
X Simpósio Brasileiro de_Arquitetura de Computadores 

Performance Evaluation o f Checkpointing and 
Rollback-Recovery Algorithms for 

Distributed Systems 

Sérgio Luis Cechin lngrid Jansch-Pôrto 

{cechin, ingrid}@inf.ufrgs.br 

Curso de Pós-Graduação em Ciência da Computação 

Instituto de Informática- UFRGS- Caixa Postal 15064 

91501-970 Porto Alegre- Brasil 

Keywords: Fault Tolerance, Distributed Systems, Rollback Recovery, Synchronous and 
Asynchronous Checkpointing, Performance Evaluation. 

Abstract 

In distributed systems, backward recovery has the synchronous and asynchronous 
approaches as the two main implementation paradigms. In this paper we compare two 
representative algorithms on these groups and present some theoretical results. Koo & Toueg 
synchronous algorithm and Juang & Venkatesan asynchronous algorithm have been chosen 
for this purpose. Our goal is to demonstrate that the advantages and disadvantages between 
them are mainly related to the characteristics o f the applications. 

1 lntroduction 

The difficulties related to process recovery in distributed systems are mainly related to 
system characteristics: the distributed system consists o f autonomous nodes, geographically at 
different locations, that are connected to each other by a communicaúon network. Each one of 
these nodes consists of a processor, some private memory which is inaccessible to ali other 
processors, and a private clock. The nodes are loosely coupled, do not have shared memory, 
and communicate via message passing [JAL94). The literature on recovery includes severa) 
papers with detailed description of different algorithms for checkpointing and rollback 
recovery algorithms proposed in the scope of distributed systems. This paper proposes the 
comparison of two representative algorithms of the synchronous and asynchronous 
approaches from a theoretical model proposed by the author [CEC98); our goal is to verify the 
advantages and the disadvantages that are conceptually reported in the literature as support to 
the altemative proposals and extensions of algorithms. 

The algorithms have been proposed to systems whose behavior is based in the 
following: 
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• the communication channels are assumed to have infinite buffers, to be error-free, 
and to deliver messages in the order sent; 

• undcr fault occurrence, processes can fail by stopping ifail-stop mode). Ali other 
processes are informed of the failure in finite time. Partitions of the communication 
network do not occur; 

• it is admitted the occurrence of orphan or lost messages. 

We suppose that the faults will be o f transient nature, to eliminate the need o f fault treatment 
and the consequent overhead it would cause. The total time of each message, since it is sent 
by a process until it is received by the destination process, is t,.. For analysis, t., have been 
split up in three phascs: packing parameters and transmission, t..,; time period to pass through 
communication channel, t .. ; and unpacking results, t_ . 

2 Characteristics o f the synchronous algorithm 

Koo & Toueg [K0087) proposed checkpointing and recovery algorithrns to restart the 
system from a consistem state when failures occur. This assurnption prevents the domino 
effect as well as livelock problems associated with rollback-recovery. The processes 
coordinatc their checkpointing actions in order to save a consistem set of checkpoints, that is, 
they set up a consistent global state. During this action of establishing checkpoints, only 
control messages may be sent through the channel. Consequently, each process stores at most 
two checkpoints in stable storage, and previous checkpoints may be discarded. 

Under recovery, whenever a process rolls back to its checkpoint, it notifies ali other 
processes also to roll back to their respective checkpoints. This action is coordinated to avoid 
the introduction of livelocks, i.e., situations in which a single fai lure can cause an infinite 
nurnber of rollbacks, preventing the systems from making progress [K0087). Once 
synchronized, each process installs its checkpoint state and resumes execution. 

The algorithrns are based on two-phase commit protocols. Checkpointing starts by the 
invocation of the algorithrn by a single process, may be aboned under several conditions and 
the action is postponed. The rollback recovery algorithrn assumes also that a single process 
invokes the algorithrn, but in case o f failure, it stays blocked until ali processes may roll back. 
lt may be noticed that resuming execution form a consistent state implies discarding ali 
computation that had been executed since the last checkpoint was taken. This fact implies a 
penalty in performance parameters. 

