) < O) 

prinli'("Synchronous crtation crror: Sfunclionln"); 

Wait 
if(thr_ ..,;, (STid) < O) 

prinlf("Wait crror: %cf.n", STid); 

Thcrrn 
tlr_tcnn (); 

Kill 
if(thr kill (STid) <O) 

pnrd("Canctllation crror: %cf.n", STid): 

ThriD 
STid • thr _id(); 

Tablc I • Meta-schemcs for Pthrcads and Mulplix parallel programming models 

The Pthreads model does not directly allows synchronous thread creation. In the above 
example, the sync_create routine creates compatibility between this model and the parallel 
meta-model. This routine creates the required threads and waits for their conclusion, 
simulating a synchronous creation. The externai routines required by the Mulplix model were 
discussed on section 4.1. 

6. Code Generation 

The code generation process occurs in the following steps. First, the user selects a parallel 
programming model for code generation. 

Next, the environment discovers which routines can be executed in parallel. Routines that 
are executed only when the main thread is running do not need to be protected against multiple 
accesses.to shared memory. To complete this step, the code generator follows the program 
execution flow. It marks routines called after a thread creation or executed within threads. 
These routines must protect theirs accesses to shared memory using mutual exclusion 
semaphores. 

After determining which routines need to be protected, the code generator visits every 
program module, generating code for its routines and declarations. For each module, two code 
files are generated: the header file and the C code file. 

The header file contains the declarations ofthe module. A reference to this fileis included in 
every module generated by the environment. In addition, every module includes the header files 
ofthe selected parallel programrning model. These files are defined in the parallel model meta­
scheme. 
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The C code file contains code generated for the module routines. For each routine, its 
behavioral graph is followed and code is generated for each basic programming block. 

The prototype and local variables of the function declaration block are copied to the 
destination file. The same happens to the commands specified in the statement block. Nested 
sequences of programming blocks, like loops and conditions, are replaced by C code structures 
that replicate their behavior. Routine calls are created based on the parameters and return 
recipients, specified during the behavioral graph construction. 

Code generation for the parallel activity blocks is based on the parallel programm.ing model 
selected by the user. The parameter variables in the code patterns for each parallel activity are 
substituted by theirs values, specified during the behavioral graph construction. 

Shared variables can be declared as common variables or write-once variables. Accesses to 
common variables along behavioral graphs are protected by mutual exclusion semaphores. On 
write-once variables, the "write" operation is supposed to occur on a multithread-safe segment 
of code, that is, when only the main thread is running. As long as their values are constant, 
write-once variables need no protection against parallel accesses. 

Every common shared variable is associated with a global mutex that protects the code 
segments where the variable is accessed. During code generation for a routine that can be 
executed in parallel, every programming block is checked against the use of each common 
shared variable. 

If a programm.ing block accesses a shared variable, a mutex locking code is generated 
before the code of the programming block itself. If the next programm.ing block does not 
access the same shared memory, a mutex unlocking code is generated, after the code of the 
first programming block. Otherwise, the mutex unlocking is generated after the last block in 
sequence that accesses the shared variable. The locking and unlocking code depends on the 
parallel model meta-scheme. 

Parallel Alchemist handles a list ofmultithreading safe functions (MT-Safe), that is, a list of 
C functions which are protected from parallel execution. The C standard library I/0 functions, 
like printf and scanj, are examples of multithreading safe routines. They have internai 
protection against parallel execution of some criticai regions of code. 

If a common shared variable is accessed in parallel on a call for a MT-Safe function, the 
environment does not generate mutex lock and unlock code to protect the variable, since the 
called routine itselfis already protected. 

The mutual exclusion detection algorithm cannot detect indirect accesses to shared memory. 
Since C is a very generic programming language, Parallel Alchemist cannot handle ali the cases 
where shared memory is accessed. For instance, if a pointer variable is directed to a shared 
memory and the shared memory is modified through this pointer, the environment does not 
provide mutual exclusion. 

The environment generates the declaration of the shared variables and their associated 
mutexes. These are declared as global symbols, accessible to any program module. The 
declaration is made in a separate initialization file. The shared memory and the mutexes are 
also declared as externai symbols in an initialization header file, which is included in every 
module whose code is generated by the environment. 

The initialization file also defines the main function. This function initializes the mutexes 
associated with the common shared variables and calls the pmain routine. The command line 
arguments, argc and argv, are passed to this routine as parameters. When pmain returns, the 
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maio function destroys the mutexes. The initialization and destruction of the mutexes are 
necessary because in certain parallel models, as the Mulplix native programming model, 
mutexes cannot be directly initialized in their declarations: the initialization must be made by a 
routine or system call. 

