
A parallel algorithm for solving
tridiagonal linear systems on coarse

grained multicomputer*

E. L. G. Saukas and S. W. Song

Universidade de São Paulo
Instituto de Matemática e Estatística

Departamento de Ciência da Computação
05508-900 São Paulo, SP, Brasil

telephone: (011) 818-6141 e 818-6135
email: { einar, song}@ime.usp.br

Abstract

The CGM (coarse-grained multicomputer) model has been proposed to be
a model of parallelism sufficiently close to existing parallel machines. Despi te
its simplicity it intends to give a reasonable predktion of performance when
parallel algorithms are implemented. Under the CGM model we design a
communication-efficient parallel algorithm for the solution of tridiagonallinear
systems with n equations and n unknowns. This algorithm requires only a
constant number of communication rounds. The amount of data transmitted
in each communication round is proportional to the number of processors and
independent of n. In addition to showing its theoretical complexity, we have
implemented this algorithm on a real distributed memory parallel machine.
The results obtained are very promising and show an almost linear speedup
for large n indicating the efficiency and scalability of the proposed algorithm.

Key-words: Coarse grained multicomputer, parallel algorithm, tridiagonallinear
systems, band matrices, odd-even reduction algorithm

•Supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) Proc. No.
96/12535-9, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Proc. No. 52
3778/96-1 and Commission of the European Communities througb Project ITDC-207·82167.

463

A parallel algorithm for solving tridiagonal
linear systems on coarse grained multicomputer

1 Introduction

A main problem in parallel computing is the well-known "software bottleneck". Many
current applications in parallel machines are restricted to trivially parallelizable
problems with low communication requirements. In real machines communication
time is usually much greater than computation time. Therefore for non-trivial prob­
lems many theoretically efficient parallel algorithms for the PRAM (shared memory
model) or fine-grained network model often give disappointing speedups when im­
plemented on real parallel machines.

The CGM {Coarse Grained Multicomputcr) model was proposed 12, 3, 4] to be an
adequate model of parallelism sufficiently dose to existing parallel machines. It is a
simplc model and nevertheless intends to give a reasonable prediction of performance
when parallel algorithms on this model are implemented.

In the CGM model the effort to reduce communication is centered on reducing
the number of communication rounds. Under this model, we design a communica­
tion efficient parallel algorithm for the solution of tridiagonal linear systems with
n equations and n unknowns. This algorithm requires only a constant number of
communication rounds. The amount of data transmitted in each communication
round is proportional to the number of processors and independent of n. In addition
to showing the theoretical complexity, we have implemented the proposed algorithm
on a real distributed memory parallel machine. The experimental results obtained
are very promising and show an almost linear speedup, indicating the efficiency and
scalability of the algorithm.

In section 2 we present the CGM model and its main characteristics. The parallel
algorithm for the solution of tridiagonallinear systems is presented in section 3. We
also present and discuss experimental results of this algorithm implemented on a
parallel machine. Execution time curves of the proposed algorithm are given at the
end of this paper. Finally in section 4 we make some concluding remarks.

2 The Coarse Grained Multicomputer (CGM)

The CGM {Coarse Grained Multicomputer) model was proposed by Dehne 12, 3, 4].
It is similar to Valiant's BSP (Bulk-Synchronous Parallel) model 110]. However it
uses only two parameters, n and p, where n is the size of the input and p the number
of processors each with O{n/p) local memory. The term "coarse grain" means the
local memory size is considerably greater than 0{1). Each processor is connected
by a router that can deliver messages in a point to point fashion. A CGM 'algorithm
consists o f an alternating sequence of computation rounds and communication rounds

464

scparated by barrier synchronizations. An algorithm under the CGM model can be
expressed by the following generic scheme.

CGM Algorithm

for i := 1 to R do

begin

ith local computation round

ith communication round

end

A computation round is equivalent to a computation superstep in the BSP model.
In the computation round, we usually use the best possible sequential algorithm in
each processar to process its data locally.

A communication round consists of a single h-relation with h ~ n/p, that is,
each processar exchanges at most a total of O(n/p) data with other processors in
one communication round. The proposed algorithm requires the transmission of only
O(p) data in each communication round.

In the CGM model the communication cost of a parallel algorithm is modeled
by the number of communication rounds. The objective is to design algorithms that
require a small amount of communication rounds. Many algorithms for graph and
geometric problems [1, 2, 3, 4J require only a constant or O(logp) rounds. Contrary
to PRAM algorithms that frequently are designed for p = O(n) and each processar
receives a small number of input data, here we consider the more realistic case of
n >> p.

The CGM model is particularly suitable in nowadays parallel machines where
the overall computation speed is considerably larger than the overall communication
speed.