Taking checkpoints is related to parameters o f system fault occurrence. An inadequate 
choice of checkpoints frequency will be related to system performance. Consequently, low 
frequency (a few checkpoints) will probably result in a big amount of computation undone 
during a roll back after fault occurrence. lf failures often occur between successive 
checkpoints, this will imply a low frequency checkpointing, which will cause low 
performance; in other way, checkpoints taken frequently will make the system spend much 
time in the coordination process, which reduces significantly the performance, even during 
normal operation (fault-free operation). 

3 Characteristics o f the asynchronous algorithm 
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Under the asynchronous approach, checkpoints for each process are taken independently 
without any synchronization arnong lhe processes. We have chosen lhe Juang e Venkatesan 
[JUA91) algorithm, which has some similarities to lhe synchronous approach, allowing easy 
comparison. Having received a message, the process makes the related computation, changes 
its state and sends out a set o f messages to other processes. This activity o f a process is treated 
as one event: after each event, the process records in its volatile log a triple (with lhe state o f 
lhe process before lhe event, lhe incoming message that triggered the event, and lhe set of 
messages that lhe process sent in this event). From time to time, a process independently 
transfer lhe contents o f its volatile log to lhe stable storage, thereby creating a new checkpoint. 
The new checkpoint does not destroy the earlier ones. Hence, at any given time, conceptually, 
each process has a record of its complete behavior from the beginning to its latest 
checkpoint.[JAL94). The establishment of lhese local checkpoints avoids synchronization 
delays and additional messages overhead during nonnal operation. 

Because of lhe absence of synchronization, lhere is no guarantee that a set of local 
checkpoints taken will be a consistent set of checkpoints. Thus, the recovery algorithm has to 
search for lhe most recent consistent set of checkpoints before it can initiate recovery [SIN94]. 
The volatile log does not persist after lhe failure o f lhe process: the state o f the failed process 
will be set from lhe latest event logged in the stable storage; the others may start from their 
volatile logs. The major disadvantage of lhis approach is that the domino effect is possible 
when attempting to reach a consistent state; however, it is limited to the last checkpoint stored 
in stable storage for lhe failed process. Anyway, as saving actions are not communicated to 
other processes, ali lhe previous checkpoints taken from the beginning o f the application have 
to be kept in stable storage. 

Singhal & Shivaratri [SIN94) stand clearly the key points to perfonnance analysis, 
which are given in lhe following: " While synchronous checkpointing simplifies recovery 
(because a consistent set of checkpoints is readily available), it has the following 
disadvantages: additional messages are exchanged by lhe algorithm when it takes a 
checkpoint; synchronization delays are introduced during nonnal operations. Then, i f failures 
rarely occur between successive checkpoints, lhen lhe synchronous approach places 
unnecessary burden on lhe system in lhe fonn of additional messages, delays and processing 
overhead." Under lhe asynchronous approach, neilher additional messages nor 
synchronization delays disturb lhe system while lhere is fault-free operation, lhe action is 
restricted to lhe checkpoint saving. However, this situation may changc completely under 
fault occurrence. 

4 General principies and basic suppositions 

Some restrictions had been done to simplify lhe proposed perfonnance analysis; others 
were necessary to makc a consistent comparison of operation pararncters conceming both 
algorithms. Detailed description of these assumptions is presented in [CEC98) and it was 
omitted here for sake o f space: 

• lhe recursive mechanism proposed by Koo & Toueg for establishing and rolling back 
to checkpoints have not been considered (a broadcast principie is considered); 

• by hypotheses, failures have periodical occurrence; the mean period is designated 
TBF (Time Between Failures); 
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• ali active processes are considered by the fault-tolerant procedure, even those who 
have not exchanged messages with the faulty ones; 

• although Koo & Toueg algorithm tolerate failures that occur during its execution, we 
assume that faults do not occur during algorithms execution (checkpointing and 
rollback recovery). 

Performance computation will give the relative amount oftime (%) used for application 
processing considered the total time spent among application and fault-tolerant actions. The 
equation is given by: 

(Tora/Time - Fau/ToleranceTota/Time) 
Performance = .,.. IT" . 10ta 1me 

As seen before, by hypothesis, failures have a periodical occurrence; the mean value of 
performance taken from the total time will be equivalent to the one calculated considering as 
the basic time a period between failures. That is, the expectation pf the relative performance 
(RP) will be: 

E _ ( (TBF - Fau/tTo/eranceTota/Time)) __ E(FaultToleranceTota/Time) 
(RP)- E TBF -I TBF 

The time spent with fault-tolerant activities has been split up in two phases: 
checkpointing and rollback to a previous checkpoint. Both depend on the considered 
algorithm. 

