X Simpésio Brasileiro de Arquitetura de Computadores

Visualizing Execution Histories on Multiple Memory Consistency Models
Alba Cristina Magalhdes de Melo, Simone Cintra Chagas
albamm(@gcic.unb.br, simonec@cic.unb.br
Departamento de Ciéncia da Computagio/UnB
Campus Universitario - Asa Norte - CEP -70910-900 Brasilia - Brazil
Fone: (55)(061)3482702

Abstract In order 1o provide a better understanding on the semantics of the memory models, many
researchers have proposed formalisms to define them. Unfortunately, many of the formal definitions are so
complex that it is still difficult to say what kind of execution history can be produced on a particular
meniory consistency model. In this paper, we propose a visualization tool that shows what operations
orderings could lead to user-defined execution histories on different memory consistency models. The
memory consistency model defines order relations that restrict the executions that can be produced. We
also present a prototype of this visualization tool that analyses two-pr or execution histories for two
memory consistency models: sequential consistency and PRAM consistency.

1 Introduction

Using the shared memory programming paradigm in parallel architectures is quite
complex. The main reason for this increased complexity is the difficulty to make the shared
memory behave exactly as if it was a uniprocessor memory. This characteristic is important
since it could make uniprocessor programs automatically portable to parallel architectures.
Besides, programmers are already used to the uniprocessor shared memory programming
model and using a similar model would make parallel programming easier.

In [Lam79], a memory model called Sequential Consistency was proposed. Using this
memory model, all parallel processes are able to observe all shared memory accesses in the
same order. However, this model slightly differs from the uniprocessor model because real
time order is relaxed. Many hardware and software systems have implemented Sequential
Consistency. Although Sequential Consistency provides a relatively easy programming model,
there is a great overhead on coherence operations to guarantee that all processors see always
the same access order [Mos93].

To reduce coherence overhead, researchers have proposed to relax some consistency
conditions, thus creating new shared memory behaviors that are different from the traditional
uniprocessor one. These memory models are called relaxed memory consistency models
because they only guarantee that some of the shared memory accesses are seen by all
processors on the same order.

Memory consistency models, strong or relaxed ones, have not been originally formally
defined. The lack of a unique framework where memory models can be formally defined makes
it difficult to compare and understand the memory model semantics.

In this article, we describe a visualization tool that assists DSM-system designers and
multiprocessor hardware designers in the task of specifying and analyzing a memory
consistency model. Particularly, this new tool analyses a particular execution history on a
chosen memory model and shows if it is valid or not. Basically, we build an execution tree and
traverse it, respecting the constraints imposed by the current memory model. If we arrive at the
leaves, there is at least one valid execution path and, thus, the execution history is valid on the
memory model. We describe also the prototype of this visualization tool that analyses
execution histories on two memory models: Sequential Consistency and PRAM Consistency.

The rest of this paper is organized as follows. Section 2 describes our system model.
Section 3 presents a denotational approach based on execution trees that is used to decide the
validity of an execution history on a particular memory model. The prototype of a multiple
memory consistency model visualization tool is presented in section 4. Related work in the
area of DSM visualization is presented in section 5. Finally, conclusions are presented in
section 6.

31

X Simposio Brasileiro de Arquitetura de Computadores

2 System Model

To describe memory models in a formal way, we propose a history-based system model
that is related to the models described in [Adv93] and [KNA93]. This model was already
described in [Bal97]. In the present paper, we will only review some definitions:

System A finite set of processors

Processor p, Execules operations on the Shared Global Memory M

Shared Global Memory M Contains all memory addresses

Local memory m; Caches all memory addresses of M

Opi(x)v Memory operation executed by processor p; on address x with value v,

Basic types of operation on M read(r) and write (w)
Syncronization operations on M_| sync(x):acquire(x):release(x) or user-defined operations

Ogi (X)V 15 issued Processor p; executes the instruction ofx)v.
T (X)v is performed A write operation on x cannot modify the value retumed to p;
Wi (xX)v n-1
c= L WpalX)V

a=0
Wpi (X)v perfomed with respect to | The value v is written to the address x on the local memory m; of p,
Processor p,
Wi (X)v performed Wpi (X)v is performed with respect to all processors.
Local execution history Hyi An ordered sequence of memory operations issued by p,
Execution history H U Hyi
Memory Consistency Model

