
X Simpósio Brasileiro de Arquitetura de Computadores 

High-Performance Networking for Software DS:Ms * 

Rodrigo Weber dos Santos, Ricardo Bia nchini , and Claudio L. Amorim 

COPPE Systems Engineering 
Federal University of Rio de Janei ro 

Rio de Janeiro, Brazil 21945-970 

{rodrigo, ricardo,amorim}Oc:os . utrj . br 

Abstract 

Severa! messaging software architectures (MSAs) have been proposed and implemented for 
high-performance local-area networks (LANs). Severa! of these MSAs have been successful 
at providing low latency and high bandwidth to user-level processes that communicate via 
explicit message pas:sing. In this paper we claim that these MSAs are suboptimal for page
based software distributed shared-memory systems (software DSMs), as t hey do not consider the 
specific characteristics of these systems. We support our claim by studying the communication 
behavior of severa! applications running on top of the TreadMarks system and by showing t hat 
no previously-proposed architecture is ideal for the observed behavior. Finally, we propose a 
novel MSA for the Myrinet LAN that is tailored to software DSMs. This new design includes 
isolated features from some other MSAs, offering reliable message delivery, optimizations for 
both short and long messages, and severa! options for message arrival notification. In addition. 
ou r proposed MSA relies on a communication model that simplifies buffor management, while 
reducing latency response for request-reply operations. 

1 Introduction 

The recent advent of high-performance local-area networks (LA Ns), such as ATM and l\lyricom 's 
Myrinet, has increased the impact of t hc messaging software on lhe overall communication per
formance. Unfort unately, the traditional messaging software architecture (MSA) incorporated in 
Unix leads to various time-consuming operations, such as severa! crossings of the operating system 
boundary, plenty of data copying a.t both ends , a.nd frequent protection checks, that hun perfor
mance tremendously. As a result, severa! new MSAs have been proposed t hat entirely remove the 
opera.ting system from the criticai communication pa.th, providing direct user-level access to the 
network inte rface a.nd a.voiding excessive data. copying. Protection checks are still performed by t he 
opera.ting sys tem however , but protection is only enforced once, instead of every time a. message 
is sent. These features a.llow these MSAs to reduce t he messaging software overhead significantly, 
bringing messaging la.tency a.nd bandwidth dose to the network hardware limits. 

From our point of view, t he main problem with these recently-proposed MSAs is that they 
are optimized for user-level processes tha.t communicate via. explicit message passing. Under most 
MSAs, a.pplica.tions that communica.te via. some form of shared memory must use exactly the same 
mechanisms as messa.ge-passing applica.tions use. However, we claim that sha.red-memory systems 
ha.ve severa! characteristics tha.t ca.n be used in improving the messaging performance even further. 

ln order to support this claim, we focus on MSAs (15, 5, 8, I, 13, 7, 14, 6, 11 , 3] that have 
been proposed a.nd implemented for the Myrinet LA N and on a.pplications running on top of page
based software distributed shared-memory systems (software DSMs). More s pecifically, we support 
ou r cla.im by studying the communication beha.vior of severa.! applications running on top of the 

"Thi• work wa. •upported by CNPq, CAPES and FINEP. 

107 



X Simpósio Brasileiro de Arquitetura de Computadores 

TreadMarks software DSM system and by showing that no previously-proposed MSA is ideal for lhe 
observed behavior. These MSAs rely on one or more features that do not match the Tread~larks 

communication requirements. 

Based on the limitations of previously-proposed systems, we propose a novel :VISA for the 
Myrinet LAN that is tailored to software DSMs. This new design includes isolated features from 
some other :\1SAs, offering reliable message delivery, optimizations for both short and long messages. 
and severa! options for message arrival notification. In addition , our proposed MSA relies on 
a communication model that simplifies buffer management, while reducing latency response for 
request-reply operations. 

The remainder of this paper is organized as follows. The next section describes the Myrinet 
hardware. presents the main characteristics ofTreadMarks, and discusses the maio issues involved iu 
:\ISAs. Section 3 presents the TreadMarks communication behavior and shows that no previously
proposed MSA is ideal for software DSl\•ls. Section 4 proposes a new i'v!SA that is tailored to 
software DSMs in general and TreadMarks in particular. Finally, section 5 presents ou r conclusions 
and discusses work that we intend lo do in the near future. 

