
COMMUNION: TOWARDS A COOPERA TIVE STRATEGY FOR

ffiGH-PERFORMANCE MEMORY MANAGEMENT*

Edson Toshimi Midorikawa
emidorik@lsi.usp.br

Laborato!)' of Integrated Systems
Department of Electronic Engineering

Polytechnic School, University of São Paulo
São Paulo, SP, Brazil 05508-900

Liria Matsumoto Sato
liria@pcs.usp.br

Department o f Compu ter Engineering
and Digital Systems

Polytechnic School, University of São Paulo
São Paulo, SP, Brazil 05508-900

ABSTRACT

The memory system is the most criticai component of modem high-perforrnance
computer systems, because of its growing inability to keep up with the processor requests.
Technological trends have produced a large and growing gap between CPU speeds and ORAM
speeds. Many researches have focused this rnemory system problem, including program
optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled
architectures, mutithreading, speculative loads and execution. These techniques have achieved a

relative success, but they focus only one component in the hardware or software systems.

We present here a new strategy for memory management in high-perforrnance computer

systems, named COMMUNION. The basic idea behind this strategy is cooperation. We

introduce some possibilities of interaction among system programs that are responsible to
generate and execute application programs. So, we investigate two specific interactions: between
the compiler and the operating system, and among the compiling system components.

The experimental results show that it's possible to achieve improvements of about 10

times in execution time, and about 5 times in memory demand. In the interaction between
compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved

a reduction of about 10% in the space-time product, with an increase of only 0.5% in the total
execution time. Ali these results show that it's possible to manage main memory with better

efficiency than what is provided by current systems.

• This rescarch was supponed in pan by Fincp and RHAEICNPq.

509

l. Introduction

Studies show that programs usually present an average performance that is only up to

15% of lhe peak performance in vector supercomputers, like NEC SX-3R and Cray C90. The

main reason is the inefficient use of computational resources like vector registers and

iostructioos, vector pipelines aod ioterleaved memory banks.

Modem parallel computers, like NEC SX-4 and Cray T3E have lhe same problem, but

for different reasons. Such class of machioes adopts a large number of processors and a complex

hierarchy of maio memory. These characteristics contribute to the high complexity for

programmiog these machioes. In order to obtaio high performance programs, the programmer has

to deal with two aspects: efficieotly exploiting parallelism and adequate use of the complex

memory hierarchy. The first aspect has beco studied for a long time [POL Y88]. Oo the other

hand, ooly recently researchers started to analyz.e the second aspect.

The impressive progress in arithmetic performance achievcd by the latest generatioo of

microprocessors tends to widen the gap between CPU speed and memory bandwidth. This issue,

criticai for monoprocessors, is worse for shared-memory multiprocessors, since the memory

contention can severely degrade the maio memory performance. To overcome this problem, one

of the most widely used techniques consists in designing hierarchically organiz.ed memory

systems with sevcrallevels.

This work presents some aspects that may be considcrcd when developing a program in

modem high-performance computers. Here we concentrate on shared memory multiprocessors,

although the results can be extended to distributed memory multiprocessors. The structure of this

paper is the following. We first present some aspects of memory managemcnt techoiques in

section 2, describing our strategies. The next section presents the traditional phase-based

approach for memory management. The section 4 introduces our proposal for future generation

memory management. In section 5 we present some experimental results in the CAPR strategy

and the prototype system in development, and in section 6 the results for the locality

optimization techniques. Finally, we present our conclusions in section 7.

2. Virtual Mcmory and Memory Management Techniques

Today high-performance computers support some form of virtual memory for program

execution. Although these machines have hundreds of megabytes of main memory, some

application programs require bigger memory in ordcr to run. This tendency has been observed

sincc the early sixties. Paraphrasing Parkinson's law, "Programs expand to fill tlte memory

available to ltold tirem." [TANE97].

Memory is an important resource that must be carefully managed. Research in virtual

memory has been conducted in monoprocessor systems since the sixties, but only recently

researchers had applied studies to parallel computers. Some characteristics are very important

when we want to study the behavior of programs: their siz.e in pages, the use of dynamic memory

allocation, locality of references, page management algorithms adoptcd by the operating system,

memory access pattems and some hardware parameters. 1

Some characteristics of modem computers, such as 64-bit address space, gigabyte maio

memory and multi-levei main memory hierarchies, require new strategies to manage memory

1Paramcters li Ice caehe line size, p3ge size, data cache size, transfer ratc bctwccn mcmory 3nd dislc.

