
M-PVM: An Implementation of PVM for
Multithreaded and Shared-Memory Environments

CLÁUDIO M. P. SANTOS*
e-mail: claudio@nce.ufrj.br

JÚLIO S. AUDE**
e-mail: salek@nce.ufrj.br

Abstr act

*Federal University o f Rio de Janeiro - COPPE and NCE
••Federal University o f Rio de Janeiro- IM and NCE

M-PVM is an implementation of PVM designed to work efficiently in parallel
architectures supporting multithreading and the shared memory model. In particular, the
current M-PVM implementation is running within MULPLIX, a Unix-like operating
system designed to efficiently support parallel applications running on MUL TIPLUS, a
distributed shared memory parallel computer under development at the Federal
University of Rio de Janeiro. M-PVM is a parallel programming library built on top of
the MULPLIX parallel programming primitives. Within M-PVM, PVM tasks are
mapped onto MULPLIX threads. Two approaches have been adopted for the
implementation ofthe message passing primitives. In the first approach a singlc copy of
the message in memory is sharcd by ali destination M-PVM tasks. The second approach
replicates the message for every destination task but rcquires less synchronization. M
PVM is not totally compatiblc with standard PVM but offers an environment which
simplifies the portability of PVM applications to multithreaded shared memory
platforms, in most cases, with performance improvements. Experimental results
comparing the performance o f M-PVM and PVM applications running on a 4-processor
Sparcstation 20 under Solaris 2.5 are prcsented. These results show that M-PVM can
produce speed-up gains in the range of 5 to I 0% in relation to PVM.

Resumo

O M-PVM é uma implementação do PVM projetada para trabalhar
eficientemente em arquiteturas paralelas que aceitam o conceito de multithreading e o
modelo de memória compartilhada. Em particular, a implementação atual do M-PVM
executa no MULPLIX, um sistema operacional Unix-like, desenvolvido para executar de
modo eficiente aplicativos paralelos no MULTI PLUS, um multi processador paralelo de
memória compartilhada distribuída em desenvolvimento na Universidade Federal do Rio
de Janeiro. O M-PVM é uma biblioteca de programação paralela construída sobre <!S
primitivas de programação paralela do MULPLI X. No M-PVM, as tasks PVM são
mapeadas em threads do MULPLIX. Duas abordagens foram adotadas para a
implementação das primitivas de troca de mensagens. Na primeira abordagem, uma
única cópia da mensagem é compartilhada por todas as tasks destinos. A seguntla
abordagem replica a mensagem para cada task destino, mas exige menos sincronização.
O M-PVM não é totalmente compatível com o PVM padrão, mas oferece um ambiente
que simplifica o transporte dos aplicativos PVM para as plataformas de memória
compartilhada multithreaded, na maioria dos casos, com melhorias de desempenho. São
apresentados alguns resultados experimentais comparando o desempenho dos aplicativos
M-PVM e PVM, sendo executados em uma Sun Sparcstation 20 de 4 processadores sob
Solaris 2.5. Estes resultados mostram que o M-PVM pode produzir ganhos de
velocidade na faixa de 5% a I 0% em relação ao PVM.

123

1. JNTRODUCTJON

Parallel programming is a powerful technique to improve the performance of
non-strictly sequential applications. The use of parallel programming within networks of
computers is becoming more widespread in recent years due to the low cosi and
availability ofsuch platforms. With the use of PVM [Geis94], the network of computers
is prescnted to the user as a single Parallel Virtual Machine. The tasks which make up a
parallel application are processed concurrently by the computers connected to the
network, which communicate using the message passing model. A library of functions is
responsible for providing the communieation facilities among the computers and the
environment for programming lhe parallel virtual machine.

M-PYM aims to provide an efficient PYM-like environment within

MUL TIPLUS [Aude96], a distributed shared memory parallel architecture under

development at the Computer Center of the Federal University o f Rio de Janeiro. With

M-PVM, it becomes very simple to port PYM applications to MULTIPLUS and to

obtain performance improvements with the porting. M-PVM is currently implemented

on top of MULPLIX, a Unix-like operating system designed to efficiently support

parallel applications within the MUL TIPLUS platform. The MULPLIX operating

system offers a parallel programming environment based on the shared memory model,

the use ofthreads, mutual exelusion and partia! ordering synchronization.

