
A System for Data-Driven Programming of Multi
computers

Jean-Luc Gaudiot

Department ofElectrical Engineering- Systems, University of Southern California, Los Angeles,
CA 90089-2562, USA

Giorgio Ventre

The Tenet Group, Computer Science Division, Department of EECS, University of Califomia,
Berkeley, and International Computer Science Institute , Berkeley, CA 94i04-1105, USA

Abstract: Distributed systems are a promising solution to increase the computational
power and fault-tolerance capabilities currently available in traditional computer archi
tectures. While it is technologically possible to integrate large numbers of processors to
form a single parallel machine, new approaches to the programming of such machines
are needed. Indeed one of the major problems is to offer a programming model indepen
dent from the physical architecture and topology of parallel systems. The data-driven
approach seems to be a good candidate for such a model, but requires an implementation
able to bide the architectural complexity of a multicomputer. In this paper we show how
we appüed these principies to a Transputer-based parallel system and the characteristics
of the resulting programming environment.

1 Introduction

Different solutions have been proposed in order to exploit parallelism and fault-tolerance
capabilities of distributed systems. The proposed architectures range from shared memory
multiprocessor systems to tightly coupled, distributed memory multicomputers and, more
recently, clusters of computers connected by high speed communication networks [16J.
Multicomputers appear a very promising approach toward parallelism since they offer very
interesting performances combined with crucial features such as scalability and modularity
of the architecture [3J. While existing technology enables system designers to increase
computing power by integrating multiple processors in a parallel computer, a different
software approach altogether must be taken in order to olfer a scalable programming
environment in which the programmer will not need to be concemed with the physical

Pmqrrun Stntctur'l! lnformat:on

SISAL

Actor Library

(";u.:;Ler

Structure

Fig. 1. The Programming Environment

configuration of the machine. We believe that for a distributed programming environment
to be successful, an architecture independent programming interface should be offered. In
addition to.simplify the development of parallel programs, architectural independence of
code is needed to a.ssure portability of applications among different machines and support

· of heterogeneous architectures. The data-Bow principies of execution [4] provide such an
·~ environment since they allow the distribution of the· sequencing mechanism over all the

instructions of the progra.m. While many projects (see (6]) involve the design of special
data-tiow Processing Elements, we have, in this projects, applied data-tiow principies of
execution to a network of existing rnicroprocessors (Inmos Transputers). In this paper,
we brietiy describe the programming environment and emphasize the performance results
obtained on a number of numerical applications.

2 The Programming Environment

The system consists of up to 16 mesh-connected Transputers and an a.dditional Transputer
connected to the host computer. Each Processing Eiement is a TMS T800 with 4K
bytes of on-chip memory and 2M bytes of off-chip memory. In order to achieve the high
progra.mmability of the system, we have designed a complex functional programming
environment which automatica.lly translates SISAL into DISC. Fig. 1 is the overview of
the software environment. The output of the SISAL compiler, IF1 (Intermedia.te Form 1),
is essentia.lly a. high-level data. dependency graph which contains information concerning
the original structure .of the user's program. A high-levei pa.rtitioning of the original
program is made, based on the program structure as well as on heuristics (8].

In addition to the basic features of the system which have been developed in our
previous work (8], [9], (7], we will present in this section the files which are genera.ted
during the translation process and severa! newiy developed features of the system.

2.1 The SISAL Language

SISAL (Streams and Iterations in a. Singie .l..ssignment Language) [15] is the high-level
data-Bow language which has been used in the course of this research. This language has
also been chosen for many muitiprocessor systems, such as the University of i\lanchester

type OneDim a array[integer];

f unction Aadd(A,B:OneDim ; ~ : integer

returns OneDim)

for i in l , N
c : 2 A[i] + B(i] ;
returns array of c

end for
end function

Fig. 2: A SISAL Function

131

data-fiow machine (11). Since SISAL is a single assignment language, it greatly facilitates
the detection of parallelism in a program. A SISAL program comprises a set of functi9ns.
The input and the output of the program are passed through a main program whtch is
one of these functions. Figure 2 is a SISAL function which adds two arrays.

