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Abstract 

The CGM (coarse-grained multicomputer) model has been proposed to be 
a model of parallelism sufficiently close to existing parallel machines. Despi te 
its simplicity it intends to give a reasonable predktion of performance when 
parallel algorithms are implemented. Under the CGM model we design a 
communication-efficient parallel algorithm for the solution of tridiagonallinear 
systems with n equations and n unknowns. This algorithm requires only a 
constant number of communication rounds. The amount of data transmitted 
in each communication round is proportional to the number of processors and 
independent of n. In addition to showing its theoretical complexity, we have 
implemented this algorithm on a real distributed memory parallel machine. 
The results obtained are very promising and show an almost linear speedup 
for large n indicating the efficiency and scalability of the proposed algorithm. 

Key-words: Coarse grained multicomputer, parallel algorithm, tridiagonallinear 
systems, band matrices, odd-even reduction algorithm 

•Supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) Proc. No. 
96/12535-9, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Proc. No. 52 
3778/96-1 and Commission of the European Communities througb Project ITDC-207·82167. 

463 



A parallel algorithm for solving tridiagonal 
linear systems on coarse grained multicomputer 

1 Introduction 

A main problem in parallel computing is the well-known "software bottleneck". Many 
current applications in parallel machines are restricted to trivially parallelizable 
problems with low communication requirements. In real machines communication 
time is usually much greater than computation time. Therefore for non-trivial prob­
lems many theoretically efficient parallel algorithms for the PRAM (shared memory 
model) or fine-grained network model often give disappointing speedups when im­
plemented on real parallel machines. 

The CGM {Coarse Grained Multicomputcr) model was proposed 12, 3, 4] to be an 
adequate model of parallelism sufficiently dose to existing parallel machines. It is a 
simplc model and nevertheless intends to give a reasonable prediction of performance 
when parallel algorithms on this model are implemented. 

In the CGM model the effort to reduce communication is centered on reducing 
the number of communication rounds. Under this model, we design a communica­
tion efficient parallel algorithm for the solution of tridiagonal linear systems with 
n equations and n unknowns. This algorithm requires only a constant number of 
communication rounds. The amount of data transmitted in each communication 
round is proportional to the number of processors and independent of n. In addition 
to showing the theoretical complexity, we have implemented the proposed algorithm 
on a real distributed memory parallel machine. The experimental results obtained 
are very promising and show an almost linear speedup, indicating the efficiency and 
scalability of the algorithm. 

In section 2 we present the CGM model and its main characteristics. The parallel 
algorithm for the solution of tridiagonallinear systems is presented in section 3. We 
also present and discuss experimental results of this algorithm implemented on a 
parallel machine. Execution time curves of the proposed algorithm are given at the 
end of this paper. Finally in section 4 we make some concluding remarks. 

2 The Coarse Grained Multicomputer (CGM) 

The CGM {Coarse Grained Multicomputer) model was proposed by Dehne 12, 3, 4]. 
It is similar to Valiant's BSP (Bulk-Synchronous Parallel) model 110]. However it 
uses only two parameters, n and p, where n is the size of the input and p the number 
of processors each with O{n/p) local memory. The term "coarse grain" means the 
local memory size is considerably greater than 0{1). Each processor is connected 
by a router that can deliver messages in a point to point fashion. A CGM 'algorithm 
consists o f an alternating sequence of computation rounds and communication rounds 
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scparated by barrier synchronizations. An algorithm under the CGM model can be 
expressed by the following generic scheme. 

CGM Algorithm 

for i := 1 to R do 

begin 

ith local computation round 

ith communication round 

end 

A computation round is equivalent to a computation superstep in the BSP model. 
In the computation round, we usually use the best possible sequential algorithm in 
each processar to process its data locally. 

A communication round consists of a single h-relation with h ~ n/p, that is, 
each processar exchanges at most a total of O(n/p) data with other processors in 
one communication round. The proposed algorithm requires the transmission of only 
O(p) data in each communication round. 