3 Tridiagonal linear systems

In this section, we present a communication-efficient parallel algorithm for the solu­
tion of tridiagonal linear systems. Solution of a tridiagonal linear system is a very
basic problem. It arises in the solution of many other systems such as partia! differ­
ential equations using line relaxations or multigrid. It is therefore very important to
have very efficient algorithms to solve tridiagonallinear systems.

Consider a tridiagonal linear system Ax = b where matrix A is tridiagonal of
order n x n. The elements of a tridiagonal matrix A = (a;i) are ali zero except
those located on the main diagonal and immediately above or immediately below

465

the diagonal. In other words, A has elements 0-ii = O for ali pairs of i, j such that
li - il > 1. .

The proposed algorithm is based on the odd-even reduction (also called cyclic
reduction) algorithm. The idea of the odd-even reduction is similar to some other
numerical algorithms proposed in [6, 5]. It main ideais as follows [8]. Let

dt 'UJ 0 0 0 Xt bt
l2 d2 'U2 0 0 X2 ~

A = O l3 d3 u3 O x = x3 and b = b3
O O l4 d4 O x4 b4

o o o o
Each occurrence of X; with odd index i is replaced by a linear function of X;- 1

and X i+ 1, both with even índices. The resulting system therefore consists o f variables
with even índices. The new linear system is also tridiagonal and thus we can apply
the same idea recursively until only one equation for Xn remains. After solving for
Xn, we work backwards and solve for Xnf2• then Xnf4• Xnf8 and so on. Having ali the
cvcn-index values of x we proceed to solve the odd-index values of x. As an example
consider the tridiagonal system from [8]

4 1 o o o o o o Xt 1
-1 3 1 o o o o o X2 o
o 2 -4 1 o o o o XJ 1
o o o 2 1 o o o X4 3
o o o 3 2 o o = 18 1 Xs 23
o o o o o 3 1 o XG 1
o o o o o 2 5 2 X7 o
o o o o o o 1 4 Xs o

Replacc x~o x 3, x 5 and x 7 by

1
X t = -(1- X2)

4
1

X3 = --(1- 2x2- x4)
4

1 18
xs = - (-- X4 - 2x6)

3 23
1

X7 = -(- 2x6- 2xs)
5

This results in the following new reduccd system.

u I o

~)(~n ~ (r) ! 2
3 ~33 o s; o - s

466

Replacing again Xz and x6 by

results in:

Finally replace x4 by

1
x2 = -{2- x4)

15
1

X6 =
13

{5 + 2xs)

(~ 11) (X4) = (ri)
O 13 Xs 13

We now have only one remaining equation for x8 • This gives us x8 = ~ · Using
this value we find X4 = ~· Then we find x2 = :Js and X5 = ?J. Having found the
even-index values we obtain finally the odd-index values of x1 = 13; 0 , x3 = 135~, x5 =

3 X _ 4 -5· 7- -23·

During the odd-even reduction algorithm division by zero occurs when any of the
odd-index diagonal elements of any matrices produced during the algorithm is zero.
We assume here the tridiagonal matrix belongs to the class of symmetric positive
defini te matrices or diagonally dominant matrices. In such matrices division by zero
never occurs during the algorithm [8].

The odd-even reduction algorithm requires O{logn) time. Leighton shows how
it can be implemented on a X-tree [8]. A prefix-based algorithm for solving the
tridiagonallinear system is due to Stone [9] .

We propose here a CGM algorithm that requires a constant number of commu­
nication rounds. The algorithm to be presented here is similar to the algorithm
proposed in [7]. By using the CGM paradigm, however, the algorithm proposed in
this paper has been conceived independently in a relatively natural way, following
the CGM principies, namely, minimizing communication rounds and using as much
local processing as possible. Furthermore, we have implemented this algorithm on a
distributed memory parallel machine to verify its efficiency in practice.

Consider a distributed memory parallel computer of p processors P" P2 , •• • ,

P11, with n > > p. Assume that each processor has sufficient local memory to storc
O(nfp) elements. (See Fig. 1.)

Wc subdivide matrix A and the vector b into horizontal blocks or submatrices of
nfp consecutive rows each. Each processor stores a submatrix of A and b. See below

467

O Processar D Local memory

Figure 1: A parallel computer with distributed memory

an example of how submatriccs of A and b are stored in thc p processors assuming

n = 8 and p = 2.