Note that according to the SISAL grammar, the left-hand side of the assignment
statement must be a variable name, either a. simple variable or ao array name. For
an array name, e.g. statement c : = A (i] + B (i] in the above example, the statement
returns array of c is used to obtain the entire value of the array.

2.2 Translation from a data-flow language

A SISAL program can be traoslated to generate ao IFl (Intermediate Form 1) graph (18)
by the SISAL compiler. Our traoslator then translates the IFl graph into DISC code by
creating the following intermediary files:

• PSG (Program Structure Graph) and OFG (Oata-Flow Graph): This graph file
contains a combined graph of PSG and DFG. The structure iníormation is carried by
the compound nodes while the dependency information is carried by sim p/ e .nodes. A
compound node can be considered a control point which affects a sequence of actors
in its range. On the other hand, the simple node is the elementary processing actor;
it consists o{ the input and output area.

• PDFG (Partitioned Data-Flow Graph): Based on the PSG and DFG, a basic parti
tiooing process is·performed to lump those simple nodes that have potentially high
communication costs (9).

• Communication cost matrix: This file describes the comrnunication costs between
partitions. According to the nu.mber of available PEs, the interconnection network,
aod the com.munication cost matrix, a partitioning process is performed a.nd a new
communication cost matrix is generated.

• Allocation iníormation: This file is generated after the optimization phase. It pro
vides the information to indicate the locatioo of the PE where a proper process
should be allocated.

132

• ~·lacro instruction: According to the PDFG, each simple node is translated into
a macro instruction which contains the actor code, are information and partition
information. Applying a macro definition table. macro instructions can he expanded
to an object progra.m.

• D!SC progra.m: This is the fina.! object cede. Each process of the program corre
sponds to a ba.sic data.-flow a.ctor.

2.3 Structure handling

[o a pure data.-fiow system, da.ta structures are viewed a.s single values which are defined
and referenced a.s units. The entire structure must be pa.ssed to each refereocing actor.
Obviously, this can impose a large overhead. Therefore, severa! schemes have been devel
oped in the pa.st, in order to reduce the overhead of transmitting data structure values
[1], [2], [4], [5].

The method adopted to handle arrays in this system is similar to that used in the
Hughes Data-Flow Machine (10]. As opposed to the complex system of heaps [4] or I
structures [2], we have chosen the simplified option of von Neumann arrays which are
never updated until it is determined that no more read accesses will be made to the
current value of the array. Only then, can the array be modified and become a new
array. This sequence of reads followed by one write is compiler-controlled. This method
brings the very importa.nt advantage that no complex mechanisms are needed to ensure
the safety of arra.y operations. This comes at the expense of possible compiler-induced
loss of pa.rallelism.

2.4 Function calls

In the data-fiow scheme, a function call can be considered as ao actor which requires a
function name and arguments on its input ares to generate results.

When the function and the calling process are located on the same PE, the calling
scheme in occa.m can be expressed as follows:

fundilJTI_name (argumentl, argument2, ... , resultl, result2, ...)

As in other langua.ges, the call a.ctor receives arguments and passes them to a procedure,
named function-name, to generate results. This scheme can be implemented easily, but
may ha.ve a lot of parallelism. In this scheme, to call a function, the calling process ha.s
to wait until ali results have been completely genera.ted. Moreover, the function cannot
be called by processes which are loca.ted on remote PEs.

In order to allow th~ pa.rallel execution of a function, the function and calliÕ.g processes
must be located on different PEs. In this scheme, the communication between calling
process and function requires externai channels. When a function call is made, i.e., a call
actor is fired, the calling process just passes arguments to the specified function through
ao externai channel, the next process which is not waiting for the results of the function
can be executed continuously. On the function side, once the input arguments of the
function have been received, the specified operations are executed, and the results are
sent back to the ca.lling process through an externai channel. The major problem of this
scheme is that a function ca.nnot be executed in parallel when severa! calling processes
are calling this function simultaneously. However, we can duplicate the function body to
achieve a higher degree of parallelism.