Finally, the environment generates the batch command file to compile and link the code. 
This batch file has the format accepted by the make utility of the standard UNIX operating 
system. Information on objects and libraries that have to be linked together with the generated 
code helps on the batch command file generation. 

7. Programming Examples 

This section presents two programming examples under Parallel Alchemist. These examples 
show how the environment generates code and highlights some features described in the 
previous sections. 

7.1. Inner Product 

Table 2 presents a code segment generated by Parallel Alchemist, which implements the 
inner product between two vectors,first and second. The result ofthe inner product is kept on 
a shared variable, called result. The code was generated for the Pthreads model. 

Doubl< first(IOJ, S«<nd(IOJ; 
dooblt r<SUh; 
plhrnd_mutu_l mx_mull; 

void iM<1'_product (inl ord) 
( 

int i; 
doubl< acum • 0.0; 

for(i • O; i < S; i >+) 
acum ~= first[ord ~il 'sccond[ord+i(; 

ir(ptlnad_mutu_lock (mx_rcsull) <O) 
prinlf("l.ock cmr. mx_mull 'n"t, 

result +• atum; 

if(plhrtad_mul<x_unlock (mx_r<SUII)< O) 
prinlf("Unlock cmr. mx_r<SUh ln"t, 

void pmain (inl argc, d1ar 'argvll) 
[ 

inl j, licls[lJ; 

inil_ \'«1011 (); 
rauli•O.O; 

for(j•O; j < l;j++) 
[ 

if (thr _mal< (&ticlsUJ, O, iMa' _produ <I, j) < O) 
prinlf('"Illr<ad mation cmr. im<r ..J>Il>Ck><l'n"); 

if(O) 
plhrtad _ dtlach (lida li Jt. 

for(j • O; j < l ;j ++) 
i f (thr join (tids(j}) < O) 

J>Mf ("Wait mor: %d'<&", tidsüJ); 

printf("IM<T Product: %d'<&", rauht, 

Table 2 - Inner product code gcnerated by Parallel Alchemist 

The thread routine inner _product receives a single integer parameter, indicating which 
vector part it must handle: the upper half or the lower half. The code inside the routine is 
generated based on its programming blocks, except for the mutex lock and unlock, which are 
generated automatically by Parallel Alchemist. These code segments include a statement block, 
which accesses the common shared variable result. The accesses to the write-once shared 
variables.first and second are left unprotected. 

In the beginning ofthe code, the write-once shared variables.first and second are declared, 
based on their type prefix (double) and suffix (vector of 10 doubles). The common shared 
variable result is also declared, with its associated mutual exclusion semaphore, mx _result. 
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The pmain routine initializes lhe vector using the init _ vectors routine, which is not shown in 
the above code segment, but is also generated by the environment. Next, pmain assigns zero to 
the shared variable resu/1. This access to the common shared variable is not prolecled, once lhe 
code generator detects that it occurs when only the main thread is running. 

After the inilializalion, pmain creales two lhreads. Each thread calculates the iMer product 
for one half of the vectors. The partia! result is added to resu/1. This access to the shared 
variable is protecled by its mutex. 

Finally, the inner product result is presented to the user. The environment checks the 
multithread safe routines list and detects thatprinifis among these routines. As the routine call 
is MT -Safe, the code generator provides no protection to the access o f the shared variable 
result. 

7.2.Gaussian Elimination 

Table 3 presents another code segment generated by Parallel AJchemist. This code 
implements a gaussian eliminalion algorithm, using a 5 x 5 malrix. The matrix is represented by 
a write-once shared variable, called matrix. 

Ooat matrix{SJIS); 
inl lpi\"01; if(nowork - 4 · lpiYOt) 

( MUTEX mx_lpi,"Ot; 
inl nowork; ok • is_triangular( t, 

if(ok)brak; MlTfEX mx _IIOWOfk; 
) 

void pmain (void) lpiYOt++; 
( 

Ooat mult; } "llil<(!(lpiYOt < 4)); 
int j, ok: 

for(j• O;j < S;iH) 
nowork • O; rauh • mult' matrix[jJij ); 
rcsul1 • I ; 
lpiYOt• O; prinlf("Resuh: ''o.Jfln", rcsult); 

do 
( 

) 

if(matrix[lpiYOtl[lpivot) •• O) 
( void tlvtad (int ar&) 

chang<_linc (lpivot); ( 
rm.alt•muU • .. J; int j , liM; 

lloat factor, piYOt, •v; 

i f (tlr _ spa"ns ( 4 • lpi\'01, tlvtad, O, O) < O) if (mx_lock (mx_lpi\"01) <O) 
printf("Synclwonousmllion <m>r. thmod printf("Loc:k mor: mx_lpiYOt\n"); 

