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Resumo

Neste trabalho apresentamos algumas estratégias computacionais especialmente proje-
tadas para a solugdo de problemas de Mecénica dos Fluidos de grande porte pelo Método
dos Elementos Finitos em computadores de alto desempenho. Estudam-se técnicas de
integragdo reduzida e estruturas de dados baseadas em arestas. Apresentamos também
novos pré-condicionadores para esquemas implicitos baseados em agrupamentos de super-
arestas. O desempenho dessas novas estratégias computacionais é avaliado nos computa-
dores paralelos Cray J90 e SGI/Origin 2000.

Abstract

In this paper we present some computational strategies tailored for the Finite Element
solution of large-scale flow problems in high performance computers. Reduced Integration
techniques and edge-based data structures are studied. We also introduce new precon-
ditioners for implicit schemes based on superedges clustering. The performance of these
new computational strategies is evaluated on the Cray J90 and SGI/Origin 2000 parallel
computers.

1 Introduction

Parallel supercomputers are widely used in large-scale finite element flow simulation.
Because the supercomputer architecture is different than uniprocessor computer, the per-
formance of this machine increase when the codes are designed to take advantage of the
new design. Low order elements are used in finite element analysis by their simplicity
and adaptability to any domain. For these kind of elements we present here some finite
element computational strategies for large-scale flow problems [1]. These strategies are
separated in two groups. The first one is the element technology. For quadrilateral and
hexaedra linear elements, a Gaussian numerical integration is often necessary to evaluate
the element matrix. This procedure is responsible for a large amount of computational
effort. Then we may use the one-point quadrature or reduced integration to reduce this
cost. The reduced integration can yield hourglass modes. To control these spurious modes
two techniques are used without compromising accuracy (2] [3]. These reduced integra-
tion schemes decrease the computational cost on evaluating such matrices and reduce
code complexity, thus improving vectorization and parallelization [4].

The second problem is the solution of the resulting linear systems of equations at
each time step or iteration. For most problems of practical interest, solution methods
based on direct methods lead to massive storage demands and large computer times. Ite-
rative methods present, comparatively, low storage requirements and, when associated
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with suitable preconditioners, provide a powerful computational strategy [5]. In large-
scale problems, the solution of nonlinear systems of equations may involve millions of
unknowns. Inspired by Finite Volume Methods, edge-based data structures have been
introduced for explicit finite element computations of compressible flows on unstructured
grids composed by triangles and tetrahedra [6] (7] [8]. They may be also viewed as
a representation of the nodal graph of a grid composed by triangles and tetrahedra.
Thus, the edge representation is an alternative data structure for computing the global
matrix-vector products needed in Krylov space iterative techniques. These schemes have
major reduction in indirect addressing operations and memory requirements. However, to
reduce the effects of indirect addressing on total CPU costs, Lohner [9] suggested several
alternative edge-based data structures. Analysing their main characteristics, Martins et
al. [10] have shown that the superedges represent the best compromise. Here we extend
the edge concept and present edge-based preconditioners for Krylov update techniques.

The remainder of this paper is organized as follows. In the next section we present the
element technology for quadrilateral elements and numerical examples, assessing both ac-
curacy and performance . In the following section we briefly review the edge-based finite
element scheme and also present the superedge concept. Next, we present the derivation
of clustered edge-by-edge preconditioners. Additional numerical experiments are shown,
assessing the performance of the edge-based data structures and preconditioners. Con-
cluding remarks are gathered in the end of the paper.

2 Element Technology

The one-point Gauss quadrature for low-order quadrilaterals and hexaedra can yield
spurious oscillations, or hourglass modes. It is necessary to control such hourglass modes
in order to generate low cost and accurate solutions. Here we show two reduced integra-
tion schemes that are able to produce good solutions for convective-diffusive problems.

2.1 Hourglass Control by Perturbation Techniques

The first scheme studied is widely used in diffusive problems. The idea behind this
scheme is to add to the element matrix, evaluated by one-point Gaussian quadrature, sta-
bilization terms derived through the Hu-Washizu variational formulation. These added
terms correct the rank defficiency of the element matrix obtained by the reduced integra-
tion [2]. In the SUPG formulation for steady-state convection-diffusion [11], the element
matrix K¢ can be written as,

K* = Ky + K. + Kpy (1)
where the subscripts d, ¢ and pg correspond respectively to the diffusion, convection

and Petrov-Galerkin terms. Then, using the Perturbation Technique each term can be
computed as the sum of the reduced integration part and the stabilization part [4],

K = Kp; + Ksr (2)
where the subscripts RI and ST refer to the one-point quadrature matrix and to the cor-
rection term. Details about the construction of these correction terms can be seen in [2]
[4]. The resulting code corresponding to (2) is a single do-loop for all elements, which can
be parallelized and/or vectorized. This is much simpler and faster than a standard finite
element implementation, which involves several inner loops through the Gauss integration
points.
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2.2 Alternative Integration

In the scheme proposed by Hansbo [3], each term of K can be evaluated by an alter-
native form, where material properties tensor D, the Jacobian J, and the source term are
computed at the midpoint of the element. Then, the diffusion term can be written as,

K, = j; B7 Do) B J(0.0) d2 (3)

and the other terms are obtained in the same way. B is the gradient of trial functions.
In both schemes, the integrals may be evaluated using a symbolic algebra software like
Maple. Studies showed that these schemes have the same accuracy for regular meshes.
Implementation also results in a single do-loop.