In the CGM model the communication cost of a parallel algorithm is modeled 
by the number of communication rounds. The objective is to design algorithms that 
require a small amount of communication rounds. Many algorithms for graph and 
geometric problems [1, 2, 3, 4J require only a constant or O(logp) rounds. Contrary 
to PRAM algorithms that frequently are designed for p = O(n) and each processar 
receives a small number of input data, here we consider the more realistic case of 
n >> p. 

The CGM model is particularly suitable in nowadays parallel machines where 
the overall computation speed is considerably larger than the overall communication 
speed. 

3 Tridiagonal linear systems 

In this section, we present a communication-efficient parallel algorithm for the solu­
tion of tridiagonal linear systems. Solution of a tridiagonal linear system is a very 
basic problem. It arises in the solution of many other systems such as partia! differ­
ential equations using line relaxations or multigrid. It is therefore very important to 
have very efficient algorithms to solve tridiagonallinear systems. 

Consider a tridiagonal linear system Ax = b where matrix A is tridiagonal of 
order n x n. The elements of a tridiagonal matrix A = (a;i) are ali zero except 
those located on the main diagonal and immediately above or immediately below 
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the diagonal. In other words, A has elements 0-ii = O for ali pairs of i, j such that 
li - il > 1. . 

The proposed algorithm is based on the odd-even reduction (also called cyclic 
reduction) algorithm. The idea of the odd-even reduction is similar to some other 
numerical algorithms proposed in [6, 5]. It main ideais as follows [8]. Let 

dt 'UJ 0 0 0 Xt bt 
l2 d2 'U2 0 0 X2 ~ 

A = O l3 d3 u3 O x = x3 and b = b3 
O O l4 d4 O x4 b4 

o o o o 
Each occurrence of X; with odd index i is replaced by a linear function of X;- 1 

and X i+ 1, both with even índices. The resulting system therefore consists o f variables 
with even índices. The new linear system is also tridiagonal and thus we can apply 
the same idea recursively until only one equation for Xn remains. After solving for 
Xn, we work backwards and solve for Xnf2• then Xnf4• Xnf8 and so on. Having ali the 
cvcn-index values of x we proceed to solve the odd-index values of x. As an example 
consider the tridiagonal system from [8] 

4 1 o o o o o o Xt 1 
-1 3 1 o o o o o X2 o 
o 2 -4 1 o o o o XJ 1 
o o o 2 1 o o o X4 3 
o o o 3 2 o o = 18 1 Xs 23 
o o o o o 3 1 o XG 1 
o o o o o 2 5 2 X7 o 
o o o o o o 1 4 Xs o 

Replacc x~o x 3, x 5 and x 7 by 

1 
X t = -(1- X2) 

4 
1 

X3 = --(1- 2x2- x4) 
4 

1 18 
xs = - (-- X4 - 2x6) 

3 23 
1 

X7 = -(- 2x6- 2xs) 
5 

This results in the following new reduccd system. 

u I o 

~ )( ~n ~ ( r) ! 2 
3 ~33 o s; o - s 
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Replacing again Xz and x6 by 

results in: 

Finally replace x4 by 

1 
x2 = -{2- x4) 

15 
1 

X6 = 
13 

{5 + 2xs) 

( ~ 11 ) ( X4 ) = ( ri ) 
O 13 Xs 13 

We now have only one remaining equation for x8 • This gives us x8 = ~ · Using 
this value we find X4 = ~· Then we find x2 = :Js and X5 = ?J. Having found the 
even-index values we obtain finally the odd-index values of x1 = 13; 0 , x3 = 135~, x5 = 

3 X _ 4 -5· 7- -23· 

During the odd-even reduction algorithm division by zero occurs when any of the 
odd-index diagonal elements of any matrices produced during the algorithm is zero. 
We assume here the tridiagonal matrix belongs to the class of symmetric positive 
defini te matrices or diagonally dominant matrices. In such matrices division by zero 
never occurs during the algorithm [8]. 