2 Background 

2.1 The Myrinet LAN 

The Myrinet (4) is a high-speed LAN produced by Myricom. lt consists of three basic components: 
a switch, a network interface (N l) card per node, and the cables that connect each card to the 
switch. Myrinet can deliver 1.28 + 1.28 1vlbits/ s full duplex bandwidth per link ensuring hardware 
flow control via back-pressu re, in-order delivery, and extremely low erro r bit rates. 

The Myrinet switch is a wormhole routing switch that is based on the source routing method, 
i.e. the routing information must be attached to lhe head of the message at t he source. T he Nl card 
contains three DMA engines, a special network controller called LANai and up to 512 J<Bytes of 
fast SRAM. One of the DMA engines takes care of extracting incoming messages from the network 
link to the SRAM, another moves data in the opposite direction , and a third engine moves data 
from NI SRAM to host memory and vice-versa. The LANai processar runs at 33 MHz, controls the 
DMA operations, and runs the low-level layer of an MSA. A complete MSA also involves software 
fo r the host processar providing the interface with the Nl. 

2.2 Page-Based Software DSMs 

lmplementing DSM in software is not a trivial task, since t he shared data management must 
be performed without generating excessive software overhead. The so-called page-based software 
DSMs approach t his problem by taking advantage of hardware built in to most microprocessors (the 
virtual memory protection bits) to detect potential coherence problems and enforce coherence at 
the page levei. In order to minimize the impact offalse sharing, these DSMs seek to enforce memory 
consistency only at synchronization points, and allow multiple processors to write the samê page 
concurrently (2) . 

TreadMarks is an example of a page-based DSM system that enforces consistency lazily. In 
TreadMarks, page invalidation happens at lock acquire points, while the modifications (diffs) to an 
invalidated page are collected from previous writers at the time of the first access (fault) to the 
page. T he modifications that the faulti ng processar must collect are determined by dividing the 
execution in interva/sassociated with synchronization operations and computing a vector timestamp 
for each o f the intervals. A synchronization operation initiates a new interval. The vector timestam p 
describes a partia! order between the intervals of different processors. Before the acquiring processar 
can continue execution , the diffs of intervals with smaller vector timestamps than the acquiring 
processor's current vector timestamp must be collected . The previous lock holder is responsible for 

108 



X Simpósio Brasileiro de Arquitetura de Computadores 

comparing the acquiring processor's current vector timestamp with its own vector timestamp and 
sending back write notices, which indicate that a page has been modified in a particular inten·a l. 
When a page fault occurs, the faulting processar consults its list of write notices to find out the 
diffs it needs to bring the page up-to-date. lt then requests the corresponding diffs and waits for 
them to be (generated and) sent back. After receiving ali the diffs requested , the faulting processar 
can then apply them in turn to its outdated copy of the page. A more detailed description of 
Treadi\larks can be found in (10]. 

2.3 Messaging Software Architecture 

While avoiding operating system calls has proven extremely beneficiai to high-perfo rrnance uet
working, there are other important issues related to the functionality and performance of ~ISAs: 
the communication model; whether data transfers a re implemented via DMA or programmed 1/0 
operations; whether it is possible to t ransfer data without making intermediate copies; whether 
communication is reliable; whether the Nl implements any pipelining of messages: and how the 
destination of messages are notified of their arrival. In the next few subsections, we discuss these 
issues in turn. 

2.3.1 The Communication Model 

The communication model h as to do with the way communication operations a re effected. ldeally. 
the communication model supported by the MSA should match the communication model of higher
level layers and applications. The most common communication models are: 

Remote Memory Write. In this communication model. the sendcr (via a address translatiou 
setup phase) knows where to store t he data at the destination ; each message carries the memory 
address where the data should be stored . Messages in this model are usual!y sent explicitly and 
received implicitly. 

Message P assing R e ndezvous. In this model, communication only takes place if a receive 
primitive is executed before the message arrives, forcing send and receive primitives to synchronize. 

Queue of B ufl'ers . In this model, communication uses primitives that manage queues of 
buffers. lt is up to the receiver to define where an incoming message should be placed, by using a 
queue of free buffers. Each entry in the queue comprises a buffer descriptor (address and length) 
that is used when a message arrives. After transferring the message to the specified buffer, the 
descriptor is moved to another queue, the reception queue, from which the user may check where 
received messages have been placed. Another queue of descriptors is used for sending messages. 
The sender simply provides the descriptors for where t he data to be transferred has been placed. 

Handler-Carrying Message. Rather than a communication model per se, handler-carrying 
messaging is more like a mechanism that can be used in most other communication models. In this 
mechanism, a message carries t he address of the handler that should be executed on the receiver 
side upon message arrival. The handler task is t hen used to extract the message from the network 
and integrate it into the on-going computation. 