R
Defines an order relation_(-) on a set of shared memory accesses

In our definitions, we use the notion of linear sequences. If H is a history, a linear
sequence of H contains all operations in H exactly once. A linear sequence is fegal if all read
operations r(x)v return the value written by the most recent write operation on the same
address in the sequence. The decision of which orderings are valid in an execution history is
made by the memory consistency model. One execution history is valid on a memory
consistency model if it can be produced with the order relation defined by the model.

3 Validating Execution Histories

Computing orderings for execution histories is a problem that has been extensively
studied in [NeMi90). In this paper, this problem is shown to be NP-hard. This is basically
because, in the most general case, we must examine all possible orderings before deciding
which orderings could have produced a particular execution history.

Validating a given execution history on a particular memory model is thus a complex
task that is decomposed in three main steps in our system: build the execution tree, extract
constraints from the memory model and traverse the execution tree.

In order to build a complete execution tree, we must include all possible interleavings
of shared memory operations that appear in an execution history. Figure 1 shows an execution
history and its associated execution tree.

o E L

L

Figure I - An Execution History and Its Associated Execution Tree

32

X Simpdsio Brasileiro de Arquitetura de Computadores

In figure 1, there are six possible execution paths. Each path is an ordered sequence of
nodes, from the root to the leaf. There are p! linear execution orders that can be derived,
where p is the number of memory operations to be considered. We observe thus an explosion
of the number of possible paths. Although all the sequences generated in figure 1 are linear,
some of them are not well-formed as defined by [HS92]. Removing non well-formed
sequences from the execution tree will surely reduce the size of the tree and that is done with
no side-effect, as there is no practical interest in allowing values to be read before they are
written.

For every chosen memory consistency model, there are two decisions that must be
taken. These decisions will be based on the formal definitions. As an illustration, we will
consider the formal definitions of SC and PRAM presented in [Bal97]. First, we must identify
the set of operations that will be validated. In the case of strong memory models, such as
Sequential Consistency, all shared memory operations must be included. In the case of relaxed
memory models, only a subset of the memory operations will be verified. For example, in
PRAM consistency, Hj,.. is this subset. Second, we must define what order must be respected
in this set of operations. In the particular case of Sequential Consistency and PRAM
Consistency, the only order to be respected is program order. For the particular history in

figure 1, the program order that must be respected is rpa(x)1 % wpa(y)2. The last step in
validating a history consists to examine all possible paths that belong to the execution tree and
verify if they satisfy the constraints imposed by the model. We use a left-to-right in-depth
algorithm to traverse the execution tree in search of valid execution paths.

When a node is visited, there are two decisions that can be taken. If the operation in the
node is valid on the memory consistency model, the in-depth search continues and the next
node is examined. If the operation is not valid, the current path is abandoned and the next left-
to-right path is examined. If we arrive at one valid leaf, that means that the whole path is valid.

4 Prototype Implementation
We implemented a prototype of our visualization tool using the Delphi 3.0
programming environment. The functionality of the prototype is shown in figure 2.

:Visualization tool s
- 2 C ion of the

— Ly
history l jon tree :
'cxecunan tree

MCM Analysis
- valid e on path
= : or not valid message
| Other MCM Analysis I

Figure 2 - Prototype of the visualization tool

In our visualization prototype, there are two main modules: Construction of the
Execution Tree and Memory Consistency Model Analisys. The first module receives an
execution history as input. This execution history can be selected by the user among predefined
execution histories or can be provided by the user himself. In the first version of our prototype,
we limited execution histories to have only two processors (P; and P;) with at most three
memory operations per processor. The basic function of this module is to construct a tree
containing the possible execution paths that could have generated the chosen execution history.

After the tree construction, the user must choose which memory consistency model is
to be used in the analysis. By now, we have only implemented Sequential Consistency
[Lamp79] and PRAM Consistency[LS88]. The chosen MCM receives the execution history
and its associated execution tree and searches the tree for valid paths, as explained in section 3.

