
X Simpósio Brasileiro de_Arquitetura de Computadores

Performance Evaluation o f Checkpointing and
Rollback-Recovery Algorithms for

Distributed Systems

Sérgio Luis Cechin lngrid Jansch-Pôrto

{cechin, ingrid}@inf.ufrgs.br

Curso de Pós-Graduação em Ciência da Computação

Instituto de Informática- UFRGS- Caixa Postal 15064

91501-970 Porto Alegre- Brasil

Keywords: Fault Tolerance, Distributed Systems, Rollback Recovery, Synchronous and
Asynchronous Checkpointing, Performance Evaluation.

Abstract

In distributed systems, backward recovery has the synchronous and asynchronous
approaches as the two main implementation paradigms. In this paper we compare two
representative algorithms on these groups and present some theoretical results. Koo & Toueg
synchronous algorithm and Juang & Venkatesan asynchronous algorithm have been chosen
for this purpose. Our goal is to demonstrate that the advantages and disadvantages between
them are mainly related to the characteristics o f the applications.

1 lntroduction

The difficulties related to process recovery in distributed systems are mainly related to
system characteristics: the distributed system consists o f autonomous nodes, geographically at
different locations, that are connected to each other by a communicaúon network. Each one of
these nodes consists of a processor, some private memory which is inaccessible to ali other
processors, and a private clock. The nodes are loosely coupled, do not have shared memory,
and communicate via message passing [JAL94). The literature on recovery includes severa)
papers with detailed description of different algorithms for checkpointing and rollback
recovery algorithms proposed in the scope of distributed systems. This paper proposes the
comparison of two representative algorithms of the synchronous and asynchronous
approaches from a theoretical model proposed by the author [CEC98); our goal is to verify the
advantages and the disadvantages that are conceptually reported in the literature as support to
the altemative proposals and extensions of algorithms.

The algorithms have been proposed to systems whose behavior is based in the
following:

137

X Simpósio Brasileiro de Arquitetura de Computadores

• the communication channels are assumed to have infinite buffers, to be error-free,
and to deliver messages in the order sent;

• undcr fault occurrence, processes can fail by stopping ifail-stop mode). Ali other
processes are informed of the failure in finite time. Partitions of the communication
network do not occur;

• it is admitted the occurrence of orphan or lost messages.

We suppose that the faults will be o f transient nature, to eliminate the need o f fault treatment
and the consequent overhead it would cause. The total time of each message, since it is sent
by a process until it is received by the destination process, is t,.. For analysis, t., have been
split up in three phascs: packing parameters and transmission, t..,; time period to pass through
communication channel, t .. ; and unpacking results, t_ .

2 Characteristics o f the synchronous algorithm

Koo & Toueg [K0087) proposed checkpointing and recovery algorithrns to restart the
system from a consistem state when failures occur. This assurnption prevents the domino
effect as well as livelock problems associated with rollback-recovery. The processes
coordinatc their checkpointing actions in order to save a consistem set of checkpoints, that is,
they set up a consistent global state. During this action of establishing checkpoints, only
control messages may be sent through the channel. Consequently, each process stores at most
two checkpoints in stable storage, and previous checkpoints may be discarded.

Under recovery, whenever a process rolls back to its checkpoint, it notifies ali other
processes also to roll back to their respective checkpoints. This action is coordinated to avoid
the introduction of livelocks, i.e., situations in which a single fai lure can cause an infinite
nurnber of rollbacks, preventing the systems from making progress [K0087). Once
synchronized, each process installs its checkpoint state and resumes execution.

The algorithrns are based on two-phase commit protocols. Checkpointing starts by the
invocation of the algorithrn by a single process, may be aboned under several conditions and
the action is postponed. The rollback recovery algorithrn assumes also that a single process
invokes the algorithrn, but in case o f failure, it stays blocked until ali processes may roll back.
lt may be noticed that resuming execution form a consistent state implies discarding ali
computation that had been executed since the last checkpoint was taken. This fact implies a
penalty in performance parameters.

Taking checkpoints is related to parameters o f system fault occurrence. An inadequate
choice of checkpoints frequency will be related to system performance. Consequently, low
frequency (a few checkpoints) will probably result in a big amount of computation undone
during a roll back after fault occurrence. lf failures often occur between successive
checkpoints, this will imply a low frequency checkpointing, which will cause low
performance; in other way, checkpoints taken frequently will make the system spend much
time in the coordination process, which reduces significantly the performance, even during
normal operation (fault-free operation).