2.3.2 Data Movement via DMA vs. Processar Programmed 1/ 0 

During com munication, messages must be t ransferred from the host memory to thc Nl and vice 
versa. There are two strategies for effecting these transfers: via a direct-memory-access (DMA) 
device or via programmed 1/0 by the host itself. DMA operations are usual!y more efficient 
than programmed 1/0 and free the host processar from spending time on data movement. For 
short messages however, the DMA setup time may be as longas the data transfer itself, making 
programmed 1/0 more appropriate. In addition. given that the DMA device only deals with 
physical addresses while user processes deal with virtual addresses, the user cannot coufigure t loe 

109 



X Simpósio Brasileiro de Arquitetura de Computadores 

DMA to transfer data straightto the Nl. The usual approach is then to copy data to a buffer inside 
the operating system kernel or to a pinned-down buffer (a region of memory in user space but with 
a well-known physical address and with pages marked as unswappable) before initiating the D:\1:\ 
operation. This generates extra overhead since the memory copy performance of today systems is 
as good as network performance. Thus, using the processor itself to transfer data can eliminate 
the extra copy, achieving the so-called zero-copy data transfers. 

2.3 .3 Ze ro-Copy Data Thansfers 

The downside of letting the host processor move the data itself to the Nl is that the processor is kept 
involved in t he network operation for too long when transferring long messages. To avoid this a nd 
yet achieve zero-copy t ra nsfers , several MSAs h ave proposed that a TLB-Iike structure should take 
care of t he virtual-to-physical address translations, allowing the host to use the DlviA device more 
easily. Managing t his TLB structure normally involves t he operating system for two operations: 
assigning physical pages to represent virtual ones and marking ali pages with translations in the 
TLB unswappable. 

Sometimes the zero-copy techniques are not enough to really eliminate extra copies. For in
sta nce, if a message should contain data spread over the user-space, the user may have to pack 
the spread dat a into a contiguous buffer before issuing t he network operation . To avoid this extra 
copy, the MSA should provide scatterfgather operations. 

Extra copies may also be necessary when implementing techniques for ensu ring reliable message 
delivery (discussed in the next subsection). When retransmissions may be required for reliability, 
message data must be copied to special buffers in a way that the data is kept unmodified by the 
user process until the delivery is guaranteed. 

2.3 .4 Reliable Message Delivery 

Most distributed applications require that reliable message delivery be guaranteed for proper exe
cution. Message tra nsfers may be unreliable however, due to unreliable network hardware and/ or 
flow control (buffer overflow) problems. Flow control problems are usually eliminated with window
based strategies, which mai ntain in-order message delivery. 

Traditionally, reliable delivery has been implemented by reliable {but slow) protocols such as 
TCP or by the user with unreliable (and faster) protocols such as UDP. The latter option is 
usually preferred when performance is an important issue. Thus, modern MSAs that provide 
reliable message delivery can be extremely useful in that they reduce t he messaging overhead while 
avoiding the cost and complexity of message source buffering, timeout, and retry at the application 
levei. In addition, since the lower software layers guarantee message delivery, the buffers involved 
during a send operation can be re-used by the application as soon as the datais transferred to the 
Nl. This feature can eliminate undesired extra copies, while reducing buffer management overheads. 

2.3 .5 Message Pipelining 

There can be up to four D~IA operations involved during a message t ransfer: from host memory 
to Nl memory (host-send) , from Nl memory to network {Nl-send) , from network to Nl memory 
(N l-recv), and from Nl memory to host memory (host-recv). One way of increasing throughput is 
to overlap multiple message transfers by pipelining DMA operations on the sender and/ or receiver 
side. On the sender side of a transmission, for instance, a host-send operation may start a new 
message transfer even before the Nl-send operation of previous message finishes. \Ve refer to this 
technique as inter-message pipelining. 

Another technique extends this idea by overlapping different DMA operations belonging to a 
siugle message t ra nsfer. This strategy not only increases throughput but also reduces per rnessage 

110 



X Simpósio Brasileiro de Arquitetura de Computadores 

latency in the same way as wormhole routing does. On the sender side. for instance. the Nl-send 
operation fo r a message may start even before the host-send operation has finished. \Ve refer to 
this technique as intra-message pipelining. 