5 10

efficiently. This research has been conducted at the Polytechnic School of University of São

Paulo. Our research is divided in two main areas: first, some new algorithms for page
replacement are proposed. The main contribution in this area is the integration of the operating

system and the compiler in managing main memory pages. This integration provides better

selection of the page being removed. The second area concentrates on techniques to modify the
application programs in order to improve their locality of reference. This part involves the
implementation of some program transformations2 into the compiling system, in particular, to the
optimization phase. In this way, we can say that our primary goal is to optimize the use of
modem computers memory hierarchy so that we can get programs with higher performance.

In the next sections we introduce each of these research areas. First we describe our
approach and then we present an evaluation study conducted in order to verify its performance.

Ahhough our research is at an initial phase, the results presented here show that it is possible to
obtain higher performance by applying our approach.

3. Phases of Memory Management

The memory management of a computer system is distributed across many different

overlapping phases (figure 1). The programmer is responsible for the first step when he/she

organizes the application data into program variables (symbolic references). Next there is a
translation of the program source files written in a high-level programming language into a

machine-specific code. In these object files ali symbolic instructions, operands, and addresses
are converted into numerical values. This step is conducted by the compiler. After that, the linker
combines severa! object files to make a binary file, basically resolving externai references. Later
on, the executable code is generated by the loader by relocating the memory references. Finally,

the program dynamic memory requests are served by the operating system and run-time system

during program execution. The operating system manages the allocation of the system main
memory while the run-time system is responsible for controlling the program resources.

executablc execution
program output

..------, +-----. +

programmer

Figure I - Phases o f memory management.

The approach of the current optimizing techniques is based on the following strategies:

• given a program source file, its memory access pattem is analyzed and, based on the
results of this analysis, lhe address of each variable is reorganized (relocation) and
the structure of vectors and arrays is modified by some data transformations. This
strategy is adopted by current restructuring compilers being developed for distributed
memory multiprocessors [MID094)[KREM95] ;

~esc transformations can be divided in two classes: control transformations and data transformations. For funhcr
information scc [TAKA9S].

511

• given the memory access pattem behavior of a program execution, the system can

change some operating system parameters in order to improve system perfonnance.

Examples of Solaris 2.x control parameters are the number of pages of usable
physical memory, maximum number of pagc out I/0 opeiations per second, number

of pages scanned per second by the paging algorithm, and the maximum age of a

modified filesystem page in memory [COCK95].

The first strategy has the advantage of being implemented by automatic restructuring

tools, and so, users don't need to have specialized knowledge about memory optimization
techniques. The main drawback is that these automatic tools don ' t know the semantic of the

program, and in this way it's not possible for them to suggest the best data organization. So this
strategy only works with the program variables in the way they were defined by the programmer.

There is no interaction with the programrner.

The sccond strategy assumes an unchangeable application program and tries to adjust

internai parameters of the operating system for the execution of the program. The main drawback

of this strategy comes from the fact that the optimum performance is not achievable due to the

unchangeability of program memory access pattem. Furthermore, a small change in a global
operating system parameter may strongly affect the execution of the other programs in the

system.

4. Communion: A New Strategy for Memory Management

Current systems use the sequential approach of separate phases for memory rnanagement

of application programs. In this traditional approach, described in section 3, each system

component is responsible for just one task and executes it as well as possible (at least tries to).

Although a system component could possibly help the others, there is no interaction among

them. There are many possibilities to explore such interactive approach. We present some
examples:

• during the execution of an application program, the operating system can collect

information about the memory access pattem, memory demand of different

processing stages of the application, and the system behavior. Such inforrnation could

be examined and used by the compiling system to generate an improved executable

program that is better adjusted to the computer system;

• the execution inforrnation collected by the operating system can also be used by the

linker to modify the composing strategy of object modules to create the executable

program. Current linkers use simple strategies, like inserting the object modules in

the same sequence of input files or ordering them by size (ex. Gnu C);

• based on the memory access pattem, the programmer could restructure the source
code, organizing its variables in a different way. For example, defining a matrix of
structured types instead of a set of simple matrices;

• the compi/er has knowledge about the general structure of the program. So, it could
insert some special d irectives to inform the operating system about future behavior of

the program. Examples of some decision arcas that can be aided by this knowledge

are page replacement, dynamic memory management, garbage collection and
memory-conscious process scheduling).