3 Characteristics o f the asynchronous algorithm

138

X Simpósio Brasileiro de Arquitetura de Computadores

Under the asynchronous approach, checkpoints for each process are taken independently
without any synchronization arnong lhe processes. We have chosen lhe Juang e Venkatesan
[JUA91) algorithm, which has some similarities to lhe synchronous approach, allowing easy
comparison. Having received a message, the process makes the related computation, changes
its state and sends out a set o f messages to other processes. This activity o f a process is treated
as one event: after each event, the process records in its volatile log a triple (with lhe state o f
lhe process before lhe event, lhe incoming message that triggered the event, and lhe set of
messages that lhe process sent in this event). From time to time, a process independently
transfer lhe contents o f its volatile log to lhe stable storage, thereby creating a new checkpoint.
The new checkpoint does not destroy the earlier ones. Hence, at any given time, conceptually,
each process has a record of its complete behavior from the beginning to its latest
checkpoint.[JAL94). The establishment of lhese local checkpoints avoids synchronization
delays and additional messages overhead during nonnal operation.

Because of lhe absence of synchronization, lhere is no guarantee that a set of local
checkpoints taken will be a consistent set of checkpoints. Thus, the recovery algorithm has to
search for lhe most recent consistent set of checkpoints before it can initiate recovery [SIN94].
The volatile log does not persist after lhe failure o f lhe process: the state o f the failed process
will be set from lhe latest event logged in the stable storage; the others may start from their
volatile logs. The major disadvantage of lhis approach is that the domino effect is possible
when attempting to reach a consistent state; however, it is limited to the last checkpoint stored
in stable storage for lhe failed process. Anyway, as saving actions are not communicated to
other processes, ali lhe previous checkpoints taken from the beginning o f the application have
to be kept in stable storage.

Singhal & Shivaratri [SIN94) stand clearly the key points to perfonnance analysis,
which are given in lhe following: " While synchronous checkpointing simplifies recovery
(because a consistent set of checkpoints is readily available), it has the following
disadvantages: additional messages are exchanged by lhe algorithm when it takes a
checkpoint; synchronization delays are introduced during nonnal operations. Then, i f failures
rarely occur between successive checkpoints, lhen lhe synchronous approach places
unnecessary burden on lhe system in lhe fonn of additional messages, delays and processing
overhead." Under lhe asynchronous approach, neilher additional messages nor
synchronization delays disturb lhe system while lhere is fault-free operation, lhe action is
restricted to lhe checkpoint saving. However, this situation may changc completely under
fault occurrence.

4 General principies and basic suppositions

Some restrictions had been done to simplify lhe proposed perfonnance analysis; others
were necessary to makc a consistent comparison of operation pararncters conceming both
algorithms. Detailed description of these assumptions is presented in [CEC98) and it was
omitted here for sake o f space:

• lhe recursive mechanism proposed by Koo & Toueg for establishing and rolling back
to checkpoints have not been considered (a broadcast principie is considered);

• by hypotheses, failures have periodical occurrence; the mean period is designated
TBF (Time Between Failures);

139

X Simpósio Brasileiro de Arquitetura de Computadores

• ali active processes are considered by the fault-tolerant procedure, even those who
have not exchanged messages with the faulty ones;

• although Koo & Toueg algorithm tolerate failures that occur during its execution, we
assume that faults do not occur during algorithms execution (checkpointing and
rollback recovery).

Performance computation will give the relative amount oftime (%) used for application
processing considered the total time spent among application and fault-tolerant actions. The
equation is given by:

(Tora/Time - Fau/ToleranceTota/Time)
Performance = .,.. IT" . 10ta 1me

As seen before, by hypothesis, failures have a periodical occurrence; the mean value of
performance taken from the total time will be equivalent to the one calculated considering as
the basic time a period between failures. That is, the expectation pf the relative performance
(RP) will be:

E _ ((TBF - Fau/tTo/eranceTota/Time)) __ E(FaultToleranceTota/Time)
(RP)- E TBF -I TBF

The time spent with fault-tolerant activities has been split up in two phases:
checkpointing and rollback to a previous checkpoint. Both depend on the considered
algorithm.