133

2.5 Forall construct ·and loop unrolling

In IFl, FORA LL is a compound node which contains a. ra.nge-gencra.tor. a biock which
a.c:t.ua.lly performs the operations. and a gather node. The body of the loop can be executed
in para.llel since this construct insures that there are no data dependencies between two
iterations of the loop.

Our approach consists in using the concept of loop unrolling (17], a very efficient
optimization approach for a.rra.y operations, in which the data a.re split among the PEs,
processed within these PEs aod ga.thered by the maio processor to form the result struc
ture. The loop-unrolling controller controller sends the data through channels to ali
remote loop-boclies, a.nd collects the partia! result generated by ea.ch unrolled loop-body
to form the final result.

3 The DIS C Language

The DISC (DIStributed C) laogua.ge (12] is a. concurrent language that borrows mech
a.nisms to ma.na.ge concurrency and communication from tbe CSP model. Accorcling to
CSP, in DISC each computation is described by a set of entities, ca.lled processes, each of
which, in turn, represents a computation. Processes run in parallel a.nd interact by means
of message passing. The activity of ea.ch process can be accomplished by a. set of jointly
operating parallel processes, accorcling to a hierarchical, recursive structure.

For the sequential part of the processes, the DISC concurrent laoguage adopts syntax
and semaotics from the C laoguage, as they are defi.ued in (13). As to the extensions for the
management of concurrency, the original CSP constructs ha.ve been partially modified.
The maio chaoges involve the communication mechanisms. In CSP communication is
between pair of processes, in one clirection, synchronous (i.e. both the processes must be
ready for the communication to take ,place) aod it requires explicit specification of the
partners' identities (fig. 3.a). In DISC many-to-one communication channels have been
introduced. DISC channels link many processes (called the users of the channel) to a
siDgle process (called the oumer of the channel), as is shown in fig. 3.b •

The mechanism is still monodirectional and synchronous, but channeis might. be
referred to in both input and output com.maods. In the DISC syntax ao input com
mand is expressed as c:hannel ?? varia.ble wlule an outplit command is expressed as
c:hannel ! ! expression..

Ao interesting feature of the DISC implementation of the CSP model is the exception
handling. In the original model, when a process requests a communication that cannot be
executed since the partner process is no longer a.ctive (i.e. it has been a.lready completed),
t~ process is a.utom~tically terminated with ao exception, by means of a mechanism
called clistributed termination. In DISC the programmer is a.llowed to explicitly manage
such exceptions, by using a particular construct, called on fail specification clause. This
feature cao be used to cope with changes in the state of the processes composing a
program. As ao example, we consider the following output commaod:

channel ! ! variable
on fail alternate_channel ! ! variable ;

In this example, if none of the processes co110ected to cha.nnel is active, the exception
clanse is a.ctiva.ted and an altemative solution is attempted using al ternate_cha.nnel .
The same mechanism can be used to maoage exceptions in pa.rallel comma.nds.

134

users owner

owner users

a) DISC b) CSP

Fig. 3. DISC chanoels versus CSP channels

In CSP, the altemative command is coostrained to contain only input commands in
the guards to allow its effi.cient d.istributed implementa.tion. In DISC, the d.istinction
between users and owner of a. cha.nnel ha.s a.llowed the introduction of output commands
in the guards without loss of efficiency. In the alternative command the on fail clause
can also be used.

To control the activation and termination of processes, DISC uses the pa.rallel com
mand. Accord.ing to the CSP model, tbe oumber of processes to be activated must be
known at compile time and no kind of recursive activation is allowed. However, parallel
commands may conta.in processes which cootain in turn other parallel commands. This
gives rise to the possibility of nesting parallel commands, a.s it is implicitly allowed in
the original model, but not permitted in most of the existing implementations of the
model. A DISC program can thus be viewed a.s a hierarchy of processes, that can be
described formally a.s a d.igraph (called activation tree) in which the o odes can represent
both processes and parallel commands.