The odd-even reduction algorithm requires O{logn) time. Leighton shows how 
it can be implemented on a X-tree [8]. A prefix-based algorithm for solving the 
tridiagonallinear system is due to Stone [9] . 

We propose here a CGM algorithm that requires a constant number of commu­
nication rounds. The algorithm to be presented here is similar to the algorithm 
proposed in [7]. By using the CGM paradigm, however, the algorithm proposed in 
this paper has been conceived independently in a relatively natural way, following 
the CGM principies, namely, minimizing communication rounds and using as much 
local processing as possible. Furthermore, we have implemented this algorithm on a 
distributed memory parallel machine to verify its efficiency in practice. 

Consider a distributed memory parallel computer of p processors P" P2 , •• • , 

P11, with n > > p. Assume that each processor has sufficient local memory to storc 
O(nfp) elements. (See Fig. 1.) 

Wc subdivide matrix A and the vector b into horizontal blocks or submatrices of 
nfp consecutive rows each. Each processor stores a submatrix of A and b. See below 
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O Processar D Local memory 

Figure 1: A parallel computer with distributed memory 

an example of how submatriccs of A and b are stored in thc p processors assuming 

n = 8 and p = 2. 

4 1 o o o o o o 
-1 3 1 o o o o o 
b 2 -4 1 o o o o ::} Pt 

o o o 2 1 o o o 
A= 

o o o 1 3 2 o o 
o o o o o 3 1 o 
o o o o o 2 5 2 ::} p2 
o o o o o o 1 4 

1 
o 
1 ::} Pt 
3 

b= 
18 
2:i 
1 
o ::} p2 
o 

The proposed algorithm makes use of a modified version of the odd-even re­
duction algorithm. Each processar applies odd-even reduction to its nfp equations 
and eliminates ali equations but the first and the last ones. Thus each processar 
will have only four unknowns. Each processar then sends the two remaining equa­
tions to processar 1. Processar 1 applies odd-even reduction locally and solves for 
the unknowns. Each processar receives the solved unknowns from processar 1 and 
solves for the remaining unknowns locally. The algorithm consists of the following 
five phases alternating between local processing and communication. 
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Algorithm 

(1) Each processar applies the odd-cven algorithm locally to eliminate all rows 
except the first and the last rows in its submatrix. With this, each processar 
P; eliminates ~ - 2 equations and ~- 2 unknowns, namely, x~+2 , x~+3 , • • • , 

Xn(i+1)_ 1. 
p 

{2) Each processar P; sends its two remaining equations (with 4 unknowns Xlli., 
p 

X!!!+" x•<•+~>, Xn!i+tl+ 1) to a same processar, say P1• This processar thus 
p p p 

obtains a system with 2p equations and 2p unknowns. Notice that this resulting 
systcm also consists of a tridiagonal matrix. 

{3) Processar P1 solves the system locally by odd-even reduction or any other 
sequential method. It thus obtains the solution for the 2p unknowns. 

(4) Processar P 1 sends to each processar P; the computed value for the 4 unknowns 
in the respective equations received in stcp 2. 

(5) Each processar performs the inverse process of odd-even reduction used in step 
1, by using the solution received for its two equations to solve the remaining 
equations. 

Theorem 1 A tridiagonal linear system with n equations and n unknowns can be 
solved on a CGM with p processors andO (i;) local memory per processar using 0{1) 
communication rounds with the transmission of O(p) data per round. 

Proof: Steps 1, 3 and 5 relate to local processing only. Steps 2 and 4 require one 
communication round each. In the first communication round (step 2) each processor 
sends a constant amount of data to processar 1, which in turn receives a total of 
O(p) data. In the second communication round (step 4) processar 1 sends a total of 
O(p) data and each of the remaining processors receive a constant amount of data. 
Thc theorem follows. O 

In the following we discuss very encouraging experimental results of this algo­
rithm implemented on a distributed memory parallel machine. The parallel machine 
utilized for this experiment is thc Parsytec PowerXplorer 16/32 Parallel Computing 
System, with 16 nodes under a 2-D topology. Each node consists of one PowerPC601 
application processor (80 MHz, 80 Mflops peak performance) and one T805 commu­
nication processar, and 32 MBytes of local memory. 

