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Abslracl. Dynamically trace sch•d11l•d VUIV (OTSVLIW) archi1ec1ures can be used 10 implemenl machines 
chac execuce code o f currenc RISC or CISC inscruccion sec archiceccures in a VLIW fashion, delivering inslruccion 
levei parallelism wich backward code compacibilicy. This paper presenlS preliminary SPECinc95 performance 
mesuramenlS of lhe DTSVUW archiceccure. obcained wich a simulacor which h as been implemenced in C. 

1. Introduction 
Object code compatibility is a problem for Very Long lllstruction Word (VLIW) 

architectures: mapping a VLIW instruction sei architecture (ISA) to implementations with 
different hardware latencies and varying leveis of parallelism is not generally possible. To get 
over this, a dynamically sclreduled VUW (DSVLIW) was presented by Rau (I ]. However, 
despite the ability to implement a family of VLIW machines with different functional units' 
latency and the same ISA, this concept cannot be used to implement an existem sequential 
ISA. Ebcioglu and Altman [2] with their DAISY machine can translate dynamically from the 
object code of an existing ISA architecture to the object code of a VLIW using a Virtual 
Machine Monitor (VMM) implemented in software. The DAISY machine concept relies on 
the ability of the VMM to translate code fast, and in the reusability of this code. Since the 
VMM is implemented in software, the cost of the translalion is necessarily high. Although 
code reusability is probably appreciable, a hardware translation is possibly advantageous. 

The Dynamic lnstruction Forrnatling (DIF) concept (Nair and Hopkins [3]) perforrns 
hardware re-forrnaning of the fetched code. The original code is executed on a primary engine 
(a simple processar, less aggressive in exploiting parallelism) and, at the same time, re­
forrnatted into the DIF VLIW cache for execution by a VLIW engine. This paper describes an 
architecture organisation that implements the DIF concept, named dynamica/ly trace 
sclreduled VUW (DTSVLIW) [4]. In order to evaluate the DTSVLIW architecture, a 
parametric simulator was irnplemented and execution driven sirnulation was perforrned using 
lhe SPECint95 benchmark suíte. Experimental results presented here show that the 
DTSVLIW can achieve instruction leve/ parallelism (ILP) higher lhan 4 instructions per cycle 
with some rnachine configurations. 

This paper is organised as follows. In lhe next section, the DTSVLIW architecure is 
described. In Section 3, the experimental melhodology and the results of the experiments 
carried out to evaluate the DTSVLIW architecture are presented. Section 4 contains the 
conclusions and fu ture work. 

2. The DTSVLIW Architecture 
The DTSVLIW has two execulion engines: the Scheduler Engine and the VLIW Engine; 

and two caches for instructions: the lnstruction Cache and the VLIW Cache. The Scheduler 
Engine fetches instructions from the lnstruction Cache and executes the original code for the 
first time using sirnple pipelined hardware. In addition, the Scheduler Engine dyt~amically 
schedules the trace produced during the execution into VL/W instructions and saves them as 
blocks of VLIW instructions into the VLIW Cache. If the same code is executed again, it is 
fe lched by the VLIW Engine and executed in a VLIW fashion. A block diagram of the 
DTSVLIW is presented in Figure I. 

1 Sponsored by CAPES (Brazilian Governmenc Agency). 
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Figllre I : The OTSVUW archi<ee<ure. 

The Scheduler Engine of the DTSVLIW consists of the Trace Processar and lhe 
Scheduler Uni!. The Trace Processar of the DTSVLIW presenled in lhis paper is a simple 
pipelined scalar Sparc processar. As lhis implementalion executes Sparc-7 ISA [5) code, lhe 
Trace Processar is capable of execuling a li instructions of this ISA. The Scheduler Unit uses a 
pipelined implementation of the FCFS (Fist Come Firsl Served) scheduling algorilhm, 
tradilionally used in microcode compaclion [6]. 

The FCFS algorithm has been chosen as the scheduling algorithm of the DTSVLIW for 
lhree reasons. First, as its narne states, it operates with one instruction at a time and considers 
instruclions in the stricl order that they appear during program execulion, which perfectly fits 
lhe DTSVLIW mode of operalion. Second, lhe FCFS algorithm produces optimum or near­
oplimum scheduling [6]. Finally, the FCFS algorithm is easy to implement in hardware in a 
pipelined fashion. The implemented version of the FCFS algorithm runs over a circular list 
that was narned sclreduling list. 

The scheduling list has a fixed number of long instructions, one per element of the list. 
Each element of the list has also a candidate instruction. A valid candidate inslruction is 
scheduled into a list element in lhe preceding clock cycle, and is an aspiram member of the 
long instruction in the elemenl. A valid candidate instruction still may be moved lo a higher 
position in the list. An instruclion with execulion finished in the Trace Processar in one cycle 
can be inserted in lhe scheduling list in the subsequent cycle. If the scheduling list is not 
empty and depending on dependencies, the incoming instruction becomes a candidate 
instruclion either in the tail element of lhe list or in a new entry added to the list. In the latter 
case, i f lhere are no spare list elements, lhe list is made empty, the instruclion is insened in the 
empty lisl, and the whole previous list content is sent to the VLIW Cache as a block. 