The introduction of nested parallel commands ha.s required a further extension to the
semantic of the communica.tion mechanisms, to allow message pa.ssing also among pro
cesses belonging to d.ifi'erent parallel commands. The solution adopted, which is na.med
cha.nnel inheritance, allows a parent process to pa.ss its channels to the child processes,
in a wa.y tra.nspa.rent to its pa.rtners. In this wa.y intera.ction is possible between pro
cesses a.t d.ifferent leveis in the progra.m activation tree. An a.dd.itional mecha.nism, called
inputfoutput varia.hles, is provided by the langua.ge to permit data. exchange between a.
process and its childs a.divated by mea.ns oí a. parallel command.

Channel inheritance is informally illustra.ted in fig. 4. In fig. 4.a is shown a. simple
process, P, which can communicate with other processes by mea.ns of two channels, A a.nd
8. Process P might actua.lly hide a. more complex software structure; for example it could

135

B A c B
~ .2__--L.J I.__ _ __,) ~>~-LP_l_r-~>~~LP_2_r~~>

a) b)

Fig. 4. Parallelism Incapsulation in DISC

contain a a parallel command which activates two other processes P 1 and P2, connected
by another channel, C.

Thanks to the possibility of inheriting channels from the parent process P, Pl and pj?
can effectively interact with all the processes that are allowed to communicate witb their
parent. In our example, fig. 4.b, process Pl inherits channel A, while process P2 inherits
channel B.

4 The Reasons for a Choice

The choice of DISC as the low-level language for the implementation of this prototype
depends on linguistic and implementative characteristics that this language shows with
respect to other a.vailable solutions, such a.s Occam..

Occam [14] is the native CSP-based progra.m.ming environment for the Tra.nsputer
family of components and has been used for a previous research (9]. It is very efficient
due to the fact tha.t it is the na.tive language for this kind of processors- In fact Occam
is a.va.ilable only on Transputer based pa.rallel systems. This represents a. major problem
for wha.t concerning portability of developed software on different multicomputers.

If compa.red to DISC, Occa.m does not offer some linguistic fea.tures which ha.ve im
proved the cha.racteristics of our system. Indeed the a.va.ilahility of ma.ny-t<r<>ue cha.nnels,
the possibility of nestiug pa.ra.llel commands a.nd the channel inherita.nce mechanism have
been shown very effective iu simplifying the tra.nslation process we presented in a. previous
section.

4.1 An Example

We now illustra.te the tra.nslation mechanism for an important kind of SISAL construct:
a vector opera.tion. In fig. 1 we bave sbown the SISAL code for the sum of two arra.ys.
This code can be seen as a data-flow actor (see fig. S.a), wbere the inputs are the two
arrays and their size, and the output is the resulting sum array. The DISC code resulting
from the translation procedure is shown hereafter 1:

1 For tbe sake of cleamess the actual code bas been sligbtly modified

136

process AADD(N ,A,B,C)
c!lan i nt N, A(U), 3(N) ;
c!lan int C(N);

pa.r{

}

local index, eleml, elem2,result;

process RANGE(N,index);
process ARRAY(A,index,eleml);
process ARRAY(B,index,elem2);
process ADD(alem1,elem2,result);
process GATHER(result,C);

endprocess

process RANGE(N,index)
chan int N;
chan int index;

int cou.nteri
N ?? cou.nteri
for(cou.nterzOicounter<indexicou.nter++)

index ! ! cou.nter;
endprocess

process ARRAY(arr,inde:z:,out_array)
chan int arr[N],index;
chan int out_arr[N] ;

int _arr[N],_index;
arr ?? _arr;
vhile(TRUE)
{

}

index ?? _index i
out_arr!! _arr[_inde:z:]i

endprocess

process ADD(eleml,eiem2,result)
chan int eleml,elem2;
chan i nt resul ti

int _elem1,_elem2;
vhile(TRUE)
{

eleml ?? _elemli
elem2 ?? _elem2;
result ! ! _eleml + _el em2;

}

endprocess

process GATHER(result,C)
chan int result;
chan int C(N];

int _C(N],counte~O;
vhile(TRUE)
{

}

result ?? _C(counter++]
on fail C ! ! _c;

endprocess

137

Function Aadd has been translated in one macro-actor process and four elementary
actor processes. Process AADD is the macro-actor. It activates five child processes by
means of a parallel command: RANGE, ARRAY (two instances), ADD and GATHER.