512

We are investigating the viability of such interactive approach among the system

programs. Under our proposal, named COMMUNION, the system programs "work together" in

order to achieve enhanced performance. The figure 2 shows a diagram of the COMMUNION

approach.

operating
system

run-time
system

memory
optimization

----;>

Figure 2 - lnteraction among system components.

traditional
approach

Communion
approach

It can be noted from figure 2 that ou r approach includes the programmer. It is our belief
that the most important component of a computer system is the one that designs and implements

the application. If the program isn' t well designed, although lhe other components "do their
best", ali they can achieve is just "order the messy". In order to achieve such objective, it's

necessary to supply the programrner with some program execution behavior information.

Traditional systerns only provide the total execution time and average memory usage. Modem

computer systems require a new approach to program design and tuning, an integrated approach.

In the next sections we investigate two specific interactions: between the compiler and

the operating system (named CAPR), and among the compiling system components. Our

preliminary studies concentrate on these aspects.

S. Compiler-Aided Pagc Rcplacement

CAPR is lhe first developed strategy of COMMUNION. It is a form of interaction
between the compiler and the operating system. In this section we first review the nature of page

replacement algorithms to detect their weaknesses, and propose a novel memory management

technique. Later we present a brief evaluation.

5.1 - Page replacement algorithms

In a virtual memory system, one of the most important rnanagement policies is the one

that controls the choice o f pages to be removed from the memory in order to make room for the
page to be brought in. This policy is implemented by page replacement algorithms.

There are severa! algorithrns proposed in the literature in the last three decades. The
criteria to choose the page and the variability of program resident set size are some

characteristics that differentiate these algorithrns. Two classes of algorithms are often used in
modem systems: fixed partitioning and variable partitioning. The rnain difference between them
is the number of pages in the resident set. lf the resident set size is a fixed constant, then it's said
that a fixed partitioning approach is being used. Otherwise, we say that the algorithm has a

variable partitioning approach. LRU, FIFO, Clock, NRU and LFU are some examples of fixed
partitioning algorithms. Examples of the other approach are Working Set and PFF.

513

We can say that ali page replacement algorithrns must answer the following question:

"among the pages in main memory, which one is that will be referenced aftermost in future ?".

Ali the algorithms above have one point in cornmon: the choice of the page is based on the

knowledge o f past behavior of the program. The basic strategy adopted by ali these algorithrns is

"use the past ancilor the present as an indication of the future." Consider the following

examples:

• LRU ("least recently used''): make the choice based on an ana\ysis of the recent past,

where it is determined by the page that is not referenced for the longest time.

• Clock: discard pages not referenced since last clock scan in a circular list of pages (it

is an approximation of LRU).

• PFF ("page-faultfrequency"): identify localities transitions measuring the page fault

rale and discard the pages of the old locality based in a time window parameter.

• WS ("working set"): maintain in memory only those pages that were accessed during

a time window (in past).

However, studies show that "the past and the present are not good indications of the

future." So, it' s clear we need to adopt a new strategy for lhe replacement algorithms. This need

is confirmed in [FRANK78] that presents a study of behavior anomalies in some classical

replacement algorithms.

5.2 - The CAPR strategy

An alternative is to endow the operating system with some source of information about

the future behavior of the prograrns. Thus, it is possible to get more precise indication of the

future and then make a better choice. In order to do this it is necessary to know the programs

structure, detect their localities and their transitions. Among the system programs, it is the

compiler that has this information.

Our strategy, named CAPR ("compiler-aided page replacement"), presents a new

memory management technique based on the interaction between the compiler and the operating

system. In CAPR, both system prograrns exchange information related to the memory

requirements and usage.

After analyzing the source program, the compiler detects possible sources of Jocality and

automatically inserts directives to inform the operating system. Examples of such directives are:

locality change, changes in memory requirement, changes in algorithm specific parameters,

changes in the management algorithm, and lock/unlock pages in memory.

On the other hand, after executing the program, the operating system can send ali data

collected during the execution to the compiler informing the memory access patterns and locality

characteristics. Using this information, the compiler can restructure the program code and data in

order to improve performance. Examples of information the operating system can send to the

compiler are: page-fault rate of selected sections of the program, average resident set size, total

execution time, selected program sections execution time, and execution space-time product.