Previous efforts to develop PYM-Iike environments based on threads have been

reported: TPVM [Ferr94], PLWP [Chua94] and LPYM [Zhou95]. PLWP and TPVM

are "non-intrusive" implementations of a thread-based system for PVM. Since these

systems do not change the underlying PVM system, they are not thread-safe. In addition,

PVM functions are not re-entrant. Therefore, multiple threads cannot do multiple "sends"
and "receives" at the same time. LPVM , on the other hand, is still in an initial stage of

development and emphasizes portability aspects. LPVM tries to overcome the limitations

found in TPVM and PLWP by modifying the data structures used within the shared

memory version of PYM. Preliminary results on the performance of basic operations

within LPVM in comparison to PVM have been presented in a recent paper [Zhou95].

In contras! with previous developments, M-PYM has been implemented without

using any previous PVM implementation. The code is completely new and uses the

MULPLIX native parallel programming environment to get as much benefit as possible
from the use ofthreads and shared memory. Nevcrtheless, M-PYM user interface is still

vcry similar to that o f PYM. Modifications in this interface has been kept to a minimum.

On the other hand, M-PVM is also quite easily portable to different platforms, since it

only requires lhe implementation of a few MULPLIX parallel programming primitives
as a library on top o f the native threads environment. As a matter of fact, this porting

exercise has h<!en thoroughly carried out in a few days for Solaris LWP's and Solaris
threads [Sun 95].

Section 2 brietly reviews the PVM parallel programming model. In Section 3, the

main features of the MUL TIPLUS architecture ando f the MULPLIX operating system

are presented. Section 4 describes the M-PVM environment, pointing out the major

124

differences to the standard PVM. Section 5 discusses the M-PVM implementation and
the main data structures and algorithms used. Finally, in Section 6, performance results
achieved with the use of M-PVM are presented and compared with those achieved with
PVM on a SPARCStation 20 with 4 processors. Conclusions and directions for future
work are also presented in this section.

2. THE PVM MODEL

PVM is an environment for parallel programming based on the mcssage passing
model. PVM allows the implementation of a virtual parallel computer from the
interconnection of heterogeneous computers through a network. This feature is very
attractive because low cost parallel machines can be made available very easily. The
PVM processing unit is a task, which corresponds to a Unix process. Within PVM, a
task can be created in any processing node ofthe virtual machinc and the communication
is performed through messages.

An important component of PVM is the pvmd, a program which works in
background and is responsible for building the virtual computer. Each computer used in
the virtual machine must have a pvmd process running. The user can internet with the
pvmds to alter the contiguration ofthe virtual computer or to follow the exccution of any
particular application. The PVM tasks communicatc through the corresponding pvmds.
The message sent by a particular task goes at first to the pvmd which is running in that
compu ter. This pvmd is responsible for sending the message to the pvmd o f lhe computer
where the destination task is running. PVM messages are based on lhe use of buffers.
Each piece of information is packed, according to a particular type of codification, and
stored in a buffer. When the message is ready to be sent, its information is transferred to
the pvmd. The codification of lhe message information allows problcm free
communication among tasks running in heterogeneous computers.

PVM functions are available through a library which must be linked to the user
program. The main functions available within the PVM library are the following ones:
buffer handling; message sending and reception; monitoring and configuration of thc
virtual computer; operation with task groups; barrier and global sum synchronization.

To illustrate the use o f PVM, the inner product between two vectors is calculated
by four processors using the master-slave approach. Each slave performs the summation
o f values corrcsponding to vector elements within a pre-defined interval. This summation
'is sent back to the master process which prints the total value.

#include <stdio.h>
#inc/ude <pvm3.h>
#define TAG I

int vectl [12} = {I, 2, 3, 4, 5, 6, 7, 8, 9, /0, 11, /2};
int vect2 [12} = { 4, 7, 8, I, 3, 6, 5, 2, 9, 13, 17, 21};
int tids [3], parent;

void master (void);
void slave (void);

125

void nzain (void)
{

}

if {{parent = pvm_parent OJ == PvmNoParent)
master 0:

e/se
slave 0:

void master (void}
{

}

int total, i, num;

pvm_spawn ("slave", NULL, O, "", 3, tids);
for (i= O; i< 3; i++)
{

}

pvm_initsend (PvmDataRaw);

num= i • 4;
pvm_pkint (&num, I, /);
pvm_send (tids [i], TAG);

for (i= O, total= O; i< 3; i++)
{

}

pvm_recv {-I, -/);
pvm_upkint (&num, I, /);
total= total+ num;

printf("lnner Product = %dln", total);
pvm_exit 0;

void s/ave (void)
{

}

int partia/, i, start;

pvm_recv {parent, TAG);
pvm_upkint (&start, I, I};

for (i= start, partia/= O; i < start + 4; i++)
partia/= partia/+ vectl [i] • vect2[i];

pvm_initsend (PvmDataRaw);
pvm_pkint {&parcial, I, I};
pvm_send (parent, TAG);
pvm_exit 0:

The master creates threc slaves and sends them a message informing the vector
interval on which they should calculate the inner product. After receiving the message,
each slave starts the calculation of the partia! inner product. When the calculation is
complete, the slave sends a message to the master containing the partia! result. The
master receives the messages, performs the sum and prints the final result.