5 Relative performance ofthe synchronous algorithm 

The equations presented here and in the chapters 6 were developed based on the 
algorithm's time spent to accomplish their purposes. These equation's development is 
depicted in the work [CEC98] and it was omined here for sake of space. 

We define Te,. as the checkpointing periodicity for each process (or for the coordinated 
processes set); Tcc is the time required to establish one checkpoint (ckpt), and Tu is the time 
required for a rollback. Then, the following expression gives the relative performance of the 
synchronous algorithm: 

E(RP)=(t- E(TcE>)( t - E(TRB)) 
Tcp TBF 

This equation has two terms that contribute for the decline o f performance: one is due to 
the time required to checkpointing procedures; the other is due to the time required for rolling 
back to a previous state (ckpt). The expected checkpointing time is given by the following 
expression: 

E(TCE ) = TFtX +[ PCE x E(T~~)+(l- Pçe)x E(Tt,;~K)] , 
where Tn~ is the time required to make a tentative o f establishing any checkpoint, P PR is the 

expectancy of taking a checkpoint, ~~ is the overhead for a successful checkpointing 

procedure while T~~K is the overhead for an unsuccessful checkpointing procedure. These 

terms of the expected checkpointing time may be calculated by the following equations, 
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where N is the number o f processes: 

Tnx = 3 · I m + (2 · N - 2) · I mp , when there is no support for messages broadcast; 

Tnx = 3 · I m + (3 · N - 4) ·I mp , when there is support for messages broadcast; 

7j~~ = r,t~K = Tpa, where T f'(.'F. is the time required for storing the checkpoint data. In 

practice, ~~ e r.~~" are similar but not equal; the value of ~~ is bigger as it includes the 
activation ofthe checkpoint in the stable memory. 

For the time spent in the rollback action, we have the following expression: 

(
2- Pa) TFIX [( 1- pRB) NOK OK] 

E(TRa) = Tcp x 2 x Pa +Toa+ PRB + p;;;- x r,,,,R + r, 'AR ' 

where P116 is the expectancy ofbeing successful in the rollback action; T0 rr is the time delay 

between the failure and the event of error detection; ~~ is the overhead for a successful 

rollback recovery and r.~~" is the overhead for an unsuccessful rollback procedure (at least, 
one more will be necessary). 

The computed results are shown by graphic representation. In figure I are plotted the 
curves of performance versus (a) the failure periodicity TBF, and (b) the checkpointing 
periodicity Ta. 

-:.( 

Figure I · Performance curves for the synchronous algorithm. 

The performance exhibits an asymptotic increase with increasing TBF. The asymptote 
value may be calculated by the boundary value ofthe performance equation, with the increase 
o f TBF to infinite: 

lim E(RP) = 1- E(Ta) 
TBF-+«> Tcp 

In figure l(b), there are three performance curves, each plotted for a different TBF 
value. The E,(DR) curve corresponds to a smaller TBF value while EiDR) curve corresponds 
to a bigger TBF value. Ali the curves have a peak value, which may be computed when the 
differential ofthe performance equation is made equal to zero. As result, we have: 
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( 2-Pa;) TFIX [(1-PRB) NOK ...nK] where Kl = 2 x PcE and K2 = ToET + PRJJ + ---p;;;- x 1i-..R + '•~R . 

6 Relative performance ofthe asynchronous algorithm 

Similarly to the procedure related to performance equation of the synchronous 
algorithm, now for the asynchronous case we also have two main terms in the performance 
equation: one is due to the time required for checkpointing procedures and the other is due to 
the time required for rolling back to a previous state, according to the following expression: 

E(RP)=( t -!jg_-~)(t - E(TRo)), K Tcp TBF 

where T,r:c is the time required to store the state of a process in the volatile storage, T KE is the 
time required to store the state of a process in the stable storage and À is the mean number o f 
received messages. 