So, this strategy proposes a custom memory management technique that is the most

adequate for that program. The figure 3 illustrates the interaction between the compiler and the

operating system.

514

page fault rale o f sections o f lhe program
-------:.--.::_ average resident set size

/ocality change advice
change in memory requirement

e/tange a/gorithm parameter
change management a/gorithm

/ock/unlock page in memory

execution time (total and section)
space-time product

r----1---'-----.

Figure 3 - lnteraction between compiler and operating system under CAPR strategy.

CAPR does not propose new page replacement algorithms as lhe Compiler Directed
(CD) approach [MALK86]. Our approach consists in augmenting each traditional algorithms
with additional functionalities, like controlling the resident set size and dynamically modifying
some parameters. For example, for the Working Sct algorithm, it's possible under CAPR
approach to define upper and lower limits of the residcnt set size and to have different virtual
time windows in some sections of code. In a general way, the main objectives of the CAPR
strategy are: to get a better system performance, to lower the page fault rate, and to enhance the
memory system usage.

5.3 - Evaluation

In order to evaluate our strategy, we had implemented a memory systerns simulator'.
This simulator uses the execution-driven simulation technique, so it's not necessary to use the
traditional execution traces. It interprets the processor instructions and analyzes ali memory
references. The current version implcments LRU, FIFO, LFU, Clock, Second Chance, WS and
PFF algorithms. The simulation output is composed by total simulation time, number of memory
accesscs, number of page faults, and execution space time product. Thc internai structure of the
simulator is presented in figure 4.

mcmory systems simulator

sim_read

cxccutablc .1 L sim_write .1 1 simulation

program ---+-t: l __ rr_o_nt-·e_n_d _ _JI IL-_b_a_c_k_-e_n_d _ _Jit---i~-t~ output

Figure 4 - Memory systems simulator internai structure.

The simulator is based on the MINT package, developed at Rochester University
[VEEN94]. MINT provides a set of simulated processors that run standard UNIX executable
files compiled for a MIPS R3000 based multiprocessor. Thc input to MINT is a statically-linked
Irix executable fi le compiled and it is not necessary to instrument application code for simulation
or to recompile. The internai structure of a simulator is composed by two main parts: a memory
reference generator (the front-end), and a targct system simulator (the back-end). MINT
communicates memory references to the simulator back-end through special cvent routines
(sil'l_read (l and sil'l_write ()). The figure 5 shows the graphical interface of the memory
systems simulator.

3 Actually, we have implcmcnted a mcmory systems simulation systcm, named Elephontus, that is composed by threc
components: an execution-drivcn simulator (described hcre), a trace gcncrator and o tracc-driven simulator.

515

Figure 5- Graphical interface ofthe rnemory system simulator.

In order to confirm the effectiveness of CAPR strategy, we conducted a study of the

execution behavior of an example program using the LRU and FIFO algorithms. The figure 6

shows the number of page faults against memory size. This example program can be described as

being composed by two processing phases, each of these phases with distinct localities and

different s izes. The first phase has 33 pages and the second has 21 pages.

.!!!
3
.!!!
Q)
O>

"' a.
õ

.2:
E
:::> z

1000000

100000

10000

1000

100

10

~ ~~~F~ I

Memory slze {pages)

"' "'

Figure 6- Number of page-faults related to memory size for the example program study.

To compare the performance of CAPR with LRU and FIFO, we chose the space-time

product metric. We can say that space-time product is a number that represents the memory

demand of one program over the entire execution time. Due to the example program chosen, we

decide to use a CAPR directive that informs a change in locality, determining a new rnemory

requirement. We use the "N1 ~ N2" notation to represent the CAPR .directive used to inform the

operating system a change from N1-page locality to the new Nrpage locality during the

execution of the program. The table I below shows a comparison between LRU and

CAPRILRU.

516

Table 1- Comparison between LRU and CAPR!LRU.