2.3.6 Message Arrival Notiftcation 

Message arrival notification is a nother important issue in modern MSAs in thM this mechanism 
h as a direct impact on the messaging performance. The host processar may be notified of message 
a rrival by polling ftags in the Nl or by receiving interru pts triggered by t he Nl. The tradeoff 
between t hese two mechanisms is one of messaging latency and overhead. Using interrupts. the 
host processor does not need to check for message ar rival since it is notified as soon as a message 
arrives. However, servicing an interrupt is extremely expensive in most modern microprocessors. 
To avoid this overhead , the host processar may check for rnessage arrival by polling a status flag 
maintained by the Nl. The question here is how often it should do it. lf it polls too frequently, it 
may generate too much overhead wasting time on unnecessary checks. lf it pools too seldomly. it 
may end-up increasing the messaging latency significantly. 

2.4 Messaging Software Architectures for Myrinet 

Severa! MSAs have been developed for the Myrinet LAN. Table 1 lists their main characteristics. 

MSA Comm Model DMAxl/0 DMAxiJO O.copy O.copy Scatter/ Reliabil Pipe Nolif 
Send Receive Send Receive Gather 

LAM Handler-carry DMA DMA no no no y .. no poli 
FM2.1 Handler-cArTy 1/0 DMA 1/0 no ye> Ye!l no poli 
U-Ne~ Queue hybrid DMA no no no no no both 
BIP Rendezvom hybrid hybrid TLB TLB no no intra poli 
PM1.2 Queue + RMW OMA DMA TLB TLB no yes intra both 
VMMC2 RMW + redir hybrid DMA TLB TLB no ye.< inter both 
Trapete Queue hybrid hybrid TLB TLB no no int.ra borh 
BOM Queue 1/0 1/0 1/ 0 1/0 no yes no poli 
MyriAPI Queue DMA DMA no no yes no no poli 
LFC Queue 1/0 DMA 1/0 TLB no ye!' no both 

Table 1: Summary of Features 

3 Software DSM Behavior and lmplications to MSAs 

In this section we discuss the communication behavior of software DSMs using TreadMarks as a 
representative example of this type of system. This behavior is then related to the characteris tics 
an MSA should have in order to support software DSMs effectively. 

3.1 TreadMarks Communication Behavior 

Com munication in invalidation-based software DSMs such as TreadMarks always occurs in request
reply fashion . These software DSMs exhibit the request-reply behavior in data management, 
th rough data (in the form of pages a nd diffs in case of TreadMarks) request and reply messages, as 
well as in synchronization, through lock request and grant messages, and barrier arrival and depar
ture messages. In general. for both data management and synchronization messages, lhe actions 
taken on the requesting and replying sides are the same. On the requesting side. the node issues a 
request message and immediately starts waiting for the corresponding reply. On the replying side, 
the node is notified of the arrival of a request. the appropriate handler extracts the request from 
the network. services it , and issues a reply. 

111 



X Simpósio Brasileiro de Arquitetura de Computadores 

Figure 1: Normalized Number of Request
Reply Operations. 

100% 1 
90% 

~ F H 
80% 

-~ ~ 
Cpago_rep 

70% "' ~ ~ 
• pago_req 

60% ~ · I-- llllock_rep 

50% ~ ·~ 
•loc~_req 

40% ;;f Ê ~ 
Cdilt_rep 

30% ~ - ~ I 
Odiff_roq 

:f: "' •bt!lrrier_r~ 
20% ;iJj ?' i l!lbarrior .req 
10% ... 
0% 

~ .rp<l. .p- S! ,., ;rê 

Figure 2: Normalized Number of Bytes per 
Message Type. 

This request-reply behavior is an important characteristic of software DSMs, however more de
tailed information about the communication requirements ofthese systems is necessary for a careful 
study of MSAs. More specifically, to determine whether data transfers in software DSMs should 
be implemented via DMA or programmed 1/0 operations and what type of message pipelining (i f 
any) should be implemented, it is important to assess the frequency and size of each request-reply 
operation and message type. To determine whether zero-copy transfers are a viable option , it is 
important to assess the potential for high page pinning and unpinning overhead. To determine 
whether reliable message delivery is necessary, it is important to assess the number of unnecessary 
message retransmissions. To determine whether scatter/gather featu res a re useful, it is important 
to determine i f messages that scatter or gather data are common and the number of chunks involved 
in the messages is significant. 

