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RESUMO

Neste trabalho ¢ proposto um modelo generalizado para redes de interconexdo multinivel que
extende as classes de redes existentes, como as SW- e CC-banyans. Partindo de esquemas para
identificagdo de nodos entre estdgios adjacentes, sdo estabelecidas férmulas de conexao que permitem
descrever um nimero extremamente elevado de novas subclasses de redes, expandindo o leque de
topologias alternativas. Para mostrar a variedade e a vantagem de algumas subclasses sobre outras,
a distincia média entre nodos da rede é calculada para redes de determinado tamanho.

ABSTRACT

In this work a new generalized model for Multistage Interconnection Networks (MINs) is proposed,
extending the classes of existing MINs, such as SW- and CC-banyans. By introducing a labelling
scheme for nodes in the network, a connection formula is established that makes it possible to describe
an enormous number of new subclasses, extending substantially the choice of alternative topologies.

To give a flavor of the great variety and advantage of some subclasses, their average distance is
computed for networks of given size.
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1 Introduction

The need for ever increasing performance has pushed computers that use the conventional von Neu-
mann architecture to its limits. A natural extension to the uniprocessor architecture is to add one or
more processors to share the task of solving a single problem. By doing so, it is anticipated that the
time that is taken to solve it in this multiple processor (or multiprocessor) system will be lower than
in the single processor system. As expected, though, the task of connecting two or more processors to
work in cooperation is not trivial, and many design issues are involved in building such a multiproces-
sor. Various interconnection networks (ICNs) have been suggested for use in multiprocessors, some
within a particular context or with some application in mind. In this work, we will be dealing with
the class of networks called Muitistage Interconnection Networks, or MINs, of which many different
subclasses exist. These networks are characterized by the fact that nodes are laid out in stages, within
which there are no interconnections, and connections exist only between nodes at adjacent stages.

A number of MINs have been proposed, among which we can cite baseline [15], delta [12],
omega (8], indirect-binary cube {13], and flip [1). These networks have been shown to be topologically
equivalent to each other [15], and consequently, results obtained for one can be readily applied to the
others. Banyan networks [6, 9, 14] constitute another large class of the many proposed topologies, and
reports on their fault-tolerance properties, resource allocation algorithms and performance evaluation
can be found in the literature [5, 7, 11].

Conceptually, a banyan network is defined in terms of a directed graph representation, which is
a Hasse diagram of a partial ordering with a unique path between every base and apex. A base is
defined as a node of in-degree 0 and an aper is defined as a node with cut-degree 0. We assume the
convention that levels are numbered from base to apex, with level 0 corresponding to the base nodes,
and level | corresponding to the apex nodes. A regular banyan is characterized by the fact that all of
its nodes (with the exceptions mentioned above) have the same out-degree (called spread in banyan
terminology) and the same in-degree (called fanout). These parameters are represented by the letters
s and f, respectively. Two examples of banyan networks are shown in Figure 1. The left network
is irregular and is restricted to special applications, such as directly mapping an algorithm into a
network. The right network, being regular, is very appropriate for use in interconnection networks,
both because data routing algorithms can be easily specified, and because of its excellent properties
for data manipulation due to the embedded tree structures.

L

(a) Irregular
Figure 1: Examples of banyan networks.

Regular banyans can be further classified into different networks, according to the connection
scheme applied to the nodes. Two of them have been reported in the literature, the SW-banyan and
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the CC-banyan. The former is defined as a recursive expansion of a crossbar structure (which itself

can be thought of as a one-level SW-banyan), by interconnecting s/~! such crossbars and f identical
I — 1 SW structures, all with the same fanout and spread.

SW-banyans can also be further divided into rectangular and non-rectangular SW-banyans, the
only difference being that for the former the spread and fanout are the same. SW-banyans are
described by a set of numbers in the format (s, f,[) for non-rectangular banyans, and by (s,/) or
(f,1) for rectangular banyans. For f = 2, this latter class has been shown to be isomorphic to the
networks described at the beginning of this section, and as such, the results presented here can also
be applied to those networks. Examples of rectangular and non-rectangular banyan networks are

N
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CEKAR

(a) Rectangular (b) Non-rectangular

Figure 2: Examples of rectangular and non-rectangular banyan networks

The SK-banyan formulation represents a unification and not a fragmentation of the networks
issue, because the SW-banyan (and all of its isomorphic counterparts) is 2 member of the class of
SK-banyans. This unification is even more evident when it is proved in [4] that another class of
banyan networks, the CC-Banyans, are also shown to be one of the subclasses of SK-Banyans. These
two subclasses, which were thought to be unrelated, are unified under a single model, and shown
to have common features. Also, significant understanding of the issue of network connectivity and
distance properties have been attained by the study of SK-banyans.