Algorithm Memory size Space·time product Total simulalion time
(pages) (pages x cycles) (cycles)

12 2.191.388.640 182.615.720
13 1.211.778.360 93.213.720

LRU -!!il.'lü4 ~' l1! ~· 1.175.64§.:b8o<, ~'F 83.974.720 !··
'

15 1.259.560.800 83.970.720
51 4.266.237.720 83.651.720

14~9 1.181.216.760 175.539.550

14~10 1.102.337.380 91.165.638
CAPRILRU 1.1~-11; 1.067 .09lJ!76.8 • . ~;t,.,.8.4.00'J.:Ii~8 ,z

14~ 12 1.103.156.156 83.984.638

Denning affinns that, in a multitasking environment, the optimum multiprogramrning

levei is associated with running each process at its minimum space-time product [DENN80].

Analyzing the table, we confinn the effectiveness of CAPR. The best resident set size for LRU

algorithm is 14 pages. And for CAPRILRU, the case 14 ~ 11 presents the srnaller space-time
product. Comparing both situations, there was a reduction of 9.2% in space-time product and an
increase of only 0.04% in execution time. Considering the best allocation case in tenns of
execution time (51 pages allocated to the program), with our strategy, there was a reduction of

75% in space-time product, with on1y an increase of 0.43% in the simulation time.

Now considering the data relating to the FIFO algorithm (table 2), the best cases are

allocating 14 pages for the traditional LRU algorithm and the case 14 ~ 10 for CAPRIFIFO.

The results obtained with FIFO algorithm are a reduction of 12.3% in space-time product and an
increase of only 0.1% in execution time. Comparing with the 51-page case, CAPRIFIFO
provided a reduction of 75.8% in space-tirne product and a small increase of 0.53% in execution

time.
Table 2- Comparison between FIFO and CAPRIFIFO.

A1gorithm Memory size Space-time product Total simulation time
(pagcs) (pages x cycles) (cycles)

13 1.222.048.360 94.003.720
FIFO .-"il4 ' 1.176.108.080 84.007.720

15 1.260.565.800 84.037.720

SI 4.266.237.720 83.651 .720

14~9 1.048.731.760 90.009.550
CAPRIFIFO t4-=>Io 'll2' · 1.031\~63:380 1jJ 'if'"ã "84.~4:63ª~:, -

14~11 1.068.019.768 84.075.638

The above results show that not only CAPR can be used to improve performance of one
single program but also the performance of the entire system. So we conclude that CAPR can
achieve additional performance improvements that can't be obtained by using traditional
techniques.

517

6. Optimizing the Locality of Reference

The hierarchical organization of main memory of modem high-performance computers
can be exploited by prograrns with improved data locality. This can be done by optimizing its
temporal locality (a same memory address referenced severa[times) and its spatial locality

(references to consecutive memory addresses) with the application of program transformations.

The technology of program transformations was developed by researchers of automatic

parallelizing compilers. The basic concepts are the data dependence and program
transformations [POL Y88][WOLF96]. Examples of transformations for optimization of locality
of reference are scalar replacement, unroll-and-jam, loop interchange, tiling, memory copying,

and data alignment.

Our research in this area has two objectives: first, analyze the effect of some

transformations on memory access behavior (locality of reference) and propose a new strategy

for program optimization that focus the minimization of the program working set. Two classes of

transformations are being studied, namely control transformations and data transformations. The

second objective is the implementation of a prototype system that automatically restructures
programs that improve data locality.

6.1 - Transformations for optimizing data locality

One of the problems of programs conceming locality of reference is the memory access

pattem. Given a 2-dimensional matrix, for example, the elements can be accessed by line, by
column or by diagonal. Depending on the way these elements are organized in memory one
access pattem can result in a poor locality.

Consider a C program: the elements of a matrix are organized by line4
• If one program

accesses this matrix by column, this will result in a bad access pattem. There are two ways to
deal with this problem: first, change the way that the program accesses the elements. This can be

done by the application of control program transformations. Loop interchange is an example of

such a transformation. The basic idea is to change the order of two loops in a loop nest. The
other altemative isto reorganize the elements in memory, so that they are stored in the samc way
they are accessed. This strategy involves the application of program data transformations. One

example of data transformation is data copying. The main objective is to copy non-contiguous
data in to a contiguous area with the purpose of improve data locality.

6.1.1. Innuence on execution time of sequential programs

We have applied two transformations in a LU decomposition program and in a matrix
multiplication program in order to study their profitability. The experimental results are shown

in table 3 and table 4.

Table 3 - Experimental results with LU decomposition program.

program original LUwith loop LUwith
LU interchange copying

execution time (sec) 198.0 107.3 108.3
speed-up I 1.85 1.83

""This mcans lhal ali elemcnls ofthe samc line are organiud conliguously in mcmory.