To ensure portability, the implementation is done in PVM (Parallel Virtual Ma­
chine), a standard communication interface. It is also implemented in Parix (the 
native system). 
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The sequential time was obtained with an optimized sequential algorithm run in 
a single processar (not the parallel algorithm run in one processar). 

For the experiment we use the following system {with the solution of ali x; = 1). 

2 -1 o o o o o x, 1 
-1 2 -1 o o o o X2 o 
o -1 2 -1 o o o XJ o 

= 
o o o o 2 - 1 o Xn-2 o 
o o o o -1 2 -1 Xn-l o 
o o o o o -1 2 Xn 1 

We obtain an almost linear speedup for large n, regardless of the communication 
protocol utilized, as shown by the following results. (See Fig. 2 and Fig. 3 for the 
time curves; Fig. 4 and Fig. 5 for the speedup curves.) The times are given in units 
of clock ticks of the machine (1 clock tick = w-6 seconds) . 

Execution time {in clock ticks) using interface PARIX: 

n 1 P = 1 I P = 2 I P = 4 I P = 8 I p = 16 I 
1024 8727 5301 3093 2487 3205 
2048 18896 11434 5626 3731 3824 
4096 39032 23635 11739 6238 5027 
8192 78618 47582 23779 12322 7538 

16384 155944 95717 47894 24275 13430 
32768 308148 189636 95966 47896 25446 
65536 613099 375044 189924 95115 48922 

131072 1223813 746868 375206 187791 96193 
262144 2429358 1492012 746879 370547 188907 
524288 4840124 2960372 1493397 738832 372044 

Execution time (in clock ticks) using interface PVM: 

n I p = 1 I p = 2 I p = 4 I P = 8 I P = 16 I 
1024 8727 5767 3372 3080 4714 
2048 18896 11665 5887 3885 4794 
4096 39032 23901 11730 6457 5903 
8192 78618 47190 23654 12358 8077 

16384 155944 95979 46693 24191 14005 
32768 308148 189749 93867 47397 25552 
65536 613099 375037 185122 94915 48508 

131072 1223813 746283 365247 187116 95927 
262144 2429358 1496103 727908 369437 187960 
524288 4840124 2968610 1457379 736184 369990 
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4 Conclusion 

One main objective of our research has been the investigation of methods that lead 
to the effective utilization of distributed memory parallel computers. The CGM 
(coarse-grained multicomputer) model was proposed by Dehne [2, 3, 4] to be an 
adequate model of parallelism sufficiently dose to existing parallel machines. The 
effort to reduce communication is centered on reducing the number of communication 
rounds. 

Under the CGM model we have designed a communication-efficient parallel al­
gorithm for the solution of tridiagonallinear systems. This algorithm requires only 
a constant number of communication rounds with the transmission of O{p) data per 
round. In addition to showing its theoretical complcxity, we have implemented this 
algorithm on a real distributed memory parallel machine. The experimental results 
show an almost linear speedup for large n. This is a very significant result since the 
particular machine we used presents a considerable communication latency and low 
communication bandwidth. lt indicates the efficiency and scalability of the proposed 
algorithm. 

Wc conclude that the CGM model is particularly suitable in cases where the 
overall computation speed is considerably larger than the overall communication 
speed and the problem size is considerably larger than the number of processors, 
which is usually the case in practice. 
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Figure 2: Total time of the tridiagonal a lgorithm in Parix 
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Figure 3: Total time of the tridiagonal algorithm in PVM 
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Figure 4: Speedup of thc tr idiagonal algorithm in Parix 
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Figure 5: Speedup of the tridiagonal algorithm in PVM 
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