The motivation to conduct this work came from the work of Menezes and Jenevein [10] regarding
the distance properties of KYKLOS double-tree networks. These results showed that, by changing
the connections of the second tree in an appropriate and regular way, the distance properties of this so
modified double-tree were shown to be better than for the conventional double-tree. This represented
a break from traditional symmetric interconnection schemes of the past which have lead to symmetric
redundancy. The connections, while a break from the past trends, are regular and predictable from
stage to stage. As the banyan networks have an embedded tree structure, they might also show some
improvement by using some modified connection scheme, as will be shown in a latter section. An
example of an SK-banyan is shown in Figure 3, in comparison to an SW-banyan.

The emphasis on the study of the distance properties of these new banyan networks is justified by
the fact that the delay observed in the transmission of messages across an interconnection network
is closely related to their distance properties. This is particularly useful when studying single-sided
networks, because base-to-base distance becomes quite important, and improvements in the distance
properties are essential for minimizing communication overhead. It is desirable in this case that the
distance between these nodes be as low as possible, without aggravating the distance properties of
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Figure 3: SW-banyan and SK-banyan.

the apex nodes.

2 Definition of SK-Banyans

We start our analysis by reviewing the basic properties of an (s, f,I) regular banyan, which were
studied in detail in [14]). This graph is a Hasse diagram of a partial ordering in which the following
properties hold:

¢ banyan property: there is one and only one path from any base to any apex;
e [-level property: all base-to-apex paths are of the same length [;

o regularity property: the indegree of every node, except the bases, is f and the outdegree of
every node, except the apexes, is s.

Two basic results can be proved for this graph. First, the number of nodes at each level can be

computed from the parameters of the graph. For an (s, f,!) regular banyan, the number of nodes at
level 1 is given by:

n = s fi-i (1)
and the number of edges between levels i and i — 1 is given by:

e = ‘,ifl-i+l . (2)

Second, the nodes can be distinctively numbered within each level, from 0 up to n; — 1. Nothing

can be said though, about other properties of the graph as no connection scheme between levels is

defined for an (s, f,!) regular banyan. Previous works have defined two connection schemes, leading

to two banyan networks: the SW-banyan and the CC-banyan. In this work, we further generalize the

connection scheme, and then investigate which networks are generated from this generalization and
which relationship they have with the SW- and CC-banyan networks.

2.1 Labelling scheme

The labelling scheme consists of a tuple <level, order> in which the first number identifies the level
in which this node is located, and the second number identifies the order of the node within that
level. Normally, as is the case for multistage interconnection networks, the levels are numbered from
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0 to I, and the nodes are numbered from 0 up to the maximum number of nodes in the particular

level minus one. Typically, the numbering of nodes is done with a number system different from the
decimal system to make it easier to specify routing algorithms.

Based on these considerations, we adopt the following labelling scheme for an (s, f,!) regular
banyan, illustrated in Figure 4:

Level numbering;:

e vertex levels are numbered using a decimal base, from 0 to [, and this number is called the
(vertex) level number;

o the top vertex level, called the apez level, is numbered [;
o the bottom vertex level, called the base level, is numbered 0;

o edge levels are numbered like vertex levels, with level 1 being the edge level between vertex
levels i + 1 and 1.

Node numbering:
e at each level, including the apex and the base levels, nodes are numbered from 0 to n; — 1,
where n; represents the number of nodes within that level, as given by Equation 1; this number

is called the order number;

» cach order number is a numeric string composed of two substrings, one of them possibly empty,
the rightmost substring in base f, and the leftmost substring in base s; an order number for a
node at level | — i is represented, according to this format, as a sequence of digits in the form:

(- diyadiprd;)s(dicadizz--+)g
where the indexes are defined within the range [0, - 1];

e each node in the graph is identified by a tuple <level number, order number>

Figure 4: Level and node numbering schemes on an (s, f,{) regular banyan.
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2.2 Connection scheme