126

The sending o f a message is carried out by the functions pvm_initsend (initializes
the buffer), pvm_pkint (packs an integer value) and pvm_send (sends a message). The
message reception is performed by the functions pvm_recv (receives a message and
places it in a buffer) and pvm_upkint (unpacks an integer value). The constant
PvmDataRaw is used to indicate that no coditication needs to be used in the message. The
tids vector stores the identitication o f each task created by the master.

3. THE MUL TIPLUS I MULPLIX
ENVIRONMENT

PARALLEL PROCESSING

MULTI PL US is a distributed shared-memory high-performance compu ter designed
to have a modular architecture which is able to suwort up to I 024 processing elements and
32 Gbytes of global memory address spa::e. The processing elements use SuperSPARC
modules with I Mbyte ofcache and up to 128 Mbytes ofmemory belonging to the global
addressspa::e. Figure I shows theMULTIPLUS basicarchitecture. Within MULTIPLUS,
up to eight processing elements can be interconnectoo through a 64-bit double-bus system
making up a cluster. Each bus follows a similar protocol to the one defincd for the SPARC
MBus, but is implemented as an asynchronous bus.

The MULTIPLUS NUMA architecture supports up to 128 clusters
interconnected through an inverted n-cube multistage network. Through the addition of
processing elements and clusters, the architecture can cover a broad spectrum of
computing power, ranging from workstations to powerful parallel computers.

As shown in Figure I, MUL TIPLUS uses a distributed 110 system architecture.
Jt is possible to assign ali processing elements within a cluster to a single 110 processor
which is responsible for dealing with ali 1/0 rcquests to or from mass storage devices
started by these processing elements.

Some design decisions have been taken to simplify the problem of maintaining
consistency among the private caches of the processing elements within the
MULTI PLUS NUMA architecture. The tirst one is to h ave in every cluster one bus
dedicated to instruction and data access operations and the other one dedicated to block
transfer operations which occur in 1/0 or in memory pagc migration or copy operations.
Only the instruction/data bus needs to be "snooped" by the cache controllcr and, as a
result, the cache consistency problem can be solved within a cluster with the methods
usually adopted in bus-based systems. In addition, a software approach based on thc
work presented by Kontothanassis and Scott [Kont95] has been adopted to keep cache
consistency between clusters.

MULPLIX [Aude96, Azev93] is a UNIX-Iike operating system designed to
support medium-grain parallelism and to provide an efficient environment for running
parallel applications within MUL TIPLUS. In its initial version, MULPLIX will result
from extensions to Plurix, an earlier Unix-like operating system developed to support
multiprocessing within SM P architectures [Fall89].

A major extension to Plurix included in the MULPLIX detinition is the concept
of thread. Within MULPLIX, a thread is basically detined by an entry point within the

127

process c ode. A parai! e I appl ication consists o f a process and its set o f threads. Thereforc,
when switching between threads of a same process, only the current processor context
needs to be saved. lnforrnation on memory managemenl and resource allocation is
unique for the process as a whole and, lherefore, remains unchanged in such conlext
switching operations. In relation to synchronization, MULPLIX makes available to the
user synchronization primitives for lhe manipulation of mulual exclusion and partia!
order semaphores.

III.OC K TltANSF. II U.

MUI.TISTACF.

INTimCONNF.CTION

III .OCK TltANSF. IIU •

Figure 1: The MUL TIPLUS Archileclure

The MULPLIX system provides a set of system calls for the development of
parallel programming applications within the MUL TIPLUS architecture [Azev93].
These primitives deal with the following aspccls: the creation of threads; memory
allocation; and synchronization.