We may notice in the expression of the relative performance that the different activities 
that contribute to performance degradation appear in that equation divided by the periodicity 
they occur: the time required to write in the volatile storage is divided by the messages period; 
the time required to write in the stable storage is divided by checkpointing period; while the 
time required for rolling back to a checkpoint is divided by the failure periodicity. The time 
spent with storage actions in both volatile and stable memory depend on the hardware 
characteristics; for our purposes, these parameters will be considered as a mathematical 
relation between them. 

The time required for recovery actions may be computed by the following expression: 

r. 
E(TRB) = T+ ToET + ToRc + N x (Tnt + TP.H ) , 

where T0 u is the time delay between the failure and the event of error detection; T8RC is the 
time used for the faulty process to broadcast this occurrence to the other processes in the 
system: T '"'' is the time spent during each iteration to search for the most recent consistent set 
o f checkpoints; T,., is lhe time required to process the messages during each iteration. As may 
be observed in the equation, N iterations are necessary to obtain consistent checkpoints. The 
expression to compute T '"'' is the following: 

TT.If = N X [tm +(N -2) x lmp] 

In figure 2, are ploned the curves for the relalive performance versus (a) the failure 
periodicity TBF, and (b) the checkpointing periodicity Ta. The curves o f figure 2(b) has been 
plotted for different values of TBF. The E,(RP) curve corresponds to a smaller TBF value 
while ElRP) curve corresponds to a bigger TBF value. 

The graphical form of lhe performance curves is basically the same obtained for the 
synchronous algorithm. The performance exhibits an asymptotic increase wilh increasing 
TBF. The asymptote value may be calculated by the boundary value of the performance 
equation, wilh the increase of TBF to infinite: 
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T.·rr Torr 
1im E(RP)=1-....:..:..:...---'-"""-. 

TBF-+oo X Tcp 

.,.., ___...,_.... 
/ 

... 
Figure 2 - Performance curves for the asynchronous algorithm 

From these results, we may verify that even with a 1ow fai1ure rate (a big TBF), the 
performance will have a maxirnum value. This va1ue depends on the time spent to store the 
checkpoints - both vo1ati1e and stab1e - and on the periodicity o f these storage actions: that is, 
it depends on the incoming messages rale and on the transfer rate o f these information to the 
stable memory. 

The curve of performance versus T0 have a peak value, which may be computed when 
the differentia1 ofthe performance equation is made equa1to zero. Then we have: 

where K1 = ~ and K2 = T0 u + T8Rc + N x { Tn1 + Tp,lf) . 

7 Analysis and Conclusions 

The performance equations for both a1gorithrns are determined by the two main phases 
designated as: checkpointing factor (CE) and rollback factor (RB), with the following 
equations: SP = SFa · SF RD for the synchronous algorithrn and AP = AFcE · AF RD for the 
asynchronous one. The four component factors are as in the following: 

NSFcE NSFRs Tva ~ NAFR8 
SFcE = 1- Tcp , SF RD = 1- TBF , AFa = 1- }). - TCP and AF RD = 1- TBF . 

with: NSFa =S1N +S2 , NSFRD =S3N +S4 , NA FRD = A2 N3 +A3N 2 +A4N +As 

The terms A, and S, are independent of N and TBF. They are defined using 
communication (messages) time, vo1ati1e and stab1e checkpoint write time, probabi1ity of 
checkpointing or rolling back (used in synchronous algorithrn mode1), fau1t detection time and 
periodicity of checkpointing: tentative checkpoints in synchronous a1gorithrn and stab1e 
checkpoints in asynchronous algorithm. 

Beyond the above, for our purposes, TBF, Tcp, T,cE and T PCt: will be considered as 
independent of N. 
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In general, it is supposed that the increase o f TBF (lower failure rate) encourage the use 
of asynchronous algorithrns. However, it is a simplified qualitative point-of-view. It is 
necessary to explore what factors cooperate for this result and how they do that. 