The connection scheme to be used for SK-banyans will be defined in terms of a connection formula,
which specifies which nodes at an adjacent, lower level are connected to a particular node at a higher
level. This can also be written as a relation R between the two nodes, the relation being that if two
nodes a and b are related (aRb), then there is an arc between these two nodes, the node at the upper
level (@) being the final vertex, and the node at the lower level (b) being the initial vertex. We will
write the relation R as “—", to mean “is connected to”. Assuming the node numbering described
before, we can describe the connections as pairs of tuples in the form:

node < level,order number > — node < level — 1, order number > (3)

Using the notation given previously for writing the node number as a composition of two numbers
in bases s and f, we can write the connection formula above as:

node < I —1i,(--dizadiy1di)s(dicrdiza-- )y > —
node <l—-i-1,(- 'Ji-i-:d:'-q-l)a(‘{id:'-ld:'-a‘ ) > (4)

where:

e [ —i-level number of the node at the upper level (0 <i <1-1)
e d; - digits in base s or f of the order number for a node at the upper level
o d; - digits in base s or f of the order number for a node at the lower level

o d; = F(d;) for some function F.

2.3 Recursive definition

One way to define a graph is by giving a construction algorithm to obtain it. This method will be
adopted here because it leads naturally to a recursive definition, as is the case for an SW-banyan.
For SK-banyans, we start with a basic graph, which corresponds to a one-level network, and proceed
to define a recursion algorithm to obtain graphs for networks with higher number of levels. This
definition is presented in a format that is not directly implementable, but it serves the purpose of
denning grapls which are SK-banyans.

Algorithm 2.1

¢ Basic step: an (s, f,1) SK-banyan is K, ., the complete bipartite directed émph with n and
m vertices in each set, and for whichn = s and m = f.

* Recursion step: an (s, f,I) SK-banyan is constructed from an (s, f,| — 1) SK-banyan by ap-
plying the following rules:

1. Multiplicity rule: generate s copies of an (s, f,1 - 1) SK-banyan, numbering them from
0 to s — 1. Name these graphs the top graphs.

2. Numbering rule: renumber every node in copy i of the top graphs by attaching digit i

(in base s) to its order number in the most significant position, and by increasing its level
number by one.
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3. Null graph rule: generate a null graph of order f', and label every node with a number
from 0 up to f' =1 (in base f) and assign them the level number 0. Name this graph the
bottom graph.

4. Connection rule: connect every base node of the top graphs to f nodes of the bottom
graph, according to the connection formula defined for this level.

Copy 0 Copy 1 Copys—1

Top
graphs

Connection
pattern

Bottom graph

Figure 5: Illustration of the construction algorithm.

This algorithm is illustrated graphically in Figure 5. As can be inferred from the concept of the
connection formula, not all of them preserve the banyan property, and it is clear from Algorithm 2.1
that the key to preserving this property is the definition of the connections between the base nodes of
the top graphs and the nodes of the bottom graph. This is so because the only step in Algorithm 2.1
where a connection is specified is the connection rule, which is related only to the base edge level.
For future reference, we also define what is meant by “upper” and “lower clusters”. The set of f'~!
base nodes of each one of the s top graphs is called an upper cluster, and the set of f/~! nodes of the
bottom graph whose node numbers have the same most significant digit is called a lower cluster.

2.4 Examples of connection formulas

We now examine some examples of connection formulas, and the graphs that results from them.
First, we make some observations. As was defined before, and according to Algorithm 2.1, there are
s upper clusters and f lower clusters at the levels that correspond to the top and bottom graphs,
and as a consequence, up to s x f bijections can be defined between them. This can be conveniently
represented as an s x f matrix in which entry [i, j] corresponds to the bijection between an upper
cluster from copy i to a lower cluster whose MSD is equal to j. Also, because the cardinality of lower
and upper clusters is given by f'~!, the bijections between them will have to be defined between sets
of varying cardinality, which will increase with the number of levels. This implies that although we
still are dealing with s X f matrices, the cardinality of its elements will depend on the number of
levels.