The system cal!, "til r _spaum", is provided for the creation o f a group o f threads.
The number o f threads to be crealed, lhe na me o f the procedure to be executed by lhese
thrcads and a common argumentare the basic parameters ofthis system call and the ones
which are supportcd by lhe MULPLIX currcnt implemenlat ion. Howevcr, one optional
parameter can be added to this system call to define preferential processing elements for
the execulion of cach lhread to bc crealed. A second vcrsion of lhis system call,
"tltr _spmvus", allows the creation o f threads in synchronous mo de. I f the threatl

128

creation is synchronous, the parent thread wi ll suspend its exccution until execution
completion by ali the children threads it has started

Three additional primitives for thread control have also been made available
within MULPLIX. The first one is "tflr_itf' which returns the identification number of a
thread, tid, within MULPLIX. The sccond one is "tflr_kilf' which allows any thread to
kill another thread within the same proccss. Ali the descendants of the killed thread are
also killed. The only parameter ofthis system cal! is the tid ofthe thread to be killed. The
last primitive is "til r _term" which allows a forccd tcrmination o f the thread.

The memory allocat ion primitivcs can perform sharcd and private data allocat ion.
For shared data, the primitivc "me_salloc" offers two options: a concentrated and a
distributed memory space allocation. In the tirst case, it is expectcd that most of thc
accesses to the mcmory space to bc allocated will be pcrformcd by the thread which has
performed the system cal! and, therefore, ali memory spacc is allocated within the local
memory of the thread preferential processing element. The distributcd allocation is used
whcn a uniformly distributed access pattem among the threads is expectcd. The primitivc
which performs private memory allocation is "me_pa/loc".

The MULPLIX operating system offurs two explicit synchronization mechanisms.
The fi rst one is used for mutual exdusion relations and the second one is employed whcn a
partia! ordering relation is to bc achicved For the manipul<iion of mutual cxdusion
semaphores, primitives are provided for crcating ("mx_creat!"), allocating ("mxJock"),
extinguishing ("mx_delet!") and releasing ("mxJree") a semaphore. In addition, the
primitive "mx_test'' allows a th rcad to allocate a semaphore i f it is frce without causing thc
thrcad to wait if the semaphore is still occupied Simple and muhiple mutual exdusion
synchronizations are supportcrl. Wid1 muhiplc mutual cxdusion, a maximum of a given
numbcr ofthreads can exocute lhe criticai region simultancously.

For partia! ordcring scmaphores, which implemcnt barrier-type synchronization,
primitives for creating ("ev_create"), asynchronous signaling ("ev_signaf'), waiting on
the event occurrence ("ev_wait"), synchronous signaling ("ev_swait") and cxtinguishing
("ev_tlelete") an evcnt are provided. The primitives "ev_set" and "ev_unset" have also
bcen implemcnted to allow unconditional setting and resetting of an cvent. This may bc
useful in test, debugging or in error recovery procedures.

The same inner product algorithm shown in Section 2 is now presented
considering the use ofthc MULPLIX parallel programming primitives.

#iuclude <stdio.h>

#iuclude "thread.h"

1•oid slave (iut. iut);

i li I

in/

i li I

vectl {12} = {I. 2. 3. 4. 5. 6. 7. X. 9. 10. 11. 12,1;

vect2 {12} = { 4. 7, X. I. 3. 6, 5, 2. 9. 13. 17. 2 1}:

total;

MUTEX lock;

EVENT eud;

129

void main (void)

{

}

int arg =O;

int •map = NULL;

total= O;

lock = IIL\·_create (/) ;

end = ev_create (3. /);

thr_spawn (3. slave. arg. map);

ev_wait (end);

nu·_delete (lock);

ev_de/ete (end);

prin{/"(''lnner Product = %d\n", total);

void slave (int arg. int ord)

{

in/ partia/, i;

for (i = ord • 4. partia/ = O; i < ord • 4 + 4; i++)

partia/ = partia/+ vect/ [i] • vect2[ij ;

mx_lock (lock);

total = total + partia/;

mx_Ji·ee (lock);

ev.Jignal (end);

4. THE M-PVM MODEL

Thc motivation to implement M-PYM within the MUL TIPL US/MULPL IX
platform is rooted in the need to provide lhe users with a high performance and familiar
parallcl programming environment which would simplify the porting of parallel
applications to lhe platform. M-PYM has been implemented using the MULPLIX
parallel programming primitives and with a PYM-Iike user interface.

The fundamental differencc between M-PVM and PYM is that lhe first one
implemcnts a task as a thread whi le the other implements it as a Unix process. This
difference is the source ofmain incompatibilities between the two environments, because
a thread is more like a C function and the automatic conversion of a Unix process into a
function is not an easy task.