The interface of AADD with the outside world is composed of four channels. Three
channels {N, A [N] and B [N]) are used to receive the dimension and the arrays to sum,
while channel C [N) is used to send out the result array. Channels index, eleml, elem2,
result , used by processes activated by AADD to communicate locally arnong themselves,
are defined in the local statement and declared in the parameter list passed to each
process.

Process RANGE task is to produce the sequence of integers that will be used as index
for the arrays by the two instances of the ARRAY process. Processes RANGE and ARRAYs
iuherit one channel each from AADD (N, A[N), and B(N) respectively) by declaring the
channel narne in the process pararneter list. ·

Process ADD is a simple Plus actor; it is very general, since it does not depend on any
data specification existing in other processes. This result has been accomplished by using
the distributed termination mechanism: in fact, once process ADD is act ivated, it starts
to accept inputs values on channels eleml and elem2, and to send the computed sum
out on channel result. This task continues indefinitely until anyone of the inputfoutput
commands in the process cannot be executed. In our exarnple, this happens when the
two ARRAY processes terminate, which, in turn, will happen when process RANGE will
terminate. Process GATHER, instead, uses exception handling to wait for the completion
of the entire prograrn before communicating the result array on channel C.

The software architecture of this set of DISC processes is shown in fig. S.b . Due to
the incapsulation provided by the nesting of parallel commands, the internai structure of
process AADD is totally hidden to other processes that might need to communicate with
it.

4.2 An Actor Library

By using the abstraction mechanisms we presented above, a number of simple, albeit
general, SISAL actors might be translated to forro an actor library. Following is the
DISC cede for a Times actor.

process MULT(elem1,elem2,result)

138

array of c

a) b)

Fig. 5. Software Architecture for the Aadd function

chan int eleml,elem2;
chan int resul t;

int _eleml ,_elem2;
vhile(TRUE)
{

eleml ?? _eleml;
elem2 ?? _elem2;
result ! ! _eleml * _elem2;

}

endprocess

For example, assume we need to perform the function (a + b) X (c + d). A very
simple DISC translation can be implemented by using library actors ADD and MULT, as
is shown below:

process ADD_MULT(eleml,elem2,elem3,elem4,result)
chan int eleml,elem2,elem3,elem4;
chan int result;

vhile(TRUE)
{

par{

local locall, local2;

process ADD(elem1,elem2,locall);
process ADD(elem3,elem4,local2);
process MULT(local1,!ocal2,result);

139 ">:·. ,

}
}

endprocess

Since a.lso process ADD_\lULT is tota.lly independcnt from a.ny input or output data.
specification (with the exception of da:ta type), it is a good candidate for being included
in the actor library.

However, the modularity and incapsulation capabilities owned by DISC are not suffi
cient to allow the creation of a library. Ind~d two major problems must still be solved
to fulfill this goal. The f4'st problem is how to map the software architecture of channels
and processes of a DISC program onto a hardware architecture composed of processing
elements communic::_ati'ng throu_gh a network of physical links. In other words, the use
of already developed actors could be drama.tically limited if their code depends on a
particular mapping scheme or network topology.

The second problem is efficiency. In multicomputers, the ratio between the parallelism
achievable in the computation and the amount of required communication is an important
parameter to .evaluate the efficiency of the implementation of a distributed application
on a particular architecture. Consequently, both code expressedly developed and the one
available in form of libraries should allow the adaptation o f this ratio to the characteristics
of the software and hardware architecture of a parallel system. In the next section we show
how we satisfied such demanding request for architectural independence of programs.

5 The Run-Time Environment Architecture

Ao important feature of the DISC language is the independence of a DISC program from
the topology of the underlying hardware architecture. In Occam, the programmer has
to specify in the source code the allocation of the processes on the processors composing
the network. He must also directly cope with the routing of messages between processes
allocated on non contiguous processors. Consequently, any modification to the software
allocation scheme must · be refl.ected in the code, resulting in a very limited fl.exibility and
portability of Occam programs even on machines which differ only in the topology. On the
contraiy1DISC réquires no specifiéation of process placement and explicit management of
message routin'i within the communication network, since these tasks are accomplished
by the run-time support arcllitecture we implemented for the DISC lang\Iage.

