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T!Jis paper concem t!Je development of multilayer artificial neural network app/ications itt a 
transputer (1'9000) based para/lei machine with distributed memory. For defining the partition of 
processing tasks within the machine, the natural paral/elism e.xhibited by neural network is uplored. 
8oth training and production phases can be implemented and the designer defines the set of 
parameters required by the backpropagati011 training method thror1gh an user interface. Neural 
preprocessing methods based on topological mapping and principal component analysis are also 
available to be integrated into a neural network based hybrid system design. As a case study, the 
principal component analysis for a particle discriminator in experimental physics is developed. 

1 Introduction 
Artificial neural networks (ANNs) have been attracting a considerable attention as problem 
solvers of a wide range of real-world problems. One important feature that has been explored 
quite successfully on these networks is their inherent parallelism, which allows to perform 
nonlinear adaptive processing at high speeds. Thus, many ANN based real-time systems are 
found in practice and the number of such applications tends to increase, as the role of ANNs 
in such systems is being updated [I]. 
In this paper we focus on feedforward multilayer artificial neural networks that are trained by 
the backpropagation algorithm [2]. This supervised leaming algorithm and such multilayer 
topology deserve such attention, as the majority of the neural applications involve the 
combination of the two. On the other hand, as one crucial factor of such applications is the 
long time required by the leaming process, specially when the ANN models become large, the 
work to be presented develops neural processing applications in a parallel and highly 
connected machine. 
A 16-node transputer based parallel machine (TN-310 system) was selected as the 
development platform. This multi pie instruction multiple data (MIMD) parallel computer also 
employs a fast digital signal processor (DSP) running as a coprocessor to the transputers, for 
optimizing signal processing applications. r--""""1"-.,.........,-...., 

Figure 2. 1 The basic architec:ture ofthe TN-310. 

2 TN-310 System 
The basic architecture of the TN-310 [3] system is shown in Figure 2.1. It consists of 16 
processing nodes that combine T9000 transputers, for managing efficiently the 
communication between nodes, and ADSP-21020 digital signal processors, for running signal 
processing applications at high speed. In terms of memory, each node comprises 256 kbytes 
SRAM used as shared memory, to transfer data to and from the DSP and 8 Mbytes of T9000 
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private ORAM. The transputer can run a number of concurrent processes and lhe machine 
being used supports the complete communication among processing nodes by means of a 
network of Cl04 chips. DSP can be programmed from the T9000 through C runtime library 
calls. 

3 Parallel Training of Feed-forward Networks 
The back-propagation algorithm and lhe structure of feed-forward networks, respectively, 
include a number of different schemes of parallelism. In [6] the principal dimensions of ANN 
parallelism are listed. In case of the simulation on MIMD-computers we only take sample 
parallelism and unit parallelism into account.[7] 
Sample Parallelism: The gradient vector estimation is a result of adding its partia! 
components, which correspond to the pattems visited in an epoch, from a training procedure 
in batch mode. In sample parallelism (see Figure 3.1) each slave has a complete copy of the 
neural net and calculates part of gradient estimate, while the master accumulates lhe partia! 
estimates and uses the complete gradient estimate to update the weights on the networks 
running in the slaves. Sample parallelism is more adequate for training procedures based on 
large batch sizes. 
Unit Parallelism: This fine-grain approach partitions the neural net so that each processing 
node gets about the same quantity of synaptic weights. That is, each processor computes part 
of the intermediate values during forward and backward phases of the leaming procedure for 
a training set. Figure 3.2 sketches this approach. Unit parallelism is rather communication 
intensive compared to sample parallelism and is more effective for large networks. 

SlaYe I St...l Slaw:3 

Figure 3.1 Sarnple Parallelism. Figure 3.2 Unit Parallelism. 