4 1 o o o o o o
-1 3 1 o o o o o
b 2 -4 1 o o o o ::} Pt

o o o 2 1 o o o
A=

o o o 1 3 2 o o
o o o o o 3 1 o
o o o o o 2 5 2 ::} p2
o o o o o o 1 4

1
o
1 ::} Pt
3

b=
18
2:i
1
o ::} p2
o

The proposed algorithm makes use of a modified version of the odd-even re­
duction algorithm. Each processar applies odd-even reduction to its nfp equations
and eliminates ali equations but the first and the last ones. Thus each processar
will have only four unknowns. Each processar then sends the two remaining equa­
tions to processar 1. Processar 1 applies odd-even reduction locally and solves for
the unknowns. Each processar receives the solved unknowns from processar 1 and
solves for the remaining unknowns locally. The algorithm consists of the following
five phases alternating between local processing and communication.

468

Algorithm

(1) Each processar applies the odd-cven algorithm locally to eliminate all rows
except the first and the last rows in its submatrix. With this, each processar
P; eliminates ~ - 2 equations and ~- 2 unknowns, namely, x~+2 , x~+3 , • • • ,

Xn(i+1)_ 1.
p

{2) Each processar P; sends its two remaining equations (with 4 unknowns Xlli.,
p

X!!!+" x•<•+~>, Xn!i+tl+ 1) to a same processar, say P1• This processar thus
p p p

obtains a system with 2p equations and 2p unknowns. Notice that this resulting
systcm also consists of a tridiagonal matrix.

{3) Processar P1 solves the system locally by odd-even reduction or any other
sequential method. It thus obtains the solution for the 2p unknowns.

(4) Processar P 1 sends to each processar P; the computed value for the 4 unknowns
in the respective equations received in stcp 2.

(5) Each processar performs the inverse process of odd-even reduction used in step
1, by using the solution received for its two equations to solve the remaining
equations.

Theorem 1 A tridiagonal linear system with n equations and n unknowns can be
solved on a CGM with p processors andO (i;) local memory per processar using 0{1)
communication rounds with the transmission of O(p) data per round.

Proof: Steps 1, 3 and 5 relate to local processing only. Steps 2 and 4 require one
communication round each. In the first communication round (step 2) each processor
sends a constant amount of data to processar 1, which in turn receives a total of
O(p) data. In the second communication round (step 4) processar 1 sends a total of
O(p) data and each of the remaining processors receive a constant amount of data.
Thc theorem follows. O

In the following we discuss very encouraging experimental results of this algo­
rithm implemented on a distributed memory parallel machine. The parallel machine
utilized for this experiment is thc Parsytec PowerXplorer 16/32 Parallel Computing
System, with 16 nodes under a 2-D topology. Each node consists of one PowerPC601
application processor (80 MHz, 80 Mflops peak performance) and one T805 commu­
nication processar, and 32 MBytes of local memory.

To ensure portability, the implementation is done in PVM (Parallel Virtual Ma­
chine), a standard communication interface. It is also implemented in Parix (the
native system).

469

The sequential time was obtained with an optimized sequential algorithm run in
a single processar (not the parallel algorithm run in one processar).

For the experiment we use the following system {with the solution of ali x; = 1).

2 -1 o o o o o x, 1
-1 2 -1 o o o o X2 o
o -1 2 -1 o o o XJ o

=
o o o o 2 - 1 o Xn-2 o
o o o o -1 2 -1 Xn-l o
o o o o o -1 2 Xn 1

We obtain an almost linear speedup for large n, regardless of the communication
protocol utilized, as shown by the following results. (See Fig. 2 and Fig. 3 for the
time curves; Fig. 4 and Fig. 5 for the speedup curves.) The times are given in units
of clock ticks of the machine (1 clock tick = w-6 seconds) .

Execution time {in clock ticks) using interface PARIX:

n 1 P = 1 I P = 2 I P = 4 I P = 8 I p = 16 I
1024 8727 5301 3093 2487 3205
2048 18896 11434 5626 3731 3824
4096 39032 23635 11739 6238 5027
8192 78618 47582 23779 12322 7538

16384 155944 95717 47894 24275 13430
32768 308148 189636 95966 47896 25446
65536 613099 375044 189924 95115 48922

131072 1223813 746868 375206 187791 96193
262144 2429358 1492012 746879 370547 188907
524288 4840124 2960372 1493397 738832 372044

Execution time (in clock ticks) using interface PVM:

n I p = 1 I p = 2 I p = 4 I P = 8 I P = 16 I
1024 8727 5767 3372 3080 4714
2048 18896 11665 5887 3885 4794
4096 39032 23901 11730 6457 5903
8192 78618 47190 23654 12358 8077

16384 155944 95979 46693 24191 14005
32768 308148 189749 93867 47397 25552
65536 613099 375037 185122 94915 48508

131072 1223813 746283 365247 187116 95927
262144 2429358 1496103 727908 369437 187960
524288 4840124 2968610 1457379 736184 369990

470

4 Conclusion

One main objective of our research has been the investigation of methods that lead
to the effective utilization of distributed memory parallel computers. The CGM
(coarse-grained multicomputer) model was proposed by Dehne [2, 3, 4] to be an
adequate model of parallelism sufficiently dose to existing parallel machines. The
effort to reduce communication is centered on reducing the number of communication
rounds.

