
X Simpósio Brasileiro de Arquitetura de Computadores

SPECint95 Performance of an Implementation of the
Dynamically Trace Scheduled VLIW Architecture

Alberto Ferreira de Souza1 and Peter Rounce
Depanment o f Compu ter Science

University College London
Gower Street, London WCIE 6BT • UK

a.souza@cs.ucl.ac.uk, p.rounce@cs.ucl.ac.uk

Abslracl. Dynamically trace sch•d11l•d VUIV (OTSVLIW) archi1ec1ures can be used 10 implemenl machines
chac execuce code o f currenc RISC or CISC inscruccion sec archiceccures in a VLIW fashion, delivering inslruccion
levei parallelism wich backward code compacibilicy. This paper presenlS preliminary SPECinc95 performance
mesuramenlS of lhe DTSVUW archiceccure. obcained wich a simulacor which h as been implemenced in C.

1. Introduction
Object code compatibility is a problem for Very Long lllstruction Word (VLIW)

architectures: mapping a VLIW instruction sei architecture (ISA) to implementations with
different hardware latencies and varying leveis of parallelism is not generally possible. To get
over this, a dynamically sclreduled VUW (DSVLIW) was presented by Rau (I]. However,
despite the ability to implement a family of VLIW machines with different functional units'
latency and the same ISA, this concept cannot be used to implement an existem sequential
ISA. Ebcioglu and Altman [2] with their DAISY machine can translate dynamically from the
object code of an existing ISA architecture to the object code of a VLIW using a Virtual
Machine Monitor (VMM) implemented in software. The DAISY machine concept relies on
the ability of the VMM to translate code fast, and in the reusability of this code. Since the
VMM is implemented in software, the cost of the translalion is necessarily high. Although
code reusability is probably appreciable, a hardware translation is possibly advantageous.

The Dynamic lnstruction Forrnatling (DIF) concept (Nair and Hopkins [3]) perforrns
hardware re-forrnaning of the fetched code. The original code is executed on a primary engine
(a simple processar, less aggressive in exploiting parallelism) and, at the same time, re­
forrnatted into the DIF VLIW cache for execution by a VLIW engine. This paper describes an
architecture organisation that implements the DIF concept, named dynamica/ly trace
sclreduled VUW (DTSVLIW) [4]. In order to evaluate the DTSVLIW architecture, a
parametric simulator was irnplemented and execution driven sirnulation was perforrned using
lhe SPECint95 benchmark suíte. Experimental results presented here show that the
DTSVLIW can achieve instruction leve/ parallelism (ILP) higher lhan 4 instructions per cycle
with some rnachine configurations.

This paper is organised as follows. In lhe next section, the DTSVLIW architecure is
described. In Section 3, the experimental melhodology and the results of the experiments
carried out to evaluate the DTSVLIW architecture are presented. Section 4 contains the
conclusions and fu ture work.

2. The DTSVLIW Architecture
The DTSVLIW has two execulion engines: the Scheduler Engine and the VLIW Engine;

and two caches for instructions: the lnstruction Cache and the VLIW Cache. The Scheduler
Engine fetches instructions from the lnstruction Cache and executes the original code for the
first time using sirnple pipelined hardware. In addition, the Scheduler Engine dyt~amically
schedules the trace produced during the execution into VL/W instructions and saves them as
blocks of VLIW instructions into the VLIW Cache. If the same code is executed again, it is
fe lched by the VLIW Engine and executed in a VLIW fashion. A block diagram of the
DTSVLIW is presented in Figure I.

1 Sponsored by CAPES (Brazilian Governmenc Agency).

185

X Simpósio Brasileiro de Arquitetura de Computadores

Figllre I : The OTSVUW archi<ee<ure.

The Scheduler Engine of the DTSVLIW consists of the Trace Processar and lhe
Scheduler Uni!. The Trace Processar of the DTSVLIW presenled in lhis paper is a simple
pipelined scalar Sparc processar. As lhis implementalion executes Sparc-7 ISA [5) code, lhe
Trace Processar is capable of execuling a li instructions of this ISA. The Scheduler Unit uses a
pipelined implementation of the FCFS (Fist Come Firsl Served) scheduling algorilhm,
tradilionally used in microcode compaclion [6].