5 Relative performance ofthe synchronous algorithm

The equations presented here and in the chapters 6 were developed based on the
algorithm's time spent to accomplish their purposes. These equation's development is
depicted in the work [CEC98] and it was omined here for sake of space.

We define Te,. as the checkpointing periodicity for each process (or for the coordinated
processes set); Tcc is the time required to establish one checkpoint (ckpt), and Tu is the time
required for a rollback. Then, the following expression gives the relative performance of the
synchronous algorithm:

E(RP)=(t- E(TcE>)(t - E(TRB))
Tcp TBF

This equation has two terms that contribute for the decline o f performance: one is due to
the time required to checkpointing procedures; the other is due to the time required for rolling
back to a previous state (ckpt). The expected checkpointing time is given by the following
expression:

E(TCE) = TFtX +[PCE x E(T~~)+(l- Pçe)x E(Tt,;~K)] ,
where Tn~ is the time required to make a tentative o f establishing any checkpoint, P PR is the

expectancy of taking a checkpoint, ~~ is the overhead for a successful checkpointing

procedure while T~~K is the overhead for an unsuccessful checkpointing procedure. These

terms of the expected checkpointing time may be calculated by the following equations,

140

X Simpósio Brasileiro de Arquitetura de Computadores

where N is the number o f processes:

Tnx = 3 · I m + (2 · N - 2) · I mp , when there is no support for messages broadcast;

Tnx = 3 · I m + (3 · N - 4) ·I mp , when there is support for messages broadcast;

7j~~ = r,t~K = Tpa, where T f'(.'F. is the time required for storing the checkpoint data. In

practice, ~~ e r.~~" are similar but not equal; the value of ~~ is bigger as it includes the
activation ofthe checkpoint in the stable memory.

For the time spent in the rollback action, we have the following expression:

(
2- Pa) TFIX [(1- pRB) NOK OK]

E(TRa) = Tcp x 2 x Pa +Toa+ PRB + p;;;- x r,,,,R + r, 'AR '

where P116 is the expectancy ofbeing successful in the rollback action; T0 rr is the time delay

between the failure and the event of error detection; ~~ is the overhead for a successful

rollback recovery and r.~~" is the overhead for an unsuccessful rollback procedure (at least,
one more will be necessary).

The computed results are shown by graphic representation. In figure I are plotted the
curves of performance versus (a) the failure periodicity TBF, and (b) the checkpointing
periodicity Ta.

-:.(

Figure I · Performance curves for the synchronous algorithm.

The performance exhibits an asymptotic increase with increasing TBF. The asymptote
value may be calculated by the boundary value ofthe performance equation, with the increase
o f TBF to infinite:

lim E(RP) = 1- E(Ta)
TBF-+«> Tcp

In figure l(b), there are three performance curves, each plotted for a different TBF
value. The E,(DR) curve corresponds to a smaller TBF value while EiDR) curve corresponds
to a bigger TBF value. Ali the curves have a peak value, which may be computed when the
differential ofthe performance equation is made equal to zero. As result, we have:

141

X Simpósio Brasileiro de Arquitetura de Computadores

(2-Pa;) TFIX [(1-PRB) NOK ...nK] where Kl = 2 x PcE and K2 = ToET + PRJJ + ---p;;;- x 1i-..R + '•~R .

6 Relative performance ofthe asynchronous algorithm

Similarly to the procedure related to performance equation of the synchronous
algorithm, now for the asynchronous case we also have two main terms in the performance
equation: one is due to the time required for checkpointing procedures and the other is due to
the time required for rolling back to a previous state, according to the following expression:

E(RP)=(t -!jg_-~)(t - E(TRo)), K Tcp TBF

where T,r:c is the time required to store the state of a process in the volatile storage, T KE is the
time required to store the state of a process in the stable storage and À is the mean number o f
received messages.

We may notice in the expression of the relative performance that the different activities
that contribute to performance degradation appear in that equation divided by the periodicity
they occur: the time required to write in the volatile storage is divided by the messages period;
the time required to write in the stable storage is divided by checkpointing period; while the
time required for rolling back to a checkpoint is divided by the failure periodicity. The time
spent with storage actions in both volatile and stable memory depend on the hardware
characteristics; for our purposes, these parameters will be considered as a mathematical
relation between them.