The run-time environment architecture (RTE) of our prototype is based on an abstrac
tion we called virtual processors (VPs). A virtual processar is a special process associated
to each ·DISC process (DP) defined at source levei. The DISC compiler translates ali t he
higi:Í.-level concurrerit constructs to be executed by a DISC process into requests to t he
RTE. The associated ~irtual processar receives these service requests and interprets them
carrying on the corresponding actions. A VP maintains a data structure representing t he
state of the associated DISC process and interacts with the VPs associated to the other
DISC processes composing the concurrent program.

To improve efficiency, virtual processors related to DISC processes allocated onto the
same node, are actually implemented through a single sequential process (we name this
process multi virtual processar, or, in short, MVP). This solution reduces the overhead
generated by both context switching and message passing.

According to this structure, means have to be provided to MVPs for interacting with
the DPs allocated onto the same nade, and }.I[VPs aUocated onto different nodes. The

140

UP Use,. Proccss

MVP Mvlli Virtuol Proc~~r
Nl{ Nttwodc Handúr

ICS /nief"NJ/ Commwni.cazion Sysum

ECS é;oumd C ~IMI•nication Systt"'

Fig. 6. The Run· Time Environment Architecture

two kinJ of interactions, named internai and externai respectively, are kept well distinct
both cçuceptually and in the implementation. They rely on different mechanisms called
internai communication subsystem (ICS) and externai communication subsystem (ECS).

Cooperation among DPs and corresponding MVP (i.e. through ICS), is achieved
by means of simple asynchronous (bufferized) conununication prirnitives. Cooperation
amoog MVPs allocated onto different nodes (i.e. ECS) is achieved through a. delivery
system which consists of as many processes as the network nodes. These processes are
oa.meà network handlers; their task is to lúde the details of the communication media
coonecting the nodes and provide for the transmission, the receipt and the routing of the
messages exchanged. The MVPs communicate with network handlers through ICS.

In fig. 6 the whole architecture is shown. The thin !ines represent internai interactions,
woer.:-as thick !ines represent externai interactions.

It should be ooted that, to let virtual processors communicate among themselves,
iniorMations are needed about the concurrent structure of the program and the allocation
of processes. In fact, MVPs should be able to determine whether the virtual processar
to which a message hàs to be send, is allocated onto a different node or not. In the
former case, the message must be yielded to the NH for delivery through the iotemode
communication system. On the contrary, in the latter case, no message has to be sent and
only local actions must be undertaken. Allocation informations are read by the processes
composing the run-time environment during an initiaiization phase, and can be supplied
by the programming environment just before starting the execution of the application
program.

The RTE has been coded in C, and most part of it is portable on different hardware.
The modules that oeed to be changed are the ones that implement ICS and ECS. The
former depends on the operating environment running on each node, whereas the latter

141

depends on thc physical characteristics of the network conncct ing the nodes. Hc:1ce.
generally, ECS depends on both the kind of communication media utilized and on the
interconnection topology. Different ECS modules have be~n deveioped for a number oi
common topologies that can be created wi th Transputer processors (i.e. mesh. folded
mesh, pipeline).

6 Performance Evaluation

We have chosen to directly evaluate the performance of our system by observing a certain
number of test cases. This was done using our Transputer multiprocessar architecture.

6.1 Experiments and experimental results

In order to verify the correctness of the translator and to evaluate the performance of the
optimization schemes, we measure the spudup, ratio of the execution time of a program on
a single Transpu ter over the execution time of the same program on multi pie Transputers.
The unit of execution time in measuring is a tick, 64 psec. The different data allocation
methods described previously are also app\ied.

l. Livermore Loops: Two array sizes, 1000 and 50000, are used in each loop. The
locally distributed data allocation method has been applied. Fig. 7, and Fig. 8 show
the experimental results of loopl , and loop7.