The FCFS algorithm has been chosen as the scheduling algorithm of the DTSVLIW for
lhree reasons. First, as its narne states, it operates with one instruction at a time and considers
instruclions in the stricl order that they appear during program execulion, which perfectly fits
lhe DTSVLIW mode of operalion. Second, lhe FCFS algorithm produces optimum or near­
oplimum scheduling [6]. Finally, the FCFS algorithm is easy to implement in hardware in a
pipelined fashion. The implemented version of the FCFS algorithm runs over a circular list
that was narned sclreduling list.

The scheduling list has a fixed number of long instructions, one per element of the list.
Each element of the list has also a candidate instruction. A valid candidate inslruction is
scheduled into a list element in lhe preceding clock cycle, and is an aspiram member of the
long instruction in the elemenl. A valid candidate instruction still may be moved lo a higher
position in the list. An instruclion with execulion finished in the Trace Processar in one cycle
can be inserted in lhe scheduling list in the subsequent cycle. If the scheduling list is not
empty and depending on dependencies, the incoming instruction becomes a candidate
instruclion either in the tail element of lhe list or in a new entry added to the list. In the latter
case, i f lhere are no spare list elements, lhe list is made empty, the instruclion is insened in the
empty lisl, and the whole previous list content is sent to the VLIW Cache as a block.

The VLIW Cache is set associalive with sei size equal to one block of long instruclions
of scheduling list size. In the VLIW Cache, each long instruction can be accessed directly. The
VLIW Engine fetches VLIW instructions from the VLIW Cache and has a simple two-stage
fe tch-execute pipeline. A decode stage is not necessary since the long instructions are saved in
lhe VLIW Cache already decoded. Ali conditional and indirect branches are resolved in the
execute stage of the VLIW Engine. The direction taken during scheduling. and recorded in to
the VLIW Cache, is used during execution to determine a possible misprediclion. If a
conditional or indirect branch target is different than that observed while scheduling during
VLIW execution, the current fetch is annulled and the program counter receives the new
target. Consequently, a branch misprediclion causes a one cycle deep bubble in the pipeline.

3. DTSVLIW Experimental Evaluation
A simulator of the DTSVLIW has been implemented in C (19K tines of code), and

execution driven simulation performed to produce the resuhs reponed here. The simulator
receives as input binary executable programs generated by the gcc compiler and fai thfu lly

186

X Simpósio Brasileiro de Arquitetura de Computadores

models the execution perfonned by the DTSVLJW. Model parameters that are invariant for
simulations are shown in Table I.

The benchmark programs used in the experiments were the SPECint95 set. All
benchmarks were compiled with optimisation llags -0 - mllat. Each benchmark program was
allowed to run 50 million or more instructions on each experiment.

Trace Processor . four-stage (fetch. decode. execute. and write back) pipeline . no branch prediction: noHaken branches cause a 3 cycle bubble in the pipdine . instructions following • load requirin.2 the dota loaded couse a one-cycle bubblc
lnstruction &: Data Caches oerfect
VLJW Cache Associativitv 4way
Decoded Jnstructions Size 6 bytes
VLJW Enaine homo.sz:eneous: functional uniiS can execute any insuuction
lnstructions Latency I cycle
VLIW EnRine Usts Siu: load- store- checkpoint recoverv storc- (lonR instruction size • block size) entries
Number o(Renaminl ReJiisters ÍntCRer z (.o. • memory = 00RS - 256 ICRÍSters
Scheduler Unit Pipe_ inseninglspliuing and moving uplsaving = 1/block size/1 stages

Table I : Fixed Parameters

Figure 2 shows Lhe effect of the block geometry on lhe performance of the DTSVLJW.
To ensure the absence of extraneous effects, the experimenlS leading to the results in this
figure were performed with perfecl instruction and data caches (no miss penalty), large VLJW
Cache (3072-Kbyte), and no next long instruction miss penalty. The numbers in the legend are
instructions in a long instruction and long instructions in a block, respectively.

As the graph in the figure shows, the performance grows with both long instruction size
and block size. However, lhe performance of blocks with the same number of instructions but
different geometry is significantly different. For example, lhe performance of a machine
configuration with 4 instructions per long instruction and 8 long instructions per block is
Jower than a configuraúon with 8 iostructions per long instructions and 4 long instructions per
block. The DTSVLIW architecture benefits from large long instruction and block sizes, but
not linearly. A sixteen-fold increase in the number of instructions in a block (from 4x4 to
16xl6) does not double the performance ofthis implementation on any benchmark.