Within PYM, tasks share the same source code but they have different data arcas
in memory and different exccution contexts. Within M-PVM , the tasks (threads of a
same process) share the global variables ofthe process to which they belong.

Figure 2 shows a generic examplc of an application using the master-slave
approach. The status variable is a global variable, defined both in the master and in the

130

slave processes. Each process has its own instance ofthis variablc, because the data areas

in memory are different. In Figure 2, the function func_z within the s lave processes is

emphasized because it handles lhe status variable.

Within M-PVM this application consists of a single process with severa! threads.
The status variable belongs to the master and the slave codes. I f the same name for the
variable is used in these codes, consistency problems will occur i f lhe status variable is a

global variable within lhe process.

Figure 2: The PVM Algorithm

The solution presented in Figure 3 consists of creating two new global variables,

status_m and status_s, to represent the states of lhe master and lhe slave processes,

respectively. However, during the execution of the algorithm, severa! slaves will be
processing concurrently (one thread per slave). Since the variable status_s is modified by

the functionjimc_z and severa! slaves may be running concurrently this function, the

variable value may becomc inconsistent. Idcálly, each slave should have its own status_s

variable declared within the slave function. The problem is that C has only global or local
scope. Yariables declared within a particular function are not seen by other functions

called by lhe first function. Therefore, fimc_z would not be able to access lhe variable

status_s i f it were declared within the slave function. Due to these problems, M-PVM
cannot be totally compatible with PVM from lhe user point ofview.

An M-PVM application consists ofa single process with one or more concurrent

threads. PYM pvmd and console have been eliminated within M-PYM. Message passing

among threads is implemented through the process global shared memory and is
managed by the M-PYM library o f functions.

Sincc lhe threads share thc resources within the process, as, for instance, file
descriptors, lhe M-PYM programmer should use lhe multithreaded safe C library

[Barr96] to avoid unexpected errors. In addition, lhe programmer should not use jointly

the MULPLIX primitives and M-PYM.

131

MolcrSiovc

Figure 3: Thc M-PVM Algorithm

Within M-PVM, global variables can be used to sharc data among thrcads. This
feature can bc used by the programmer to avoid in some cases thc need for packing and
sending messages. Thc following example shows the M-PVM implementation of the
inner product algorithm.

#inc/ude <stdio.h>
#include "mpvm.h"
#define TAG I

int vectl [12} = { I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1/, 12};
int vect2 [12} = { 4, 7, 8, I, 3, 6, 5, 2, 9, 13, 17, 21};
long tids [3];
void slave (int, int);

void main (void)
{

}

int total, i, num;

mpvm_spawn (slave, O, 3, tids, NULL);
for (i = O, total = 0: i < 3; i++)
{

}

mpvm_recv (-I, -I):
mpvm_upkint (&num, /, 1):
total = total + num;

printf ("lnner Product = Yodln", total);
mpvm_exit 0:

void s/ave (int arg, int ord)
{

int partia/, i, parent;

parent = mpvm_parent 0:

132

}

for {i= ord * 4, partia/= O; i< ord * 4 + 4; i++)
partia/ =partia/ + vectl [i] * vect2 [i);

mpvm_initsend (PvmDataRaw);
mpvm_pkint {&partia/, / , /);
mpvm_send (parent, TAG);

mpvm_exit 0;

As with the PVM implementation, the master (main function) receives the partia)

sums through messages sent by the slaves. However, it is not necessary to send

messages to inform the vector interval where each slave should work, since the algorithm

uses the ord parameter, taking advantage of a facility provided by the MULPLIX

environment. This parameter tells the order of that particular thread within a group of

threads. lt is also interesting to note that even ifvectl and vect2 were read by the master, it

would not be necessary to send them to the slaves, because they are global vector

variables. This would not be true within the standard PVM environment.

S. THE M-PVM IMPLEMENTATION

The M-PVM library has been implementcd only for C programs. In general, the

M-PVM functions display the same user interface as the PVM functions. The only

exception is the function mpvm_spawn which has been adapted for the use with threads.

As the MULPLIX operating system is still not available within the
MUL TIPLUS architecture, it has been developcd with the use of Solaris 2.5 LWPs and

Solaris threads [Sun95], libraries of functions which implement the MULPLIX parallel

programming primitives to validate the M-PVM environment. Then, M-PVM has been

transported, without any alteration in its code, to a SPARCStation 20 with 4 processors.

The PVM original functions had to be completely rewritten to work using shared

memory and the concept of threads. The information on M-PVM tasks is stored in a

global process arca to which the tasks have access through their tid (task id). This avoids

consistency problems, since one task does not interfere with information belonging to

another task because they have differcnt tids.