2. Histogram (A program for histogramming): In this experiment two different sizes
of digit, 1000 and 50000 are applied to 16 slots. Slots are evenly distributed to
each Transputer. The data allocation method is locally replicated. Fig. 9 shows the
experimental result.

3. MMULT (Matrix Multiplication}: In this experiment, we compare two different
sizes of matrices, 16 x 16 and 64 x 64. Data of one matrix is locally distributed,
while data of the other matrix is locally replicated. (see Fig. 10).

t;O: . .

o , 1, ..

ITr tTr n . 4Tr

Fig. 7. Speed-up for Loopl

, ... r. ...

Fig. 9. Speed-up for histogramrning

6.2 Interpretation of results

s-. ••

0 r..w.- oi .. UXI'

O r..w.- x-.

, •
~-r--r-~--~----------~--·~

at. n. n , n,

. I

Fig. 8. Speed-up for Loop7

s,.....,

11

..

IT•
• .. ,r.

Fig. 10. Speed-up for matrix multiplication

Here we will describe tbe issues that are concerned with the result of the above experi
ments.

143

Topology of the network: The transputer network is mesh-connected. However, for
loop unrolling :mplementation purposes. we !ook al a hierarchical of the network. The
host processar will act as a dispatcher. splitting the data and sending it to severa[pro
r.:essors as explained in section '2A.

Speedup: The measured speedups have to be analyzed separately for tbe different prob
lem sizes. Note that the Traosputer owns a.n on-chip memory of 4Kbytes which is three
times faster than the off-chip memory. This feature caused some i.atert'!Sting results to
occur.

• Large problem size: The required data size is too big to fit in the(l!JI1-chip memory,
even after the partitioning. In this case the speedups obtained ;axe -dose to linear,
since execution time is proportional to the amount of data to be JPllOCessed.

• Small or intermediate problem size: The required data size .is greater than the
capacity of the on-chip memory, but it will fit in the on-chip memory after unrolling
the loop. In this case a superlinear speedup may occur, since the opera.tion in an
unrolled loop needs less memory access time that will shorten the entire execution
time.

Computation/communication equilibrium: Depending on the ratio of the compu
tation time over the conununication cost of a problem, one can observe good performance
even if some of the data are required to reach a distant processar to be processed. As
one can observe in the LOOPl case, the system achi.eves a superlinear speedup wb.en two
Transputers have been used, the speedup remains superlinear even if data have to perCorro
a second hop to reach their processar. There is a similar behavior in the LOOP7 case.
When more computation time is needed, as in LOOPl and LOOP7 cases, the better per
formances can be achi.eved when using 8 PEs, where the computation cost is much greater
than the communication costs. On the other hand, LOOP12 shows a different behavior.
Having less computation requirement, the system can achieve a superlinear speedup as
long as the data fits in the on-chip memory and needs only one hop to reach its target.
However, the performance degrades when some data needs two hops in order to reach
its assigned processar, the fourth Transputer, since communication costs are now greater
than computation costs.

6.3 Discussion

From the above experiments we have concluded the followiog:

• As mentioned in section 2.4., the actors of vector operations are uoder the control
of a forall compound node in IFl. Since vector operations are easily detectable in
IFl, improvement by loop unrolling carne at low compiler cost.

• In order to decrease the communication overhead for array operations, according to
properties of the application programs, different types of data allocation are needed.
For the locally replicated method, it does not affect the ratio of data .size stored in
on-chip and off-chip memory, i.e., the speedup is not affected by thememory access
time. However, in the locally di.stributed method the data size distributed :to each PE
is proportionally decreased to match the increase of the nurnber of ava:iiable PEs.
Thus the ratio of the data size stored in on-chip and off-chip memory is increased
by increasing number of PEs.

144

• According to the .::xperiments and the speedup analysis in the RreviooJs section.
when the problem size is relatively large the actual speedup will approximate the
linear speedup. In íact. it is worth processing in parallel only i f the proolem is large
enough.