The increase of TBF does not affect the performance factor related to checkpointing: 
both SFcF. and AFcF. do not depend on TBF. Otherwise, the increase of TBF affects the 
performance factor related to the rollback but not with the same intensity in both algorithms. 
This behavior may be observed by determining how this factors change (through differentials) 
and comparing them. The differentials of AF Rll and SF Rll are given by: 

_d_SF - NSFRB 
dTBF RB - TBF2 

d NAFRB 
--AF ---
dTBF RB - TBF2 

For ali valid values of TBF and N,these differentials are positive values. Then, for 
having a significant effect of TBF on performance, the differential of factors should be 
greater. lt is necessary that fdd( N) = NAF RB - NSF RB > O. Replacing thcse factors by their 
equations, we have the following expression: 

fdd(N) = A2 N 1 + A1N 2 +(A, -S1}N +(As -S,) 
This equation result is positive for ali valid values of N (i.e., for N <!: 2 ). Then, the 

fault-tolerance cost imposed by the asynchronous algorithrn decreases faster than for the 
synchronous one. 

In spite of the conclusion above and comparing the rollback costs for both algorithms, 
we may verify that the following relation always occur: SFRB > AF RB. lt can be demonstrated 
by replacing the factors by their component factors. The result is NAF RB > NSF RB, that is true 
for ali valid values of N, as shown above. Hence, the asynchronous rollback cost will be 
always greater than for the synchronous case. However, when TBF increases, the rollback cost 
rate for the asynchronous algorithm decreases faster than for the synchronous one, both 
spreading to I when TBF spreads to infinite. 

Next point we will examine is when fault rate is low ( TBF ~ co), the fault-tolerance 
cost through recovery depends on the checkpointing activity. 

2·1 ·N+3·1 -2·1 +TpCE 
When SFa is expanded, we obtain: SFCE = 1- mp ;, mp 

cp 

However, while this equation was obtained using lmp > 1m, for ali messages, checkpointing 

invitation messages sent to ali processes by an initiator proccss may found an overloaded 
channel. In this case, lmp >1m, will not be true, and the equation should be changed to 

consider this other situation, only for these messages. Using 1, as the time spent for these 
messages and considering a high overload degree, we obtain the fo llowing expression: 

SF. = l - lc· (N - l) + TpCE. 
CE Tcp 

This equation shows that, while the asynchronous factor does not depend on N, the 
synchronous algorithm depends linearly with N. 

The equation obtained previously for SFa expresses that this factor decreases with N 
and its slope is 1<, while AFn: is independent of N. Typical curves for these factors are 
presented in figure 3, where is plotted a curve for AFn: and three curves for SFa with 
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different values to t,. lt is important to observe the slope o f SP(N): with low values, the 
difference among the performances considered for both algorithms will be significant only for 
big values o f N. The explanation is in the following. Consider the difference between AP(N) e 
SP(N): 

( 
I c ) ( I c À· TprE) DIF=AP(N) -SP(N)=- ·N - -+_____._,.,._. 

Tcp Tcp R 

For a non-overloaded 
network (1, = l9)lS ), the equation 

is: DIF:(l9x W 1)·N-(10-l}. 
In this case, for a 10% difference 
( DIF = 0,1 ), N should be greater 
than 57894 processes. 

For an overloaded network, 
with 1, = lOOms for instance, the 
expression is: 

D/F:(l0-2 )· N -(w-2
). 

1 

~~~-~:::.::- ·---=- ~=~~ •10ms) --- - - SFCE(t •20ms) 

•• ~ SFCE(t ~Oms) 
,. ... 

In this case, the same difference wou1d be reached only for N > 11 . 

lt was shown that increasing the time between failures makes the performance rate to 
grow faster for the asynchronous algorithm than for the synchronous one. However, they do 
not touch each other as they are asymptotic. 

Otherwise, the synchronous checkpointing cost grows with the nurnber of processes 
while the asynchronous one remains unchanged. 

When both factors are considered, we should look for the network over1oad. The 
checkpointing invite messages of the synchronous algorithm splits up the processing time in 
two phases: one due to the application and other due to the algorithrn actions. Passing from 
one phase to the other has a cost: the system have to wait for clearing the channel. The more 
intensive was the application message exchange before the procedure, the longer will be the 
time necessary to clear ali messages and finally to reach and process the checkpointing 
invitation message. 

The analysis of N e TBF shows that the asynchronous algorithrn become better (with 
respect to synchronous) when the application message rate is increased, . However, it should 
be followed by a low failure rate. 
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