Two approaches have been adopted for the implementation o f M-PVM in relation

to the way messages are stored and exchanged between threads. The first approach

follows the usual trend for the implcmentation o f messagc passing environments within
shared memory platforms [Shek96). This approach consists of sharing the message in

memory among threads in such a way that lhe sending o f a message to severa I threads

does not imply the rcplication of the mcssage information in memory. Within the
message body a rcference counter is used. The message can only be eliminated if no

pending refcrences are left.

The implementation of this first approach is vcry advantageous for sending

messages, since instcad of copying thc messagc it is only necessary to crcate in the

destination task waiting list a reference to the message. 1t is necessary, however, to use

133

operations proteeted by mutual exclusion to access the message reference counter and the

task waiting list.
Another important issue is the way messages are built. Every message consists o f

a list of fragments. Each fragment is individually allocated in memory according with the
packing procedure. In the reception o f a message this list is traversed and the information
is unpacked.

Such implementation, however, has shown poor performance results on the
Solaris environment for some applications which demand synchronization operations
very oflen, since the cosi of synehronization at the Light-Weight Process levei within
Solaris is very high [Yaha96]. By analyzing the execution time of each M-PVM library
function , it was possible to verify that memory allocation and synchronization operations
had a large contribution to the total execution time ofsome applieations.

Shared memory allocation within multithreaded environments is an operation
which has to be proteeted by mutual exelusion synchronization. Therefore, such
operations may imply a considerable overhead since, in this first approach, memory
fragments are dynamically allocated. Accesses to the message reference counter are
another overhead source since they also require synchronization operations.

To overcome these problems, a second approach has been adopted for the
implementation of M-PYM. Within this approach the minimization of situations
requiring synchronization has been set as a target. In addition, memory space has been
dynamically allocated in larger blocks. The M-PVM library has assumed the
management o f such blocks in order to avoid the frequent and unnecessary operations o f
releasing and acquiring memory space by reusing previously allocated memory blocks.
The size of such blocks has been determined through experimental tests considering
different situations ofuse ofthe M-PYM library.

Within this second implementation approach, the replication of mes sages has
been adopted in lhe sending procedure. Thereforc, the reference counter cou ld be
eliminated reducing the need for synchronization. In addition, the fragment list has
also been eliminated since the message is packed in a single buffer to facilitatc thc
copy process.

With thcse moditications, in this second approach it is only necessary to havc
synchronization within mes sage passing operations when lhe task waiting list is
accessed.

6. EXPERIMENTAL RESULTS ANO CONCLUSIONS

M-PYM is already operational and initial evaluation tests havc been performed
using the implemcntation for a SPARCStation 20 with four HyperSPARC IOOMHz
processors. The experimental results have been derived from the use of the M-PYM
implementation bascd on the MULPLIX parallel programming primitives available as a
library offunctions on top ofSolaris LWPs.

134

Tables I and 2 compare the performance of PVM and the two implementation
approaches o f M-PYM for a Gaussian elimination algorithm applied to a I OOx I 00 and a
I OOOx I 000 array, respectively. The application has been programmed with 1 to 4 tasks,
which are implemented as prnr,.~c;cs within PYM andas threads within M-PVM. For the
1 OOOx 1000 array a test with thc use o f 5 tasks h as also been performed to eva1uate the
overhead causcd by thc necessary context-switching that will take place in the processar
which has two tasks assigned to it.

The master-slave approach has bcen used for the parallelization of the application.
The array has been dividcd into groups of columns assigned to differenl tasks. The
master task also participates ofthe computation. Only the time spent on the reading o f the
data by the master task has been considered because otherwise there would be a big
disadvantage for the PVM solution, since, in this case, the array data would have to bc
explicitly sent to the slaves by the master. Within M-PVM the data is shared among the
threads and, therefore, there is no overhead in sending data from the master to the slaves.
This data sharing, however, is not a source of contlict since each thread works with a
different set o f array columns.

In Tables I and 2, the first approach used for the implementation of M-PYM, as
described in Section 5, is referred as M-PVM I and the second approach as M-PVM 2.
Execution times in seconds representing the average value for five runs o f the application
are displayed in both tables. The results achieved with the sequential version of the
algorithm are also shown in the Tables for comparison.