In"); 

lint ·lpiYOt +are+ 1; 
piYOt• matrix{lpiYOtJIIpiYOt); 
factor • matrix{lintJIIpivot); 
v • matrix[lpivot); 

if(mx_tr..(mx_lpiYOt) <O) 
prinlf ("Unlock <m>r. mx _lpiYOt\n"); 

if(fl<lor I• 0.0) 
( 

for(j•O;j < S; iH) 
matrix[linc)[j) - factor • v [j) I 

) 
cbc: 
( 

} 
} 

if (mx_lock (mx_noworlt) < 0) 
printf("l..oc:k mor.mx_nowork-.,•t, 

nowork+-+; 

if(mx_tr.. (mx_no.,..ork) < O) 
printll "lJnnodt <m>r. mx _ noworltln "); 

Tablc 3 • Gaussian elimination code gcnerated by Parallel Alchcmist 

The algorithm works in the matrix by considering a pivol row at each step. Matrix rows 
succeeding the pivot row are simplified by the pivot elemenl, the pivot row element which 
belongs to the matrix main diagonal. The pivot row is represented by a common shared 
variable, called lpivot. 

The algorithm creates synchronous threads to handle the simplificalion of each matrix row 
after the pivot row. As lhe malrix is simplified, lhe algorilhm uses another common shared 
variable, called nowork, to verify i f the matrix is already triangular. 

As ali threads are synchronously spawned, AJchemist's code generator delecls that no 
protection is needed over lhe manipulation of shared memory on the pmain routine. The code 
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generator provides mutual exclusion protection to accesses to lpivot and nawork within the 
thread routine. 

The above code was generated for the Mulplix native parallel programrning model. Mutexes 
are declared for the common shared variables lpivot and nowork. The shared variables are also 
declared. 

Note that the value of lpivot is not modified within the thread routine. As ali parallel 
accesses to this shared variable are read-only, it requires no mutual exclusion protection. 
Parallel Alchemist's actual code generator cannot detect read-only parallel accesses to shared 
memory, so it protects the matúpulation of lpivot within the thread routine. However, this 
overhead can be avoided. If the user knows that this variable will only be used in read-only 
parallel accesses, the variable can be declared as write-once. · 

8. The Implementation 

Parallel Alchemist is implemented in Java [FLA96], running on version 1.1.1, distributed by 
Sun Microsystems. It has originally been written for the Solaris platform, but inherits the 
portability ofthe Java language. 

Figure 3 displays a normal operation screen within Parallel Alchemist. The main window is 
divided into two panels. The left pane! presents the program structure, showing the shared 
variables, the modules and theirs associated routines. Once an object is selected on the left 
pane!, the right pane! presents its properties. 

Figure 3 - A snapshot from Parallcl Alchemist 
When a shared memory is selected, the right pane! presents its name, type prefix and suffix 

type. When a module is selected, the right pane! presents its name and declarations. 

When a routine is selected, the right pane! presents its name and its behavioral graph. The 
graph is modified with the Nades menu options, that allow the creation of new nades, deletion 
o f nodes and the edition o f the node properties. 

The properties of a node are edited in separated windows and presented on the node, for 
clarity. Node connections are automatically created by the environment. Special nodes, like 
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loop start, true condition detection and false condition detection are used to enhance the 
behavioral graph building process. 

Parallel Alchemist is designed for model specificators and common developers. The maio 
activity of model specificators is the creation of meta-schemes for ex.isting parallel models. 
These meta-schemes are inserted into the environment, enhancing it with different models to 
generate code. Model specificators must be experts on the programming models to be 
modeled. 

Common developers are the final users of the environment. They build their programs 
graphically, using the Alchemist' s development process, and generate their code in any parallel 
model available within the environment. 

9. Conclusion 

This paper presented Parallel Alchemist, a visual software development environment for 
shared memory based parallel programming models. The environment uses a parallel 
programming meta-model and meta-schemes of ex.isting models to generate code in any 
available model. 

Parallel Alchemist helps software developers with little expertise on parallel programming to 
create complex applications from simple programming blocks. Also, Parallel Alchemist 
warranties code portability across a wide range of parallel programming models. New shared 
memory based machine-specific parallel programming models can be used by the environment, 
since an experienced user can write a meta-scheme for those models. 