Below we collect and present these statistics for t he particular case of TreadMarks. Our ex
periments were performed on an 8-node system composed by two SparcStation20 nodes and six 
SparcStation4 nodes connected by 10 Mbitsfs Ethernet network. We measured the system running 
severa! applications (FFT, QS, IS, SOR, TSP, and WATER) with diverse data access and syn
chronization characteristics. FFT, IS, SOR are dominated by single-writer pages that are written 
almost entirely whenever they are touched, while TSP and Water are dominated by multiple-writer 
pages, only a small fraction of which are written when touched. In terms of synchronization. ap
plications can be classified as those that use locks and barriers (WATER, QS, IS), those that only 
use barriers (FFT and SOR), and those that only use locks (TSP) . The input sizes used in our 
experiments are the default ones suggested by their corresponding distributions. 

D MA, programmed 1/ 0, and pipelining. We present the frequency and size of each 
request-reply operation and message type in figures 1 and 2. Figure 1 presents the relative number 
of request-reply operations classified as pages, diffs, locks, and barriers. The figure shows that 
more than 90% of the request-reply operations are either page or diff-related for most applications. 
Exceptions are the IS and WATER applications, for which page and diff-related operations account 
for almost 30% of total number of request-reply t ransactions. From these numbers we can observe 
that page and diff replies account for about 40% of ali messages in most cases. 

Figure 2 presents the relative number of bytes transferred per message type. The figure demon
strates t hat more than 90% of ali bytes transferred are related to diff and page reply messages for 
ali applications. Messages are generally short, except for diff and page reply messages; page replies 
are 4 KBytes long, while diff replies are longer than 1 KByte fo r 4 of ou r applications. The combi
nation of ali these results demonstrates that TreadMarks relies strongly on very long messages to 
amortize the significant costs of implementing shared memory in software. 

Zero-copy. We assessed the potential for high page pinning and unpinning overhead in Tread
Marks by counting the number of page and diff reply messages that used a specific page for buffering. 
The greater t he number of messages per page buffer . the lower is the overhead . 

112 



X Simpósio Brasileiro de Arquitetura de Computadores 

Page re-use in page reply messages can be as good as 6 on 8 nodes, as we have obserl'ed for 
TSP and IS, while being greater than 4 for ali other applications. except for SOR. where re-use is 
insignificant. Page re-use in diff replies is even better than in page replies; it is more than 10 for 
WATER, FFT, and TSP. The other applications exhibit page re-use of 3 or more. These results 
show that the amount of re-use is significant in the vast majority of cases. 

Reliable message delivery. TreadMarks uses the unreliable (and operating system-based ) 
UDP protocol for communication and ensures delivery by treating reply messages as acknowledge
ments and using timeouts. Retransmission of request messages is effected whenever the timeou t 
expires. Out of the retransmissions generated by the system, we measured the ones that were not 
necessary, i.e. the timeout expired but the reply was in fact coming; it simply was late. What we 
found is that, depending on the application, unnecessary retransmissions can overload the network 
as well as generate extra overhead on the replying side. For instance, we found that 40 and 65'7c 
of the barrier arrival messages in SOR and WATER, respectively, are useless retransmissions due 
to the load imbalance. As another example, lock contention generates more than 10% unnecessary 
lock request retransmissions in TSP. 

Scatterfgather. We assessed the usefulness of scatterfgather features by determining the 
average number of diffs that are included in diff reply messages, since these diffs are normally 
spread ali over the virtual address space. These measurements show t hat TSP, QS, 15 a nd \V ATER 
must gather, on average, more than 3 diffs per diff reply message, while FFT and SOR must gather 
about 2 diffs on average. 

3.2 lmplications to MSAs 

The communication behavior and measurements discussed in lhe previous section have severa) 
consequences with respect to the fea.tures that MSAs must provide to software DSMs. We will now 
discuss each of the main features listed in section 2.3 in light of the previous section . commenting 
on the fea.tures presented by the MSAs described in section 2.4. 

3.2.1 The Communication Model 

The communication model provided by the MSA should allow asynchronous messaging. This 
requirement comes from the fact tha.t the arrival of a request messa.ge ca.nnot be predicted . As 
a result of this asynchrony, the rendezvous model (BIP) becomes inappropriate, as it requires 
communicating processors to synchronize a.t the communication point. 

The model should a.lso facilitate buffer ma.nagement for asynchronous messages if t he request· 
reply behavior is to be relaxed as in page-based software DSMs such as ADSM [12}, AEC [16}, or 
HLRC [17}, where some form of update coherence is applied. This restriction makes the remote 
memory write model (VMMC2) inadequa.te, since neither senders nor receivers can control the 
receive buffer usage. In order to avoid overwriting messages in this model , a. large amount of buffer 
space must be coupled with explicit user management of buffers. 