518

It can be observed that both transfonnations produced good results with speed-up of 1.85

and 1.83. We conclude that the application of transfonnations can improve data locality and thus

improve the performance of modem computers. The table 4 shows speed-ups of 2.43 and 2.37

for the matrix multiplication program, indicating the validity of our approach. Similar results

were obtained with other prograrns.

Table 4 -Experimental results with rnatrix multiplication program.

program original MMwithloop MMwith
MM interchange copying

execution time jse~ 414.4 170.5 174.8
speed-up I 2.43 2.37

Once we have verified the effect of transformations in the execution time, we conducted

an investigation on the memory demand of programs. The purpose was to understand how these

transformations affect the resident set size during the execution of programs. The

transforrnations are loop interchange (li), scalar replacement (sr), unroll-and-jam (uj) and

tiling (t).

6.1.2. Influcnce on execution time of parallcl programs

We have also conducted the same study in parallel versions of both prograrns. Due to

space problem we will examine in detail the results for the matrix multiplication program. The

initial version of the program (mm) adopts the canonical implementation based on the calculation

of inner products:

for (i=O; i<N; i++) /* parallelized loop */
for (j=O; j<N; j++)

for (k=O; k<N; k++)
c[il [jJ += a[il [k) • b[k] [j) ;

Observing the memory access pattem of rnatrix b, we conclude it's accessed by colurnn.

This problem is solved applying loop interchange (mm-li). In order to enhance its code we have

applied the scalar replacement (mm-sr) and unroll-and-jam (mm-uj) program transfonnations.

The combined effect of both transformations is verified in mm-li-uj -sr. Finally, in order to get

better locality, we have applied the tiling transfonnation (mm-li-uj-sr-t). The execution time

of each program version is presented in table 5. We have executed these programs in the Silicon

Power 40/480 parallel machine.

Observing the results it's possible to verify the good performance enhancement

compared to the original version (mm) and the last one (mm-li-uj-sr-t). This improvement

gets better as the number of processors increases. For one processar, the performance is 6 times

better, and it reaches 10 times for 8 processors. This result verifies the syntonization among

program transfonnations, data locality and parallelism.

519

Table 5 - Execution time of parallel matrix multiplication program.

numberof mm mm-li mm-li-sr mm-li-uj mm-li-uj-sr mm-li-uj-sr-t
processors

I 480.0 171.6 140.3 133 117.5 79.3
2 245.0 86.2 71.1 68.1 60.3 40.2
3 178.0 58.2 48.3 46.2 41.2 27.7
4 161.9 44.8 37.4 35.4 31.2 20.8
5 154.5 36.3 30.4 29.0 26.1 17.2
6 140.6 31.6 26.0 25.8 23.6 14.4
7 124.5 27.3 22.0 22.1 20.6 12.4
8 111.9 24.1 19.7 19.8 18.1 11.2

The effect of these transformations can also be studied by the speed-up graph (figure 7).

Analyzing each curve, we see that it' s possible to enhance the memory access behavior. The

maximum speed-up for mm version is 4.29 using 8 processors. For the other versions, the average

speed-up is 7 for the same number of processors.

2 3 4 5 6
number of processors

7

Figure 7 - Speed-up for parallel matrix multiplication.

The same behavior is observable from the efficiency analysis (figure 8). The efficiency

of mm version diminishes up to 54% using 8 processors. The transformed versions exhibit much

better performance (the worst version is mm- li -uj -sr that presents an efficiency o f 81%) .

.-~~~~~r-=---r----.-----r----,-----.100% ,_---c:.J~:::--.__. . ' '
-----l---·-- +.--- ---... - ~·-::s'J:~:,.,;;~~ 90%
,..----'------', · ' ' -..., " lk- - X--+- rnn I I '* 1 -~- ---

' -- -.- -~ - ---- ~-----, :-:.:-:_~-----
-·- ~~~ I I I I

- .- rrm-&.sr f ... , : : : --- --r-----, ----- ,------r- ----
-)(- rnn-1-uj : :
- X - nmli·utsr ____ -~ _____ t:-....._ __ ~ ___ __ -~ ___ -- 60o/o

- - rnn-1-uf-sr·l ' ',. _____ +-
~==~====~----~: ____ ~:----~·------~·------_-J~ 50%

2 3 4 5 6 7 8
number oi processors

Figure 8 - Efficiency for paralle1 matrix multiplication.