A second observation regards the relationship between connection formulas for different levels.
If they are not related at all, we have a graph whose properties are not readily obtainable, as the
irregular connections between levels would be hard to model analytically. On the other hand, if we
impose some relationship between the connection formulas for different levels, a regularity may arise
from it that makes it possible to study the graph with a tractable model. To avoid extending the
subject, we restrict the analysis here to graphs whose connection formulas are the same for all levels.
The extension to the more general case is left for future research.
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Besides following a common formula we will say that, if the bijections defined between two levels
are arbitrarily chosen and bear no relation to the ones defined between other two levels, we have
what will be called a non-uniform SK-banyan. Accordingly, if the bijections at any level are chosen
according to the same procedure, the graph will be called a uniform SK-banyan. Again, to avoid
extending the subject, we will restrict the analysis here to only the uniform cases. As it will be seen,
this already covers most of the interconnection networks being studied currently, as well as a large
number of cases that have not been reported before. Examples of non-uniform SK-banyans will be
provided later, after we present some examples of uniform SK-banyans. We formally define a uniform
SK-banyan to emphasize the cases that will be analyzed in following chapters.

Definition 2.1 An (s, f,1) uniform SK-banyan is an (s, f,1) SK-banyan for which the
same connection formula and the same bijections are used throughout all levels.

Besides specifying the connection formula, we will also make use of a connection formula diagram,
which will serve as a visual aid to illustrate the action performed by the connection formula on the
digits of a node’s order number. In this diagram, the upper part represents the digits of a node at
an upper level, and the lower part represents the digits of the nodes at the lower level to which it is
connected. Thus, the upper part represents just one node, whereas the lower part represents a range
of f nodes. The relation between the digits of the upper and lower level nodes will be represented
by a down arrow (“|”) to mean exactly the identity bijection, or by a thicker down arrow (“|}") to
mean any bijection, including the identity.

A good example to illustrate these points is the SW-banyan. This is a very regular graph which
has been studied extensively, and whose properties are well understood. For these reasons, we choose
it as the first example in the definition of a connection formula.

SW-banyans

A construction definition for SW-banyans is usually given in terms of a connection rule: there
is an arc from a vertex at level i (0 < i < I) to a vertex at level i + 1 if and only if their digit
representation differs only at the i** digit position. In our connection formula notation, this would be

equivalent to the d’s and d'’s being different only at digit i. Formally, we can write it in the format
shown in Figure 6.

node < | —i,(- - -diyadis1di)s(dicadina- )y > —
node < —1i- 1|("'di+2di+1).(jfi-‘—1di—2'"); >

Connection formula diagram
(dica |- Jdiga [ di[dici | --- [ do ]
1 ! I} | i
(dica |- [diga [ 5 [dici [--- T o]

tLisf—1,081<1-1

Figure 6: Connection formula for SW-banyans.

There are two observations to make. First, the d'’s have been substituted by their images under
some bijection, which are in this case the corresponding values for the d’s. The function F as defined
in Equation 4 is the identity function, except for digit i, whose values span the range [0, f — 1].
Secondly, as suggested previously, the connection formula is the same regardless of the level, the only
difference being on which digit it acts. This digit itself is defined by the edge level, and because only
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one digit is affected this leads to the regularity of the properties of the SW-banyan, as mentioned
before. A (3,3) SW-banyan is shown in Figure 7.
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Figure 7: A (3,3) SW-banyan.

SK-banyans

Although SW-banyans are actually one of the subclasses of SK-banyans, they were presented
independently in order to demonstrate the unifying concept of SK-banyans. In fact, one connection
formula that is fandamental to the concept of SK-banyans is based on the connection formula for
SW-banyans. The difference is that, instead of using the identity as the function that relates the di's
to the d;’s, we allow any arbitrary bijection, as stated in the recursive algorithm. Following the work
provided in (3], we present the case in which just one digit 'is submitted to a bijection, and we will
refer to the graph as a uniform, single-digit SK-banyan.

Uniform, single-digit SK-banyans

The basic principle of SK-banyans, as presented in section 1, is to rearrange connections between
nodes at two adjacent levels, with the objective of improving the distance properties of the graph
by avoiding redundant connections. In the connection formula for SW-banyans this is not the case
because nodes that differ in just one digit at the upper level will be connected to the same nodes at
the lower level. One way to avoid this is to submit the same digit in the two nodes’ order numbers
to different bijections. This way, they can be connected to different nodes at the lower level.

An example of a uniform, single-digit SK-banyan is shown in Figure 9.
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node < I —1,(: - -dipadigrdi)a(dirdizg- -}y > —
node < I —i—1,(-di2diy1)a(§d;y iz~ *)s >
Connection formula diagram
{dicy |- [diga [di [dica |-~ T do ]
| O I 4 1 1
Ldima [ [ dipa [ 7 [diy [ Tdo]

Figure 8: Connection formula for uniform, single-digit SK-banyans.