33

X Simpdsio Brasileiro de Arquitetura de Computadores

Our visualization tool provides both a memory view and an ordering view. The
memory view shows the values of each memory position x for every memory M;. The ordering
view shows the execution path that is being examined as well as the valid and invalid execution
paths that have already been decided. The analysis of an execution history can be done
automatically or in a step-by-step basis.

5 Related Work

[CBE9S] presents a visualization tool called StormWatch. This tool is able to analyse
the same application on different memory coherence protocols. StormWatch provides trace,
source and communication views. The trace view is based on execution histories. Maya is a
simulation plataform described in [ACL94]. It analyses the behavior of coherence protocols
that implement multiple memory consistency models. Basically, these two systems provide
visualization of the behavior of parallel applications on some specific implementations of
memory consistency models. While this kind of visualization is very useful, it only shows that
some of the constraints imposed by a particular implementation of a memory consistency
model can lead to bad performance results.

Analysing feasible event orderings has been previously done in the domain of parallel
and distributed debugging, specially to detect race conditions [AHM91]. [NeMi90] analysed
formally the possible event orderings that can be generated by a parallel program and
demonstrated the NP-hardness of this problem.

As far as we know, this is the first work that provides a visualization tool that can be
used to analyse the effects and the potentialities of memory consistency models, in a way that
is totally independent from coherence protocols that could implement it. We claim that this
separation is necessary.

6 Conclusions and Future Work

In this article, we presented a visualization tool that analyses execution histories and
shows graphically what valid execution paths could have led to their production. The analisys
of execution histories can be done on a variety of memory consistency models. We claim that
visualizing the possible interleavings of shared memory accesses is helpful for multiprocessor
hardware designers and DSM-system designers in the task of choosing the most appropriate
memory model. This can reduce considerably the number of unexpected results that are
produced after the machine or the software is released.

As future work, we intend to incorporate more memory models to our visualization
tool. Also, we intend to define a language for specifying memory consistency models based on
formal definitions.

7 References

[ACL94] D. Agrawal, M. Choy, H. Leong. A. Singh, Evaluating Weak Memories with Maya, In Proceedings of the 8th Workshop on Parallcl
and Distributed Simulation, July, 1994, pages 151-155.

[Adv93] S. V. Adve, Designing Multiple Memory Ci 'y Models for Shared-Memory Multiprocessors, PhD thesis, University of
Wisconsin-Madison, 1993,

[AHM91] 8. V. Adve, M. Hill, B. Miller, H. Netzer, Detecning Data Races on Weak Memory Systems, In 18th Annual International
Symposium on Computer Archif May, 1991, p.234-243.

[Bal97) A. Balaniuk, Supporting Multiple Memory Consistency Models on a Shared Virtual Memory Parallel Programming Environment,
In SBAC-PAD 97, October, 1997, pages 365-379.

[CBE95] T. Chilimbi, T. Ball, 5. Eick, J. Larus, Stormi¥atch: a Tool for Visualizing Memory System Protocols, Supercomputing, 1995,

[H892] A Heddaya, H. Sinha, An Overview of Mermera: a System Formalism for Non-Coherent Distributed Paralle! Memory, Technical
repont BU-CS-92-009, Boston University, September, 1992, 21 pages.

[KNA93] P. Kohli, G. Neiger, M. Ahamad, A Ch, iz n of Scalable Shared M . Technical Report GIT-CC-93/04, GIT, 1993.

[Lam79] L. Lampont, How to Make a Multip Comp that Correctly £ Multiprocess Programs, 1EEE Transactions on

Computers, pages 690-691, 1979,

[Ls88) Lipton, R. J. and Sandberg, J. 5. PRAM: A Scalable Shared Memory. Technical Report CS-TR-180-88, Princeton University,
September 1988.

[Mos93] D. Mosberger, Memory C Models, Operating Systems Review, pages 18-26, 1993,

[NeMig0] R. Netzer, B, Miller, On the Complexity of Event Ordering for Shared-Memory Parallel Program Executions, Technical Repont
TR-908, University of Wisconsin-Madison, January, 1990.

34