520

6.1.3. Influence on memory demand

The first objective of the program transfonnations is the reduction of the execution time.
This first result was the only one studied for many years. Recently, some research groups are
analyzing the use of such program transformations to enhance the access pattem of complex
memory hierarchies by studying their influence on memory demand. We analyzed both programs
(lu and nun) in lerms of memory demand during their execulion period.

In order to evaluate the memory demand of a program, we have used lhe process

accounting subsystem of UNIX systems (pacct). This subsystem collects some information
during the program execution that can be used !ater. One of these information is the average
resident set size (in Kbytes/minute).

The experimental studies were conducted in three different platforms presented in table

6. Each rnachine is different in some aspects, for example, processar speed, bus width, main

memory organizalion, cache rnemory associativity, internai memory management algorithms.

Table 6 • Description of rnachines utilized in experimental studies.

Machine Processor MainMemory Cache Memory Operating
Systcm

SGI Power 40/480 64 Kbyles Icache IRIX5.3
VGX MIPS R3000A (8) 256 Mbytes 64 Kbytcs Dcachc

I Mbyte Dcache

BuiiiSM PowcrPC601 128 Mbytes 32 Kbytes AIX3.2
Server 490 I&DCache
Sun SPARCStation 20 20 Kbyles Icache SunOS 5.5
MP712 SuperSPARC 11 (2) 128 Mbytes 16 Kbyles Dcache (Solaris 2.5)

I Mbyte Dcache

The figure 9 shows the resulls oblained for the LU decomposition program. In general,

both transformations used in this study resulted in an enhanced version of the original program.

The improvement varies from 1.2 for the scalar replacement (lu- sr) in SGI up lo 1.97 for
combined transformation (lu-sr-uj) in Buli rnachine. Then we conclude lhat il's possible lo

obtain a new version of the LU decomposition program that requires only half of memory during

its execution.

SGI

ptaH01m

prograrn verston

Figure 9 · Effect in rnemory demand for LU decomposition program.

521

The same study was conducted for a matrix multiplication program, and the results are

presented in figure 10. Here we achieved a better improvement: the combined application of
transfonnations resulted in a memory demand that is 4 (Buli and Sun) to 5 (SGI) times smaller
than the original program.

platform

program verslon

. Figure 10 - Effcct in memory dcmand for matrix multiplication program.

Ali these results show that program transfonnations can be used not only to reduce the

execution time of a program, but also to diminish its memory demand. So it is possible to

enhance system performance by allowing the increase of the multiprogramming levei.

This study shows that one reason for the effectiveness of program transformation related
to diminishing programs execution times is associated to their effect on memory demand.

6.2 - Prototypc system

Considering the good results of previous work, we decided to implement a system that

automatically analyzes a program and applies some transfonnation in order to improve locality

of reference. Ou r system has one additional goal that is to parallelize the program whenever it is

possible [MID095).

The set of transformations implemented comprises lhe so-called unimodular

transformations [BANE94]. The unimodular transfonnations are a unified theory of a class of

loop transfonnations. It is based on lhe theory of uni modular matrices, so that the analysis of its

application can be easily studied.

In order to decide which transformation to apply, it was chosen a metric for locality of

reference, the reference window [EISE90]. In a general way, the concept o f reference window is

related to a set of matrix elements referenced by two statements that carry a data dependence.

We used the size of reference windows to have an indication of data locality (cost).

We have conducted a study with a parallel program that multiply two matrixes with the

following dimensions, 1024x 128 and 128x256. Applying this program in our prototype, we
achieved the following output (table 7).

Table 7 - Output of ou r prototype system.

program version

cost

522

Executing each version of the program in a Silicon parallel machine, we got the

execution time in function of the number of processors. The table 8 below resumes the

experimental results.

Table 8 - Execution time of each version of the matrix multiplication program.

number of processors
program

I 2 3 4 5 6 7 8
version

ijk 65.53 33.32 22.29 16.72 13.57 11.40 9.86 8.62

ikj 36.42 18.21 12.19 9.27 7.52 6.39 5.50 4.82

jik 71.45 36.32 24.36 18.42 14.86 13.30 11.68 9.55

jki 151.85 90.93 67.07 60.50 55.38 55.67 52.18 46.62

kij 148.66 78.15 56.17 43.44 38.81 32.84 29.21 24.73

kji 258.54 140.80 105.25 87.04 80.01 72.07 66.41 60.36

The results show that our prototype system chose the correct version as the one with

better locality, the ikj version. This proves that ou r approach is valid, and it is possible to

automatically optimize the memory access pattem and integrate optimization of locality of

reference and parallelism.