The time required for recovery actions may be computed by the following expression:

r.
E(TRB) = T+ ToET + ToRc + N x (Tnt + TP.H) ,

where T0 u is the time delay between the failure and the event of error detection; T8RC is the
time used for the faulty process to broadcast this occurrence to the other processes in the
system: T '"'' is the time spent during each iteration to search for the most recent consistent set
o f checkpoints; T,., is lhe time required to process the messages during each iteration. As may
be observed in the equation, N iterations are necessary to obtain consistent checkpoints. The
expression to compute T '"'' is the following:

TT.If = N X [tm +(N -2) x lmp]

In figure 2, are ploned the curves for the relalive performance versus (a) the failure
periodicity TBF, and (b) the checkpointing periodicity Ta. The curves o f figure 2(b) has been
plotted for different values of TBF. The E,(RP) curve corresponds to a smaller TBF value
while ElRP) curve corresponds to a bigger TBF value.

The graphical form of lhe performance curves is basically the same obtained for the
synchronous algorithm. The performance exhibits an asymptotic increase wilh increasing
TBF. The asymptote value may be calculated by the boundary value of the performance
equation, wilh the increase of TBF to infinite:

142

X Simpósio Brasileiro de Arquitetura de Computadores

T.·rr Torr
1im E(RP)=1-....:..:..:...---'-"""-.

TBF-+oo X Tcp

.,.., ___...,_....
/

...
Figure 2 - Performance curves for the asynchronous algorithm

From these results, we may verify that even with a 1ow fai1ure rate (a big TBF), the
performance will have a maxirnum value. This va1ue depends on the time spent to store the
checkpoints - both vo1ati1e and stab1e - and on the periodicity o f these storage actions: that is,
it depends on the incoming messages rale and on the transfer rate o f these information to the
stable memory.

The curve of performance versus T0 have a peak value, which may be computed when
the differentia1 ofthe performance equation is made equa1to zero. Then we have:

where K1 = ~ and K2 = T0 u + T8Rc + N x { Tn1 + Tp,lf) .

7 Analysis and Conclusions

The performance equations for both a1gorithrns are determined by the two main phases
designated as: checkpointing factor (CE) and rollback factor (RB), with the following
equations: SP = SFa · SF RD for the synchronous algorithrn and AP = AFcE · AF RD for the
asynchronous one. The four component factors are as in the following:

NSFcE NSFRs Tva ~ NAFR8
SFcE = 1- Tcp , SF RD = 1- TBF , AFa = 1- }). - TCP and AF RD = 1- TBF .

with: NSFa =S1N +S2 , NSFRD =S3N +S4 , NA FRD = A2 N3 +A3N 2 +A4N +As

The terms A, and S, are independent of N and TBF. They are defined using
communication (messages) time, vo1ati1e and stab1e checkpoint write time, probabi1ity of
checkpointing or rolling back (used in synchronous algorithrn mode1), fau1t detection time and
periodicity of checkpointing: tentative checkpoints in synchronous a1gorithrn and stab1e
checkpoints in asynchronous algorithm.

Beyond the above, for our purposes, TBF, Tcp, T,cE and T PCt: will be considered as
independent of N.

143

X Simpósio Brasileiro de Arquitetura de Computadores

In general, it is supposed that the increase o f TBF (lower failure rate) encourage the use
of asynchronous algorithrns. However, it is a simplified qualitative point-of-view. It is
necessary to explore what factors cooperate for this result and how they do that.

The increase of TBF does not affect the performance factor related to checkpointing:
both SFcF. and AFcF. do not depend on TBF. Otherwise, the increase of TBF affects the
performance factor related to the rollback but not with the same intensity in both algorithms.
This behavior may be observed by determining how this factors change (through differentials)
and comparing them. The differentials of AF Rll and SF Rll are given by:

_d_SF - NSFRB
dTBF RB - TBF2

d NAFRB
--AF ---
dTBF RB - TBF2

For ali valid values of TBF and N,these differentials are positive values. Then, for
having a significant effect of TBF on performance, the differential of factors should be
greater. lt is necessary that fdd(N) = NAF RB - NSF RB > O. Replacing thcse factors by their
equations, we have the following expression:

fdd(N) = A2 N 1 + A1N 2 +(A, -S1}N +(As -S,)
This equation result is positive for ali valid values of N (i.e., for N <!: 2). Then, the

fault-tolerance cost imposed by the asynchronous algorithrn decreases faster than for the
synchronous one.