7 Conclusions

Our research efforts as described in this paper have focused on demonstrating a practical
approach to provide high programmability to the user of a homogeneous, asynchronous
MIMD architecture. The results we have shown point to the high scalability of the data
driven approach to multiprocessor programming. Indeed, the benchmarks we have used
have ali been shown to exhibit a linear speed-up as the size of the machine increases.

Our experiments have also shown how crucial are on multicomputers the a.doption of
efficient allocation schemes and t he influence of the computation/communication equilib
rium on the performances a.chievable from parallel implementation of applications. How
ever, the characteristics of the run-time environment architecture of our prototype allow
the development of modular and scalable code, independent from the allocation policy
that will be adopted at run-time. We believe that these features can drama.tically reduce
the work and the time required for tuning applications to different network topologies
and allocation schemes.

In the future, more sophis ticated algorithms for efficient allocation and partitioning of
the programs and more benchmark programs must be applied to evaluate the performance
of the system.

References

[1) Arvind and R.A. Iannucci. A critique of multiprocessing von Neumann style. In
Proceedings of the lO'" Annual Symposium on Computer Architecture, Stockholm,
Sweden, June 1983.

[2] Arvind and R.E. Thomas. I-structures: An efficient data type for functional lan
guages. Technical Report LCS/TM-li8, MIT, Laboratory for Computer Science,
June 1980.

[3) W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent comput
ers. IEEE Computer, 24(8), 1988.

(4) J. B. Dennis. First version of a data fiow procedure language. In Programming
Symp.: Proc. Colloque sur la Programmation, pages 362-376, Paris, France, April
1974. Springer-Verlag, New York. B. Robinet Lecture notes in Computer Science.

[5) J-L. Ga.u<liot . Structure handling in data-fiow systems. IEEE Transactions on Com
puters, C-35(6):489-502, June 1986.

[6) J-L. Ga.udiot and L. Bic. Advanced Topics in Data-Flow Computing. Prentice Ha.U,
1991.

145

[7) J-L. Gaudiot , L. T . !..e~ , a.nd P. Aubrée. Da.ta-driven approach for programming
a transputer-based system. In Proceedings of the 1990 Spnng COMPCON, pages
94-99. 1990.

[8) J-L. Gaudiot and L.T. Lee. Multiprocessar systems programming in a high-level data
flow language. In Proceedings of the European Conference on Para/lei Architectures
and Languages, Eindhoven, The Netherlands, June 1987.

(9) J-L. Gaudiot aod L.T. Lee. Occamfiow: A methodology for programming multipro
cessar systems. Journal of Parallel and Distributed Computing, August 1989.

(10) J-L. Gaudiot, R. Vedder, G. Tucker, M. Campbell, aod O. Fino. A distributed
VLSI architecture for efficient signal and data processing. IEEE Transactions on
Computers, C-34(12), December 1985.

[11) J .R. Gurd, C.C. Kirkham, and I. Watsoo. The Manchester Data-Flow Computer.
Communications o f the ACM, 28(1):34-52, Jaouary 1985.

[12) G. Iannello, A. Mazzeo, C. Savy, aod G. Ventre. Parallel software development in the
disc programming environmeot. Future Generation Computer Systems, 5(4}, 1990.

(13) B. W. Kerninghan and D. N. Ritchie. The C Programming Language, Second Edition.
Prentice Hall, New York, 1988.

[14) INMOS Ltd. Occami? Reference ManuaL Prentice Hall, Cambridge, 1988.

[15) J.R. McGraw, S. Skedzielewski, S. Aliao, D. Grit, R. Oldehoeft, J .R. W Glauert,
I. Dobes, and P. Hohensee. SISAL-Streams and Iterations in a Single Assignment
Language, Language Reference Manual, version 1.2. Technical Report TR M-146,
University of California • Lawrence Livermore Laboratory, March 1985.

[16) S. Mullender. In S. Mullender, editor, Distributed Systems. ACM Press, 1989.

[17) C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic
Publishers, Boston, Mass., 1988.

[18] S. K. Skedzie!ewski and John Glauert. IFl: Ao iotermediate form for applicative
languages refereoce manual, version 1. O. Technical Report TR M-170, Lawrence
Livermore National Laboratory, July 1985.