For TreadMarks, buffer ma.na.gement is not such a significant problem in the remote memory 
write model, because of the request-reply communication style of the system. We can simply export 
N-1 receive buffers for an N-node system. Note however that the size of exported buffers should 
be enough to accept an entire request messa.ge. The results in section 3.1 show short average 
request message sizes, but the maximum size of requests was sometimes significa.nt. For insta.nce, 
we find the longest ba.rrier request messages in WATER and SOR to be 1400 and 1100 bytes long. 
respectively. Thus, the remote memory write model could be used in TreadMarks, but this wou ld 
simply waste memory and lead to poor scala.bility. 

113 



X Simpósio Brasileiro de Arquitetura de Computadores 

3.2.2 Data Movement via DMA vs. Programmed I/0 

Adopting a hybrid scheme where short messages a re tra nsferred with programmed 1/ 0 instructions 
and long messages are t ransferred with DMA operations seems ideal for software DS~Is. 

As we saw in section 3.1 , requests are usually short messages, so the host should transfer the 
data to the Nl using programmed 1/ 0 instructions when sending a request. When receiving a 
request, programmed 1/ 0 by the receiving host should certainly perform well, but using the 0~1:\ 
to transfer the message to the host memory could also be useful. The DMA transfer could be 
overlapped with the interrupt overhead . Replies are long messages and , thus, sending or receiving 
a reply should use t he help of the DMA. 

The MSAs we consider fulfill these send and receive requirements, allowing for hybrid imple
mentations of data movement, except for AM, FM, PM, LFC, and BOM. 

3.2.3 Zero-Copy Data '!Tansfers 

Given the large size and number of page and diff reply messages in software DSMs such as Tread
Marks, zero-copy t ransfers should be provided by the MSA to avoid extra-copies of these messages 
on the requesting side and, as a result, decrease latency response. Zero-copy data transfers should 
achieve good performance for TreadMarks, since sending a page or diff reply may take advantage 
of previously-pinned pages. The results in section 3.1 show that the page re-use is usually signifi
cant in TreadMarks for bot h page and diff replies. In addition, section 3.1 suggests that a gather 
interface is required for diff replies. 

Even t hough the page re-use numbers for diff replies suggest that zero-copy should not need an 
excessive amount of pinning, diffs are frequently allocated on different pages. This can potentially 
increase overhead, as severa! pages may have to be pinned for a single diff reply message. We 
propose an efficient implementation of zero-copy that shou ld overlap unavoidable page pinning 
overheads with the reply latency, since a TLB lookup and page pinning system call together may 
cost as much as actually making a copy of the data. 

Yet another approach for the efficient implementation of zero-copy is to allocate a chunk of 
contiguous unswappable pages in the kernel memory statically, avoiding dynamic pinning overheads. 
The physical address of the chunk should be placed on the TLB. The user should then implement 
copying but only when space is exhausted . This approach could be implemented for TreadMarks, 
which allocates 1 MByte of memory for placing diffs. 

Pinning pages on demand without any control as done under VMMC-2, Trapeze, and BIP 
could induce excessive overhead and consume too much memory space on the node. To alleviate 
the memory consu mption problem, one should use t he pin-down cache technique proposed by PM. 
To avoid the excessive pinning overhead and alleviate the consumption problem, one should use 
our proposed approach. 

3.2.4 Reliable Message Delivery 

As aforementioned , unnecessary retransmissions in TreadMarks can overload lhe network as well 
as generate extra overhead on the replying side. The problem is that tuning the timeout value is 
a very hard task for any system, as this value depends not only on the network in use, but also on 
the specific timing of distributed systems. lm plementing mechanisms for reliable message delivery 
on top of a MSA that does not provide reliability h as been shown inefficient in certain cases; this 
type of implementation can increase communication overhead up to 200% (9]. 

Thus. to avoid problems associated with a large number of retransmissions, message delivery 
should be reliable in software DSMs. ln-order delivery is not necessary for systems based on 
the request-reply model. since a node can issue a single request at a t ime. Efficiently guaranteeing 
reliable delivery for a high-performance LA N that does not drop packets (Myrinet being an exarnple) 

114 



X Simpósio Brasileiro de Arquitetura de Computadores 

boils down to implementing flow contrai without timeouts. Severa! flow contrai s trategies provide 
in-arder delivery for free. 

Not ali previously-proposed :VISAs provide reliable message delivery. The ones that do are ..\:\1. 
FM, VMMC-2, PM, LFC, a nd BOM. 