The VLIW Cache is set associalive with sei size equal to one block of long instruclions 
of scheduling list size. In the VLIW Cache, each long instruction can be accessed directly. The 
VLIW Engine fetches VLIW instructions from the VLIW Cache and has a simple two-stage 
fe tch-execute pipeline. A decode stage is not necessary since the long instructions are saved in 
lhe VLIW Cache already decoded. Ali conditional and indirect branches are resolved in the 
execute stage of the VLIW Engine. The direction taken during scheduling. and recorded in to 
the VLIW Cache, is used during execution to determine a possible misprediclion. If a 
conditional or indirect branch target is different than that observed while scheduling during 
VLIW execution, the current fetch is annulled and the program counter receives the new 
target. Consequently, a branch misprediclion causes a one cycle deep bubble in the pipeline. 

3. DTSVLIW Experimental Evaluation 
A simulator of the DTSVLIW has been implemented in C (19K tines of code), and 

execution driven simulation performed to produce the resuhs reponed here. The simulator 
receives as input binary executable programs generated by the gcc compiler and fai thfu lly 
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models the execution perfonned by the DTSVLJW. Model parameters that are invariant for 
simulations are shown in Table I. 

The benchmark programs used in the experiments were the SPECint95 set. All 
benchmarks were compiled with optimisation llags -0 - mllat. Each benchmark program was 
allowed to run 50 million or more instructions on each experiment. 

Trace Processor . four-stage (fetch. decode. execute. and write back) pipeline . no branch prediction: noHaken branches cause a 3 cycle bubble in the pipdine . instructions following • load requirin.2 the dota loaded couse a one-cycle bubblc 
lnstruction &: Data Caches oerfect 
VLJW Cache Associativitv 4way 
Decoded Jnstructions Size 6 bytes 
VLJW Enaine homo.sz:eneous: functional uniiS can execute any insuuction 
lnstructions Latency I cycle 
VLIW EnRine Usts Siu: load- store- checkpoint recoverv storc- (lonR instruction size • block size) entries 
Number o( Renaminl ReJiisters ÍntCRer z (.o. • memory = 00RS - 256 ICRÍSters 
Scheduler Unit Pipe_ inseninglspliuing and moving uplsaving = 1/block size/1 stages 

Table I : Fixed Parameters 

Figure 2 shows Lhe effect of the block geometry on lhe performance of the DTSVLJW. 
To ensure the absence of extraneous effects, the experimenlS leading to the results in this 
figure were performed with perfecl instruction and data caches (no miss penalty), large VLJW 
Cache (3072-Kbyte), and no next long instruction miss penalty. The numbers in the legend are 
instructions in a long instruction and long instructions in a block, respectively. 

As the graph in the figure shows, the performance grows with both long instruction size 
and block size. However, lhe performance of blocks with the same number of instructions but 
different geometry is significantly different. For example, lhe performance of a machine 
configuration with 4 instructions per long instruction and 8 long instructions per block is 
Jower than a configuraúon with 8 iostructions per long instructions and 4 long instructions per 
block. The DTSVLIW architecture benefits from large long instruction and block sizes, but 
not linearly. A sixteen-fold increase in the number of instructions in a block (from 4x4 to 
16xl6) does not double the performance ofthis implementation on any benchmark. 

COIT!)r8SS gec go jpeg rr681csim per I vortex xlisp 

Benehmark 

Figure 2: The OTSVLIW performonce versus block geometry 

The results presented in Figure 2, represents the highest achievable SPECint95 
performance of this DTSVLJW implementation. When the VLJW Cache is smaller the 
performance of lhe DTSVLJW is expected to be lower because premature llushing of useful 
scheduled blocks due to replacement by new blocks. Figure 3 shows the impact of different 
VLJW Cache sizes on the performance of a DTSVLJW machine with 8 instructions per Jong 
instruction and 8 long instructions per block. As the graph shows, some benchmark programs 
do not demand a large VLJW Cache size in arder to exploit the performance of the 
DTSVLJW. Compress and ijpeg appear to be very insensitive to the VLJW Cache size, 

187 



X Simpósio Brasileiro de Arquitetura de Computadores 

achieving the same performance for a wide range of sizes. From the graph of Figure 3 it is 
possible to infer that a VLIW Cache of 384-Kbyte is suitable for a DTSVLIW machine with 
the specified parameters . 
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Figure 3: The DTSVLIW performance versus the V LI IV Cache size in Kbytes 

4. Conclusion and Future Work 
This paper presents preliminary ll..P performance mesuraments of the DTSVLIW 

architecture. The DTSVLIW architecture can be used to implement machines that execute 
code of current RISC or CISC ISA in a VLIW fashion, delivering ll..P with backward code 
compatibility. This architecture takes advantage of the repetitive and Jocalised pattem of 
instruction fetch addresses in current programs. The first time that program segments are 
executed, they are scheduled into Jong instructions and saved in a VLIW Cache; in the 
following executions, a VLIW Engine executes them in a VLIW fashion. 

A DTSVLIW simulator has been implemented, parameterised, and instrumented. The 
effect of some parameters of the architecture on its performance has been evaluated using this 
execution driven simulator running the SPECint95 benchmark suit. The results show that ll..P 
of more than 4 instructions per cycle can be achieved with the DTSVLIW. 

The DTSVLIW architecture opens severa] new avenues of research. Next Jong 
instruction prediction, new VLIW Cache organisations, and new exception handling 
mechanisms are just a few examples. 
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