Under the CGM model we have designed a communication-efficient parallel al­
gorithm for the solution of tridiagonallinear systems. This algorithm requires only
a constant number of communication rounds with the transmission of O{p) data per
round. In addition to showing its theoretical complcxity, we have implemented this
algorithm on a real distributed memory parallel machine. The experimental results
show an almost linear speedup for large n. This is a very significant result since the
particular machine we used presents a considerable communication latency and low
communication bandwidth. lt indicates the efficiency and scalability of the proposed
algorithm.

Wc conclude that the CGM model is particularly suitable in cases where the
overall computation speed is considerably larger than the overall communication
speed and the problem size is considerably larger than the number of processors,
which is usually the case in practice.

References

[1] Caceres, E., Dehne, F. , Ferreira, A. , Flocchini, P., Rieping, 1., Roncato, A. ,
Santoro, N., and Song, S. W. Efficient parallel graph algorithms for coarse
grained multicomputers and BSP. Proceedings ICALP'97 - 24th International
Colloquium on Automata, Languages, and Programming, P. Degano and A.
Marchetti-Spaccamela (editors). Lecture Notes in Computer Science (1997)

[2] Dehne, F., Fabri, A. and Rau-Chaplin, A. Scalable Parallel Geometric Algorithms
for Coarse Grained Multicomputers, in Proc. ACM 9th Annual Computational
Geometry (1993) 298- 307

[3] Dehnc, F., Fabri, A. and Kenyon, C. Scalable and Architecture lndependent
Parallel Geometric Algorithms with High Probability Optimal Time, in Proc.
6th IEEE Symposium on Parallel and Distributed Processing (1994) 586- 593

[4] Dehne, F., Deng, X., Dymond, P., Fabri, A. and Kokhar, A. A. A randomized
parallel 3D convex hull algorithm for coarse grained multicomputers, in Proc.
ACM Symposium on Parallel Algorithms and Architectures (SPAA'95) (1995)
27- 33

471

[5] Ericksen, J . Iterative and direct methods for solving Poisson's equation and their
adaptability to ILLIAC IV. Ccnter for Advanced Computation Document 60,
University of Illinois, 1972.

[6] Kockney, R. The potential calculation and some applications. Meth. Comput.
Physics 9 (1970) 135- 211

[7] Krechel, A., Plum, H. J . and Stben, K. Solving tridiagonal linear systems in
parallel on local memory MIMD machines. GMD technical report 372 (1989)

[8] Leighton, T . Introduction to parallel algorithms and architectures: arrays, trces
and hypercubes. Morgan Kaufmann (1991)

[9] Stonc, H. An efficient parallel algorithm for the solution of a tridiagonal linear
system of equations. Journal of the ACM 20 (1973) 27-38

[10] Valiant, L. G. et ai. General Purpose Parallel Architectures, Handbook of Theo­
retical Computer Science, Edited by J. van Leeuwen, MIT Press/Elsevier (1990)
943-972

472

c
= .,
E
i=

Interface PARIX

107

101

10' ..-..P=1
G--t> P•2
13----il P• 4
~P-8

6---óP·16

1~ ~--------~------~--~--------~ 1000 10000 1 00000 1000000
N (size of matrix)

Figure 2: Total time of the tridiagonal a lgorithm in Parix

.,
E
i=

Interface PVM

10
7
.---------~--------~r---------~

101

10' *-""*P•1
cr-E>P·2
B--tlP=4
~P-8
6--6 P• 16

10' ~--------~----------~--------~ 1000 10000 100000 1000000
N (size of matrix)

Figure 3: Total time of the tridiagonal algorithm in PVM

473

Q.
::>
-g
~ cn

Interface PARIX

15.0 .-----.------.-----.-----r--,

10.0

5.0

,._____,. N•524288
+-----1- Na131072
G---t> N• 32768
l3----€l Na8192
~N-2048

0.0 ..___ __ ___..___ __ _... ___ __. ___ ~ _ _,

0.0 4.0 8.0 12.0 16.0
P (number of processors)

Figure 4: Speedup of thc tr idiagonal algorithm in Parix

Interface PVM

15.0 .-------.----..-----...-----.-----.

10.0

5.0

><--+< N·524266
+--+ N•131072
G---t> N·32768
13--€1 N· 8192
~N-2048

0.0 '-----"'::-------::'"::-----'-:----:~----'
0.0 4.0 6.0 12.0 16.0

P (number of processors)

Figure 5: Speedup of the tridiagonal algorithm in PVM

474