3.2.5 Message Pipelining 

Again, given the large size and number of page and diff reply messages in software DS::\Is. an 
important featu re of an MSA for these syslems is intra-message pipelining. However, we can see 
in table 1 t hat only PM, BIP and Trapeze provide t his feature. 

3.2.6 Message Arrival Notification 

Given the request-reply communication style of invalidate-based software DSMs, it becomes clear 
that for a requesting node ali that matters is latency response, while for a replying node ali that 
matters is the overhead that servicing the request will entail. For this reason, after issuing a request. 
a node must poli for message a rrival. O n the replying side however, as surprising as this may sound. 
t he best option is interrupt-based notification in most cases. 

Alt hough interrupts normally generate high and undesired overheads, it is very diffi cult to 
implement a polling strategy that would not increase latency response for software DSl\ls. The 
reason for this is t hat, in the absence of compiler or executable code editing techniques, polling 
could only happen when running the software DSM code itself. This limitation would most likely 
make polling two infrequent to be useful. 

lnterrupt-based notification is not always the best option when receiving a request. Barrier 
a rrival req uests, for instance, should never interrupt the barrier manager for best performance. 
The barrier manager should simply check for these messages when it arrives at the barrier and 
poli for other arrival messages, if necessary. Thus, the ability to contrai whether a message should 
interrupt the receiver is a useful feature of MSAs. Only two MSAs provide this feature howe,·er: 
VMMC-2 does it by including a notification in the message itself and PM allows it through channels 
with different propert ies. 

In summary, we find that both polling and interrupts must be provided by the MSA. From ta
ble 1 wesee that this single requirement disqualifies mostcurrent MSAsdeveloped for Myrinet (Ai\ I, 
FM, BIP, BOM, and MyriAPI). These systems are tailored to the message-passing programming 
model and strongly depend on polling for good performance. 

4 Proposal for a N ew MSA 

lt is clear from the discussions above that no previously-proposed MSA for Myrinet is ideal for 
software DSMs such as TreadMarks. We believe that PM is the :VISA that fu lfills most of the com
munication req uirements we observed . PM ensures reliable in-a rder delivery, provides intra-message 
pipelining, and enables zero-copy data t ra nsfers by extending its queue of buffers communication 
model with remote memory write primitives. In addition, the processar can be notified of message 
arrival by either polling or interrupts. In arder to fulfill ali software DSM requirements four new 
featu res should be supported by PM: 

• Data gathering must be provided in such a way that zero-copy can actually be achieved when 
sending diff replies. PM has no support for gathering; 

• The user must have the choice of sending a message by using programmed 1/ 0 or by using 
DMA. as we h ave observed that programmed 1/ 0 is ideal when sending req uest messages a nd 
DMA is ideal when sending reply messages. PM uses D:VIA to t ransfer messages to the Nl 
both on send a nd receive operations: 

115 



X Simpósio Brasileiro de Arquitetura de Computadores 

• Zero-copy should be im plemented with statically-allocated , pin ned-down buffers for sending 
reply messages. PM uses the pin-down cache technique, which is efficient when page locality 
is unpredictable, but would involve unnecessary pinning overheads for relatively small a nd 
fixed structures such as lhe pool of diffs in TreadMarks; a nd 

• As we have proposed above, zero-copy overheads should be moved away from the criticai 
path of messages. In the PM remote memory write model, TLB lookup, page pinning, and 
buffer address exporting should be moved away from the criticai path when sending request 
messages. Ou r new technique implements t his using four new objects: a reply counter , a reply 
TLB, a reply flag and a reply -addr() primitive. T he reply TLB is stored on the Nl memory. 
Each reply table entry contains a reply number, buffer (physical) addresses. and length. lf 
a send operation is issued with a reply flag set to one, the reply counter is incremented and 
the value is sent with the request message. The remote processor may send this value back 
with the reply message. As soon as t he request message is sent the host may pin t he buffer 
region that will receive the reply message and inform the Nl of its physical address and s ize. 
These two values, together with the reply number are used to update the reply TLB via the 
reply ..addr() primitive. When the reply message arrives, if the message does not carry a reply 
number, the message is transferred as usual by using information on the q ueue of free buffers. 
lf it carries a reply number, then t he reply TLB is checked. Jf a hit occurs, zero-copy takes 
place. lf the reply number entry is missing or the message size is greater than the buffer size, 
lhe message is t ransferred by using information on the queue of free buffers again. 