Number of tasks PYM M-PYM I M-PYM 2

2 0.401 0.338 0.343

3 0.396 0.340 0.346

4 0.493 0.358 0.356

Sequential 0.419

Table 1: Gaussian Elimination for a 1 OOx 1 00 array - time in seeonds

Number o f tasks PVM M-PVM I M-PVM 2

2 84.84 78.54 79.31

3 69.7 1 63.53 65.71

4 61.65 58.01 59.37

5 66.64 58.45 59.23

Sequential 120.55

Tab1e 2: Gaussian Elimination for a I OOOx 1000 array- time in seconds

The resu1ts in Table 2 show that for a larger problem, ali thrce environments
havc benefited from increasing the number of tasks up to a limit of 4, which is the
number of processors available. With the use of 5 tasks, Table 2 shows that PYM has
had a poorer performance dueto the overhead caused by context-switching at the process

135

levei. This overhead has had a much smaller impact on M-PVM performance, since
context-switching occurs at the thread levei.

In general, the rcsults in both tables show that M-PVM can produce a reduction
o f the application execution time in the range o f 5 to I 0% when compared to that
achicved with thc use of PVM. This reduction can potentially bc much more significative
when an implementation of M-PVM within MULPLIX is available for experimental
tests, since, in this case, thc overhead for the use ofthe MULPLIX parallel programming
primitivcs will be considerably reduced. M-PVM I has shown a slightly better
perfom1ance than M-PVM 2 in ali cases.

The second application uscd for perfom1ance evaluation has becn the
parallelization of a Genctic Algorithm when applied to the placement of cells in a VLSI
circuit [Knop96]. This application has been originally developed for an Ethernet cluster
o f IBM 25 T workstations using PVM. Thcn, the application has been ported by its own
developer to PVM and M-PVM running on the SPARCStation 20. This exercise has
shown that in a couplc of days it has been possible to complete the porting of thc
application to M-PVM by an expcrienccd PVM programmer who had no previous
expcrience ofusing M-PVM.

Table 3 shows the rcsults achicvcd for the execution time ofthis application when
four tasks are used. As thc application uses broadcast operations very heavily and lhe
messages consist o f a big number o f fragmcnts within M-PVM I, the results achieved
with M-PVM I are very poor. This is mainly dueto the ovcrhead in synchronization and
memory allocation operations as describcd in Section 5. In fact, the results achieved with
this experiment have been the motivation for the implementation of M-PVM 2 under a
different approach.

Number o f tasks PVM M-PVM 1 M-PVM 2

4 10.26 22.37 9.68

Tab1c 3: Exccution Time in seconds for the Gcnetic Algorithm

Tables 4 and 5 show the rcsults achieved wi th thc SOR algorithm (Splash
Benchmark) when applicd to arrays with sizes 200x200 and 300x300, respectively. In
both cases, the initial temperaturc assigned to ali elements of the array is set zero. To the
element sitting on the center ofthe array a temperature value equal to I 00 is applied. Thi s
tempcrature value is propagated through the array by evaluating the temperature on each
element as the average of the temperature valucs assigned to its 8 neighbours. Thc
elements on the borders ofthe array have their tcmperatures fixed to zero. Therefore, the
high tcmperaturc in the ccnter ofthe array initially spreads over a region of the array, but,
in the end, the temperature on ali thc elements in the array goes back to zero.

For this application, M-PVM I displayed slightly better results (around 5%) than
M-PVM 2. M-PVM I is approximately 10% faster than PVM for this application
considering the use of2 or 4 concurrent tasks.

136

Number oftasks PVM M-PYM I M-MPYM 2

2 28,35 25,75 26,28

4 24,50 21,78 22,28

Sequential 48,88

Table 4: Execution Time in seconds for the SOR Algorithm with a 200x200 array

Number oftasks PVM M-PYM I M-MPYM 2

2 167,03 156,73 163,31

4 124,40 114,58 122,07

Sequential 309,51

Table 5: Execution Time in seconds for the SOR Algorithm with a 300x300 array

Table 6 shows the results achieved with the parallelization of the formal proof
procedure applied to the comparison of behavioral descriptions o f logic cquations givcn
by Binary Dccision Diagrams (BDD's). Circuits given in the MCNC benchmark havc
been used. The algorithm has been implemented with the use of the master-slave
approach. Thc master sends to three slaves the logic equations describing the circuit
behaviour and only these three slaves take part in the computation of the formal proof
procedure. For the largest circuit (imec7), both M-PVM I and M-PYM 2 displayed an
execution time nearly 20% smaller than PVM. For the small circuits, the perfonnances of
PYM, M-PYM I and M-PYM 2 were similar. This result shows that the performance of
PYM is very sensitive to the size ofthe transmitted messages since the sizes of the logic
equations are much bigger in thc imec7 circuit than in the other two cases. On the other
hand, both M-PYM implementations do not have their performance affected by the
message size because ofthe use ofsharcd memory.