In spite of the conclusion above and comparing the rollback costs for both algorithms,
we may verify that the following relation always occur: SFRB > AF RB. lt can be demonstrated
by replacing the factors by their component factors. The result is NAF RB > NSF RB, that is true
for ali valid values of N, as shown above. Hence, the asynchronous rollback cost will be
always greater than for the synchronous case. However, when TBF increases, the rollback cost
rate for the asynchronous algorithm decreases faster than for the synchronous one, both
spreading to I when TBF spreads to infinite.

Next point we will examine is when fault rate is low (TBF ~ co), the fault-tolerance
cost through recovery depends on the checkpointing activity.

2·1 ·N+3·1 -2·1 +TpCE
When SFa is expanded, we obtain: SFCE = 1- mp ;, mp

cp

However, while this equation was obtained using lmp > 1m, for ali messages, checkpointing

invitation messages sent to ali processes by an initiator proccss may found an overloaded
channel. In this case, lmp >1m, will not be true, and the equation should be changed to

consider this other situation, only for these messages. Using 1, as the time spent for these
messages and considering a high overload degree, we obtain the fo llowing expression:

SF. = l - lc· (N - l) + TpCE.
CE Tcp

This equation shows that, while the asynchronous factor does not depend on N, the
synchronous algorithm depends linearly with N.

The equation obtained previously for SFa expresses that this factor decreases with N
and its slope is 1<, while AFn: is independent of N. Typical curves for these factors are
presented in figure 3, where is plotted a curve for AFn: and three curves for SFa with

144

X Simpósio Brasileiro de Arquitetura de Computadores

different values to t,. lt is important to observe the slope o f SP(N): with low values, the
difference among the performances considered for both algorithms will be significant only for
big values o f N. The explanation is in the following. Consider the difference between AP(N) e
SP(N):

(
I c) (I c À· TprE) DIF=AP(N) -SP(N)=- ·N - -+_____._,.,._.

Tcp Tcp R

For a non-overloaded
network (1, = l9)lS), the equation

is: DIF:(l9x W 1)·N-(10-l}.
In this case, for a 10% difference
(DIF = 0,1), N should be greater
than 57894 processes.

For an overloaded network,
with 1, = lOOms for instance, the
expression is:

D/F:(l0-2)· N -(w-2
).

1

~~~-~:::.::- ·---=- ~=~~ •10ms) --- - - SFCE(t •20ms) 

•• ~ SFCE(t ~Oms) 
,. ... 

In this case, the same difference wou1d be reached only for N > 11 . 

lt was shown that increasing the time between failures makes the performance rate to 
grow faster for the asynchronous algorithm than for the synchronous one. However, they do 
not touch each other as they are asymptotic. 

Otherwise, the synchronous checkpointing cost grows with the nurnber of processes 
while the asynchronous one remains unchanged. 

When both factors are considered, we should look for the network over1oad. The 
checkpointing invite messages of the synchronous algorithm splits up the processing time in 
two phases: one due to the application and other due to the algorithrn actions. Passing from 
one phase to the other has a cost: the system have to wait for clearing the channel. The more 
intensive was the application message exchange before the procedure, the longer will be the 
time necessary to clear ali messages and finally to reach and process the checkpointing 
invitation message. 

The analysis of N e TBF shows that the asynchronous algorithrn become better (with 
respect to synchronous) when the application message rate is increased, . However, it should 
be followed by a low failure rate. 

References 

[CEC98] Cechin, S. L. On the theoretica/ performance evaluation of nvo rollback-recovery 
synchronous and asynchronous algorithms. CPGCC I UFRGS. April, 1998 (Report 
TI n2 729) - In Portuguese. 

(JAL94) Jalote, P. Fau/t Tolerance in Distributed Systems. New Jersey: Prentice-Hall, 1994. 

(JUA91] Juang, T.; Venkatesan, S. Crash Recovery with Little Overhead. lnt'l. Conf. on 
Distributed Computing Systems. Proceedings. May 1991. pp.454-461 . 

145 



X Simpósio Brasileiro de Arquitetura de Computadores 

[K0087] Koo, R; Toueg. S. Checkpointing and Rollback-Recovery for Distributed Systems. 
IEEE Trans. 011 Software Engineering, v .SE-1 3( I ):23-31, Jan. 1987. 

[SIN94] Singhal, M.; Shivaratri, N. Advanced Concepls in Operaling Sys1ems. New York: 
McGraw-Hill, 1994. 

146 