Our entry on table 1 would then be (" marks optimizations we suggested to existing mecha
nisms): 

Table 2: Sum mary of Featu res 

5 Conclusions and Future Work 

In this paper we have listed t he main characteristics of ten messaging software architectures for 
the Myrinet local-area network. In addition, we have shown that none of these architectures is 
ideal for supporting page-based software distributed shared-memory systems such as TreadMarks. 
Finally, we have proposed severa! modifications that should tailor one messaging architecture to 
TreadMarks. In the near futu re, we plan on implementing our proposal, comparing it against other 
architectures , and extending it lo include deviations from the request-reply model of Treadi\Iarks. 

References 

[1) A. Basu, V. Buch , W. Vogels, and T . von Eicken . U-Net: A User-Level Network Interface 
for Para llel a nd Distributed Computing. In Proceedings of 15th ACM SOSP, pages 40-53. 
December 1995. 

[2) J . K. Bennett, J . B. Carter, and \V. Zwaenepoel. Munin: Distributed Shared Memory Based 
on Type-Specific Memory Coherence. In Proceedings of lhe 2nd PPoPP, pages 168- 176, March 
1990. 

116 



X Simpósio Brasileiro de Arquitetura de Computadores 

(3] R. Bhoedja ng, T. Ruhl, a nd H. Bal. Design lssues for User-Level Network Interface Protocols 
on Myrinet. Technical report , Dept of ~lathematics and Compu ter Science. Vrije Universiteit. 
1998. To appear in IEEE Computer. 

(4] N. Boden, O. Cohen, R. Felderman , A. l<ulawik. C. Seitz, J. Seizovic. and \V. Su. i'vlyrinet: 
A Gigabit-per-Second Local Area Network. IEEE MICRO. 15(1) :19- :36. February 1995. 

(5] C. Dubnicki, A. Bilas, K. Li, and J . Philbin. Design and lmplementation of \ ' irtual ~ Iemory

Mapped Communication on Myrinet. In Proceedings of the 1997 IPPS, pages 388-396. April 
1997. 

(6] T. Eicken. O. Culler, S. Goldstein . and 1<. Schauser. Active Messages: A Mechanism for 
lntegrated Communication and Computation. In Proceedings of lhe 19th ISCA, pagE.'S 256-
266, May 1992. 

(7] G. Henley, N. Doss, T. McMahon, and A. Skjellum . BOM: A Multiprotocol Myrinet Control 
Program and Host Application Programmer Interface. Technical Report lVISSü-EIRS-ERC-
97-3, Mississippi State University, May 1997. 

(8] H.Tezuka, A. Hori, Y. 1shikawa, and M. Sato. PM: A Operating System Coordinated High 
Performance Communication Library. In High-Performonce Computing ond Netw(Jrking "97. 
volume 1225, pages 708-717, April 1997. 

(9] V. Karamcheti and A. Chien. Software Overhead in Messaging Layers: Where Does the Time 
Go? In Proceedings of ASPLOS-IV, 1994. 

(10] P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. TreadMarks: Oistributed Sha rcd 
Memory on Standard Workstations and Operating Systems. In Proceedings o/ lhe 1 99~ !Vinter 
Useni:z: Conference, Jan 1994. 

(11] And rew J. Gallatin Kenneth G. Yocum, Jeffrey S. Chase and Alvin R. Lebeck. Cut-T hrough 
Delivery in Tra.peze: An Exercise in Low Latency Messaging. In Proceedings of HPDC, August 
1997. 

(12] L. Monnerat and R. Bianchini. Efficiently Ada.pting to Sharing Patterns in Software DSi\ ls. 
In Proceedings of the 4th HPCA, Feb 1998. 

(13] Myricom. My rinet Specifications. http:/ f www.myri.com/ myricom/ document.html. 1995. 

(14] S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstat ions: lllinois 
Fast Messa.ges (FM) for Myrinet . In Proceedings of Supercomputing 95, San Diego, C:\. 1995. 

(15] L. Prylli and B. Tourancheau . BIP: A New Protocol Designed for High-Performance Network
ing on Myrinet. In Proceedings ofiPPSj SPDP98, 1998. 

(16] C. B. Seidel, R. Bianchini, and C. L. Amorim. The Affinity Entry Consistency Protocol. In 
Proceedings ofthe 1997 1CPP, Aug 1997. 

(17] Y. Zhou , L. Iftode, and I<. Li. Performance Evaluation of Two Home-Based Lazy Release 
Consistency Protocols for Shared Memory Virtual Memory Systems. In Proceedings of lhe 2nd 
OSDJ, October 1996. 

117 