8. Conclusion and Future Work

This paper presented our research in methods to obtain high-performance programs, by

introducing COMMUNION. Communion is a new memory management strategy that
emphasizes cooperation of system programs.

The evaluation studies had shown that our approach is valid. We obtained very good
results with a performance gain in both techniques presented. The CAPR is a novel page

management technique that is based on the integration of the operating system and the compiler.

This integration can be applied in other situations, like for scheduling parallel programs or

distributing data across memory modules.

The application of program transforrnations in order to improve data locality has proved

to be very effective. The speed-ups confirm our expectations. And the prototype system that

implements this approach has shown to be very efficient to improve program performance.

As future work, we are planning to complete the implementation of the automatic

optimizing system in order to provide such a tool for non-specialist users. In this way, more

people can make use of these modem machines. On the other hand, we want to continue

researching new techniques to improve program performance: in CAPR, we plan to test new

directives and in program transformations, new optimizations will be tested.

Acknowledgments

The authors wish to thank ali members of our research group for their valuable work. We are
grateful to Hélio Crestana Guardia (UFSCar) and José Eduardo Moreira (ffiM T. J. Watson)

and the anonymous referees for their valuable comments, and to the people that have revised the

earlier drafts of this paper.

523

Further information

For further infonnation see [MID097], or send an e-mail to emido rik@lsi. usp. br to contact

the corresponding author, or visitou r site at h ttp : I l www. l s i. usp . b r 1 -phoenix

References

[BANE94]

[COCK95]

[EISE90]

[FRAN78]

BANERJEE, U. Loop parallelization. Kluwer Academic Publishers, 1994.

COCKCROFf, A. Sun performance and tuning: sparc & solaris. Prentice
Hall, 1995.

EISENBEIS, C. et alii. A strategy for array management in local memory.
Rapports de Recherche n° 1262. INRIA, France. 1990.

FRANKLIN, M. A. et alii. Anomalies with variable partition paging algorithms.
Communicatlons of the ACM, 21 :3, p.232-236, 1978.

[KREM95] KREMER, U. Automatic data layout for distributed memory machlnes. Ph.D.
Thesis. Computer Science Dcpartment, Rice University. 1995.

[MALK86] MALKA WI, M. I. Compiler directed memory management for numerical
programs. Ph.D. Thesis. Departrnent of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign. 1986.

[MID094] MIDORIKA WA, E. T. Análise da otimização de acessos à memória. In:
Proceedings of 6th Brazilian Symposium on Computer Architecture - High
Perfonnance Computing, p.37-52, Caxambu, MG, Brazil, August 1994.

[MID095] MIDORIKA WA, E. T. et alii. Um sistema integrado para otimização
automática de paralelismo e localidade de dados. In: Proceedings of 7th
Brazilian Symposium on Computer Architecture - High Performance Computing,
p.523-537, Canela, RS, Brazil, July 1995.

[MID097] MIDORIKA W A, E. T. Uma nova estratégia para a gerência de memória para
sistemas de computação de alto desempenho. Ph.D. Qualification Exam.
University o f São Paulo, São Paulo, Brazil 1997.

[POL Y88] C. D. Polychronopoulos. Parallel programming and compilers. Kluwer
Academic Publishers, 1988.

[T AKA95] S. Takahashi et ali i. Análise do padrão de acessos e otimização de localidade
em sistemas de computação de alto desempenho. In: Proceedings of PANEL'95
(CTIC'95), v.2, p.1479, Canela, RS, Brazil, July 1995.

[TANE97] TANENBAUM, A. S. & WOODHULL, A. S. Operating systems: design and
implementatlon. 2nd. Ed., Prentice-Hall , 1997.

[VEEN94] VEENSTRA, J. E. & FOWLER, R. J. MINT tutorial and user manual.
Technical report 452, Computer Science Departrnent, University of Rochester,
1994.

[WOLF96] WOLFE, M. High performance compilers for parallel computing. Addison
Wesley, 1996.

524