Sequential PVM M-PYM I M-PVM 2

apexl 17,90 11 ,98 11,86 11,90

apex4 16,26 13 ,14 12,80 12,94

imec7 517,95 478,44 401 ,23 401,60

Table 6: Execution Time in seconds for the Fonnal Proof Algorithm

The experimcnts shown in Tables I , 2 and 3 have also been performed for an
implementation of M-PVM using MULPLIX primitives built as a library on top of
Solaris threads [Sun95). In ali cases, the perfom1ance results have been considerably
worse than those achieved with the use of Solaris LWP's.

Current work with M-PYM is focused on the optimization of the system for
NUMA architecturcs such as MUL TIPLUS. In addition, we intend to compare thc
perfonnance of M-PYM with LPVM [Zhou95] and to cnhance the portability of M
PVM by making an implementation available with thc use of Pthrcads [IEEE94).

137

7. ACKNOWLEDGMENTS

The authors would likc to thank FINEP, CNPq, RHAE and FAPERJ, in Brazil,
for the support given to the developmcnt ofthis rescarch work.

8. REFERENCES

(Aude96] Audc, J. S., ct. al., The MUL T IPLUS/MULPLIX Parai lei Processing Environment",

Proceedings of thc lnternational Symposium on Parallel Ard1itcctures, Algorithms

and Networks - I.SP AN %, pp. 50-56, Be ijing, China, May 1996

[Azev93] Azevedo, R.P., Azevedo, G.P., Silv"<ira, J.T.C, Audc, J.S., "Parallel Programming

Primitivcs wid1in MUL T IPLUS (in Portuguesc)", Proceedings of thc V Brazilian

Symposium on Compuc r Architecture, Florianópo lis, pp. 761-775, September 1993

[Barr96] Barros, M. 0 ., Aude, J. S., "hnplementation of Multithrcad Libraries in thc Mulplix

Opcrating System (in Portuguesc)", Proceedings of the VIII SBAC-PA D -Recife,

PE- August 1996
[Chua94] Chuang, W., "PVM Light Weight Process Packagc", Laboratory of Computer

Science, Massachusscts lnstitutc of Technology, Computation Structures Group

Memo 372, December, 1994

[Fall89]

[Ferr94]

[Ge is94]

(IEEE94]

(Knop96]

[Kont95]

[Shek96]

[Sun 95]

[Vaha96]

[Z hou95]

Faller, N., Salcnbauch, P., "Piurix: A multiprocessing Unix-likc operating system",

Proceedings of the 2nd Workshop on Workstation Operating Systems, IEEE

Computer Socicty Prcss, Washington, DC, USA, pp. 29-36, Scptcmber 1989

Ferrari, A., Sunderam, V.S., "TPVM: A Threads-Based Interface and Subsystem

for PVM", Computer Science Technical Report CSTR-940802, Ermory University,

August, 1994
Geist AI, Beguelin A., Dongarra J., Jiang W., Manchcck R., Sunderarn V., " PVM -

A users guide and tutorial for Network Parallel Computing", 1994, The M IT Press,
Cambridge, Massachusctls.

lnstitutc of Electrical and Elcctronics Enginners, POSIX PI003.4a, "Threads

Extension for Portable Opcrating Systcms", 1994
Knopman, J., Aude, J.S., "Parallelization of Genetic Algorithrns Applicd to the

Placement Problema in Workastation Cluster", (in Portuguesc) - Procecdings of thc
VIII SBAC-PAD, Recife, PE, August 1996

"High Performance Software Coherence for Current and Future

Architectures" , L.l. Kontothanassis, M.L. Scott, Journal of Paralle l and
Distributed Comput ing, V oi. 29, No. 2, September 1995, pp. 179-195

Shckhar, S., Chubb, D., Turncr, G ., "Parallelizing G IS on a Shared Address

Space Architecture", IEEE Computer, Dec. 1996, pp.42-48

Sun Microsystems Inc., " Multithreaded Programming Guide- Sola ri s 2.5",

1995

Vahalia, U. , "Unix Internais - The New Frontiers" , Prentice Hall , 1996

Zhou, H ., Geist, AI. " LPVM: A Step Towards Multithread PVM", Technical
Report, Oak Ridge National Laboratory, June 1995

138