2.3 Computer Performance

The convergence properties of the stabilization techniques have been extensively stud-
ied elsewhere (2] [3]. To illustrate the accuracy of these schemes, we show in Figure 1 the
solution of the problem of pure convection of a scalar in a direction skew to the mesh,
with unitary constant velocity making 67.5° with the horizontal, on a 10 x 10 regular mesh
[11]. We may observe that reduced integration without hourglass control produces a high
oscillatory solution, whereas both hourglass control schemes yield accurate solutions. The

(a) without hourglass control (b) using hourglass control

Figure 1: Advection skew to the mesh

computer performance of these reduced integration schemes can be observed in Table 1.
This Table lists the CPU time in seconds spent in the generation of 262,144 bilinear
quadrilateral element matrices in two different machines, a SGI/Indy workstation and a
Cray J94 running in vector mode. We may observe that both stabilization techniques
were much faster than the standard 2 x 2 Gaussian integration. Analysing the parallel
content of each reduced integration procedure by Cray’s Atexpert tool, we observed that
both schemes were 99.9% parallel.

3 Edge-based Data Structures for Solving Finite Element Equa-

tions
3.1 Basic Ideas and Sparse Matrix-Vector Multiplication

The application of implicit finite element formulations to complex flow problems re-
quires the solution of a linear system of equations at each time step and/or iteration, that

is,

Ar=b (4)
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The boundary mesh has 35,307 nodes and 70,937 triangular elements as can be seen
in Figure 3. The complete model comprises 448,695 nodes and 2,815,158 tetrahedral ele-
ments, which results in 3,314,611 edges, being 5,92% grouped in superedge3's and 32,59%
in superedge6’s. We observed in this mesh that in the average, 3.2 tetrahedra share an
edge.

Figure 3: Automobile surface mesh

The CPU times in seconds and the relative times for Jacobi-Preconditioned Conjugate
Gradient (J-PCG) solution are gathered in Table 4, for the EBE, edges and superedge
versions of matrix-vector product. We also show in this Table the number of J-PCG
iterations needed to reach convergence for a tolerance of 1076, The number of iterations
is slightly different for each solution scheme due to ill-conditioning. In this problem,
the ratio between maximum and minimum values of the system matrix main diagonal is
1.8 x 107.

Scheme Tterations | CPU Time (s) | Relative Time
EBE 25,875 28,934 1.00
edges 25,850 8,689 0.30
superedge 25,818 6,973 0.24

Table 4: Iterations and CPU Times for the automobile solution.

The Mflop/s rates and parallel speed-up’s for the sparse matrix-vector multiplications
needed in J-PCG, for the different data structures are shown in Table 5. The Mflop/s
were measured on single CPU runs, employing CRAY's perfview tool. Parallel speed-up’s
were measured by CRAY’s tool atezpert on a J90 with four processors. Results were
extrapolated by the same tool to 16 CPU’s.

3.3.2 Non-symmetric case - Pollutant Dispersion in Guanabara Bay

In this case, we consider a single time step in the simulation of pollutant dispersion in
Guanabara Bay. It is a two-dimensional simulation of the convection-diffusion equation.
The mesh has 34,317 triangular elements and 18,481 nodes, and it is shown in Figure
4. Tt has 52,800 edges, being 78.82 % grouped as superede3’s. We show in Table 6 the
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| Scheme Mflop/s single CPU | Speed-up 4 CPU’s | Speed-up 16 CPU’s
EBE 140.1 3.57 14.17
Edges 105.6 3.60 14.55
superedge 123.8 3.98 15.41

Table 5: Performance data for the automobile solution.

number of GMRES(25) iterations needed to reach convergence for a tolerance of 10~°.
The LU and diagonal preconditioners as well as the EBE and superedges schemes are
compared. We observed that the solution with less iterations and CPU time corresponds
to the superedge LU-preconditioner. The memory required to hold the coefficients for
the left LU clustered edge-by-edge preconditioner was 124 Mwords. For the edges that
could not be grouped into superedges, we employed the corresponding edge-by-edge pre-
conditioner, that needs a storage area of just 45 Mwords. Considering that the left LU
element-by-element preconditioner requires a storage area of 308 Mwords, we observe that
the edge-based scheme reduces the storage area to hold the preconditioner roughly by a

factor of two.

Figure 4: Guanabara Bay

Diagonal LU
Tterations | Time(s) | Iterations | Time(s)
Element 312 81.4 80 36.2
Superedge 311 68.4 89 29.2

Table 6: Computer Performance Elements x Superedges in the SGI-Indy.

4 Concluding Remarks
In this paper we presented some strategies to reduce computational costs and mem-

ory requirements in large-scale flows simulations. Reduced integration techniques for
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quadrilateral elements yielded fast and low complexity codes without compromising accu-
racy. Several edge-based data structures were employed to implement matrix-vector prod-
ucts needed in Krylov subspace iterative techniques. They are around three times faster
than standard EBE techniques in large three-dimensional problems. The resulting code
achieved good performance on Cray J90 and SGI/Origin 2000 parallel machines. Clus-
tered edge-based preconditioners were introduced. Numerical experiments have shown
that they are faster and require less memory than EBE preconditioners. The strategies
studied in this paper are presently being incorporated in simulation programs for porous
media and compressible flows, and results will be reported in the near future.
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