COIT!)r8SS gec go jpeg rr681csim per I vortex xlisp

Benehmark

Figure 2: The OTSVLIW performonce versus block geometry

The results presented in Figure 2, represents the highest achievable SPECint95
performance of this DTSVLJW implementation. When the VLJW Cache is smaller the
performance of lhe DTSVLJW is expected to be lower because premature llushing of useful
scheduled blocks due to replacement by new blocks. Figure 3 shows the impact of different
VLJW Cache sizes on the performance of a DTSVLJW machine with 8 instructions per Jong
instruction and 8 long instructions per block. As the graph shows, some benchmark programs
do not demand a large VLJW Cache size in arder to exploit the performance of the
DTSVLJW. Compress and ijpeg appear to be very insensitive to the VLJW Cache size,

187

X Simpósio Brasileiro de Arquitetura de Computadores

achieving the same performance for a wide range of sizes. From the graph of Figure 3 it is
possible to infer that a VLIW Cache of 384-Kbyte is suitable for a DTSVLIW machine with
the specified parameters .

.!! 3.: r--==--=---:--==~~~~~~~~~~~~;~~~
u
C 3Jrllm.-.

& 2.5
• 2
§ 1.5

~ 1

~ 0.~ .lJ.IILl.J ... L..L&..I.a.--..-.-. LLJ ... L...I!Ja.L.a!JIL.J __ ._...._ L.J..I _.. IL!

COt1"P'8 SS gcc go ni!Sksim per! vortex xlisp

Benchmork

Figure 3: The DTSVLIW performance versus the V LI IV Cache size in Kbytes

4. Conclusion and Future Work
This paper presents preliminary ll..P performance mesuraments of the DTSVLIW

architecture. The DTSVLIW architecture can be used to implement machines that execute
code of current RISC or CISC ISA in a VLIW fashion, delivering ll..P with backward code
compatibility. This architecture takes advantage of the repetitive and Jocalised pattem of
instruction fetch addresses in current programs. The first time that program segments are
executed, they are scheduled into Jong instructions and saved in a VLIW Cache; in the
following executions, a VLIW Engine executes them in a VLIW fashion.

A DTSVLIW simulator has been implemented, parameterised, and instrumented. The
effect of some parameters of the architecture on its performance has been evaluated using this
execution driven simulator running the SPECint95 benchmark suit. The results show that ll..P
of more than 4 instructions per cycle can be achieved with the DTSVLIW.

The DTSVLIW architecture opens severa] new avenues of research. Next Jong
instruction prediction, new VLIW Cache organisations, and new exception handling
mechanisms are just a few examples.

Acknowledgements
The authors would Jike to acknowledge Eliseu Chaves Filho, from COPPEIUFRJ, for

providing the source code of his scalar SPARC simulator, which is the base of the DTSVLIW
simulator. The authors also thank Antonio Liotta, Jorge Ortega-Arjona, Tom Quick, and the
anonymous referees for providing helpful comments on this paper.

5. References
(I) B. R. Rau, "Dynamically Scheduled VLIW Processors", Proc. of the 26th /ntemarional

Symposium 011 Microarchitecrure, pp. 80-92, 1993.
[2) K. Ebciot:lu, E. R. Altman, "DAISY: Dynamic Compilation for 100% Architectural

Compatibihty", Proc. of the 24th lntemational Symposium on Compwer Architecture, pp.
26-37, 1997.

(3) R. Nair, M. E. Hopkins, "Exploiting Instructions Levei Parallelism in Processors by
Caching Scheduled Groups", Proc. oj the 24th Imemational Symposium 011 Computer
Archirecrure, pp. 13-25.1997.

[4) A. F. de Souza and P. Rounce, "Dynamically Trace Scheduled VLIW Architectures" ,
Lecwre Notes 011 Compwer Science, V oi. 1401, pp.993-995, April 1998.

(5) Sun Microsystems, "The Sparc Architecture Manual - Version 7", Sw1 Microsysrems /11c.,
1987.

[6) S. Davidson, D. Landskov, B. D. Shriver, P. W. Mallett, "Some Experiments in Local
Microcode Compaction for Horizontal Machines", IEEE Transactions on Compwers, V oi.
C30, No. 7. pp. 460-477, July 1981.

188