4 Communication Task and Mapping on TN-310. 
Transputer machines can be configured in a variety of topologies. The TN-310 is an ether 
(ideal) network, i.e. ali processes directly communicate to each other ("any to any"), and it is 
also a pseudo-dynamic network, in the sense that the topology is modified just before the 
execution time by using programmable link crossover switches. These features are explored in 
this work to configure interprocessor communication according to the parallelization methods 
described in the last section. 
As examples, Figure 4.1 shows the mapping for unit (a) and sample (b) parallelism 
respectively. For each mapping, the main features of the communication network and the 
specific architecture of the TN-310 system are taken into account. By assigning to neighbor 
nodes processing tasks that require intensive data transmission among them, the 
communication overheads can be minimized. Therefore, in Fig. 4.1, the first parallel 
processing nodes that are to be selected for an application are the ones, which communicate 
through a single C I 04 switch. The arrow in this figure indicates the selection criterion. 
To illustrate this node allocation criterion, an application of unit parallelism which requires 
only 4 parallel processing nades would be allocated to nades [1]-[4] (in the same processing 
board), whereas the distributor (master) node is placed to run on node O. As this 
parallelization method demands intensive communication among the processors that work in 
parallel, parallel processing nodes that require a single CI04 to communicate are preferable. 
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On the other hand, sample parallelism is characterized by intensive comrnunication between 
the master node and slaves, so that the master nodes is allocated to node [I] (node [O] requires 
at least two CI04 in a routing) and nodes [2]-[5] form the best set for performing parallel 
processing for such 4 node application. 

~ -N(2) N)3) N(O) Nll'l N)8) 

~ ~ 
Figure 4.1 The mapping for unit (a) and sample (b) parallelism. 

5 Case Study: Principie Component Analysis for a Particle Discrinúnator 
The principal component analysis (PCA) is known as a technique that can perform 
dimensionality reduction with preservation of the information spread around the full data 
input space [2,6]. This neural principal component analysis was applied successfully to a 
particle discrimination problem in high-energy physics [11]. For a collider experiment that 
will be operational by the year 2005, the Large Hadron Collider, an online validation system 
is being designed for triggering on very rare events which are of interest in the experiment but 
are masked by the huge background noise generated by the colliding machine. 
Such neural principal component analysis was implemented in the TN-310 system. Both 
sequential and unit parallelism methods were used. Knowing the comrnunication features of 
the TN-310 system, the implementation methodology searched for optimizing the processar to 
node allocation scheme (Fig. 4.1 ), the comrnunication path and the levei o f parallelism. 
As a single neural network approach to the particle discrimination problem achieved good 
classification efficiency with ten nodes in the hidden layer, Figure 5.1 shows a simulation 
result of a 121-i-121 network implementation, indicating how the time required for a training 
cycle (one forward signal propagation followed by a backward propagation of the error 
signal) varies as the number of parallel nodes (the number of partition layers in the unit 
parallelism approach) and the network complexity (the number of i hidden nodes) are 
increased. These curves are obtained from a piecewise linear approximation of the function, 
which describes the communication time for an increasing data size to be transmitted through 
the switching network. Figure 5.2 shows how the speedup factor varies with the number of 
parallel processing nodes used for this application. It can be clearly seen in this figure that 
comrnunication overheads decrease the speedup factor when an excessive number of partition 
layers is used. 

Figure 5.1 Optimal panition of the processing 
task in unit parallelism. 
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Figure 5.2 Speedup for 121-10.121. 
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In order to perfonn perfonnance comparisons, the third principal component was extracted by 
means o f sequential and parallel implementations in the TN-3 1 O system. The unit parallelism 
approach used 3 layers of parallelism. The sequential implementaúon required approximately 
33.6 minutes in the TN-310 system and the parallel implementation required 14.5 minutes, 
which represents a speedup factor of 2.32 and an efficiency of 77%. 

6 Conclusions and Further Work 
As a case study, a neural high-energy particle discriminator based on principal component 
analysis was designed. Using the infonnation of a fine-grain energy measurement detector, a 
calorimeter, seven components were extracted from original data vectors with 121 
components. In this application, principal component extraction and final particle 
discrimination are both perfonned by neural networks. For perfonnance evaluation, the 
extraction of the third principal component showed that the parallel approach using unit 
parallelism was capable to reduce by a factor of 2.3 the required processing time. 
For the near future, the implementations of neural networks in the TN-310 system will 
integrate more preprocessing techniques (topological mapping, discriminating and relevance 
analysis, mapped principal component extraction, etc) and the user interface for defining the 
network parameters and providing tools for the analysis of system perfonnance will be 
improved to accommodate a flexible and user-friend development environment. To improve 
processing speed, an intensive use of the DSP co-processors will be pursued. This may be 
achieved by using the two memory buffers, which are shared by the transputers and DSP[l2]. 
Also, in order to explore the very good matching that exists between DSP architectures and 
neural processing requirements, a similar development environment will be built for powerful 
multiprocessor DSP based boards, which are presently available in the market at much more 
reasonable prices. These studies are under development. 
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