Parallel Alchemist has not been originally designed for message passing parallel 
programming models, where the parallel activities on them are quite different from those of a 
shared memory based model. The development of a new version of Parallel Alchemist which 
will be able to cope with this kind of parallel programming model is planned for the near 
future. 

We also intend to explore the ideas under Parallel Alchemist in association with the object 
oriented software development paradigm. 

Acknowledgements 

The authors would like to thank FINEP, CNPq and RHAE in Brazil for the financiai 
support given in the development ofthis research work. 

Bibliography 

[AUD96) Aude, Júlio S. et ai. "The Multiplus!Mulplix Parallel Processing Environment", 
Proceedings of the 1996 Intemational Symposium on Parallel Architectures, 
Algorithms and Networks, Beijing, China, 1996 

[AHM94) Ahmed, S.; Carriero, N.; Gelemter, D. "A Program Building Tool for Parallel 
Applications", DIMACS Workshop on Specifications of Parallel Algorithms, 
Princeton University, May 1994 

[AZE93) Azevedo, Rafael P. "Mulplix: An UNIX-like Operating System for Parallel 
Programming", M.Sc. Thesis, COPPEIUFRJ, 1993, in portuguese 

410 



[BAR96] Barros, Márcio O. "Implementation of the Pthreads Model under the Mulplix 
Operating System", Technical Report NCE-01/96, NCEIUFRJ, 1996, in 

[BOE76] 

[BR095] 

[CAR95] 

[FLA96] 

[GEI94] 

[GRA95) 
[HIL92] 

[IEE94] 

[ING88) 

[KAR95] 

[KER88] 

[MPI95] 

[NEW95] 

[PRE92] 

[REP95] 

[SCA93] 

portuguese 
Boehm, Barry W. "Software Engineering", IEEE Transactions on Computers, 
December 1976 
J. C. Browne et ai "Visual Programrning and Debugging for Parallel Computing", 
IEEE Parallel and Distributed Technology, Vol. 3, No. 1, 1995 
Carrera,· Enrique V. et ai. "P-RIO: Construção Gráfica e Modular de Programas 
Paralelos e Distribuídos", Proceedings of the Vll Brazilian Symposium on 
Computer Architecture - Parallel Processing, Canela, Brazil, 1995 
Flamagan, D. "Java in a Nutshell: A Desktop Quick Reference for Java 
Programmers", O'Reilly & Associates Inc., 1996 
Geist AI, Beguelin A., Dongarra J., Jiang W., Mancheck R., Sunderam V., "PVM -
A users guide and tutorial for Network Parallel Computing", The MIT Press, 
Massachusetts, 1994 
Grahan, John R. "Solaris 2.x: Internais and Architecture", McGraw-Hill, Inc., 1995 
Hils, D. D. "Visual Languages and Computing Survey: Data Flow Visual 
Programming Languages", Journal of Visual Languages and Computing, V oi. 3, 
No. I, 1992 
Institute for Electrical and Electronic Engineers, POSIX P1003.4a, "Threads 
Extension for Portable Operating Systems", 1994 
lngalls, D. et ai. "Fabrik, A Visual Programrning Environment", OOSPLA'88 
Proceedings, ACM Sigplan Notices, Vol. 23, No. 11, November 1988 
Karsai, Gabor. "A Configurable Visual Programrning Environment: A Tool for 
Domain-Specific Programrning", IEEE Computer, March 1995 
Kemighan, B. and Ritchie, D. "lhe C Programrning Language", Second Edition, 
Prantice-Hall Software Series, 1988 
Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard", 
MPI Forum Draft, June 1995 
Newton, P. and Dongarra, J. "Overview of VPE: A Visual Environment for 
Message-Passing", Heterogeneous Computing Workshop at the 9'th Intemational 
Parallel Processing Symposium, Santa Barbara, EUA, 1995 
Pressman, Roger. "Software Engineering: a Practitioner's Approach", Third 
Edition, McGraw-Hill International Editions, 1992 
Repenning, A.; Sumner, T. "Agentsheets: A Medium for Creating Domain­
Oriented Visual Languages", IEEE Computer, March 1995 
Schaeffer, J et ai. "The Enterprise Model for Developing Distributed 
Applications", IEEE Parallel & Distributed Technology, Vol. I, No. 3, August 
1993 

[SUN95] Sun Microsystems, Inc. "Multithreaded Programrning Guide", 1995 

411 