CC-banyans

This class of banyan networks has different connection rules than those for SW-banyans. Their
name comes from the fact that their underlying graph can be laid out on the surface of 2 Cylinder
as a Crosshatch pattern. They present a richer set of shift-rotate permutations than SW-banyans,
as well as better distance properties for the base nodes. Although they are generally defined using
an intricate graphical construction algerithm, it was shown in [2] that they can also be constructed
recursively, via an algonthm similar to the one used for SK-banyans. In this way, CC-banyans can
be thought of as another of the subclasses of SK-banyans, with a different set of connection formulas
than those used for uniform SK-banyans. We can write the connection formula for CC-banyans as
shown in Figure 10, and the corresponding graph is shown in Figure 11.

2.5 Optimal SK-banyans

Different CGMs will generate graphs with different base-to-base average distances, and hence there
should be some criterion upon which one can find an equivalence class of graphs that satisfies a
number of properties. In [4], such criterion was defined, and it eliminated the need to actually
compute the distance properties of the graphs as, once it was defined, analytical expressions for the
distance properties could be used instead. In the case of MINs, two properties are most important:
that the average distance be the lowest and that the graph be base-symmetric, that is, that any
base nodes have the same distance properties. The networks generated within such conditions were
called optimal SK-banyans, and they are considered in the next section when comparisons are drawn
between them and previous networks (SW- and CC-banyans).

3 Distance Properties of SK-banyans

In the study of an interconnection network, an often used figure for performance evaluation is the
computation of its distance properties, usually in terms of average distance. Other measures of
importance include finding the diameter of the graph or finding a regular graph (of degree d) with
maximal order and minimum diameter k. In our case, we will restrict the analysis to the computation
of the average distance.

3.1 Average distance

The computation of the average distance properties of a graph involves, in general, computing the
distance matriz D of the graph, each entry d;; in D corresponding to the distance between nodes {
and j. Given the nxn adjacency matrix A of a graph, its distance matrix can be computed from it by
using one of several algorithms. In the case of SK-banyans, since computing resources will be assumed
to be present only in apex and base nodes, we will be interested in computing the distance properties
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Figure 9: A (3,3) uniform, single-digit SK-banyan.
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node < I —1,(di_1+ - dijadidi_1di—3 - -do)s > —
node < | —i—1,(di—1--dis1[di + j)[di-1 + &][di-2 + ciza)- - [do + ca])y >

CC-banyan connection formula diagram
1 d!-—‘l l S22 [ d|+1 | d; l diq ] dig T L do ]
1 1 1 1 1 1 4 1
[da |- Jdima [di+idici+ei|[dicateia | - [dotar]

= |45
o - [8tpe

VEigf-10%igl-LOZESi~]
Figure 10: Connection formula for a CC-banyan.

SW-banyans is higher than the average distance of both. For higher values of fanout and number of
levels, the average distance for CC-banyans approaches that of SW-banyans. This shows that optimal

SK-banyans are, with regard to average distance, a more efficient topology for single-sided networks
than the other two topologies.

3.3 Distribution of average distance for (3,3) SK-Banyans

As an example of the wide variation of distance properties of SK-banyans with different CGMs, we
present here the distribution in the average base-to-base distance of all 10,077,696 possible (3,3)
uniform, single-digit SK-banyans, shown in Figure 13. This serves to illustrate some points. First,
the equivalence classes under isometrism do not have the same cardinality. This is in sharp contrast
with the case for f = 2, where only two equivalence classes exist. It can be conjectured that this is
the only case for which this is true. For larger values of f (f > 2) it is expected that the equivalence
classes will not have the same cardinality, as exemplified here for f = 3.

Another point worth commenting on is that, in accordance with the expressions derived for the

base-to-base average distance, the lowest value in Figure 13 corresponds to an optimal SK-banyan,
whereas the highest value corresponds to SW-banyans. The value for CC-banyans is also shown in
the figure. As can be seen, the cardinality of isometric topologies for these subclasses is high, and it
is expected that many isomorphisms exist for each of these subclasses.
" 'From ' the results presented in this section, one can appreciate the wide variety of topologies
provided by SK-banyans. Besides SW- and CC-banyans, which have been studied extensively, and
have a very large range of applications, optimal SK-banyans have superior properties that may be
useful in many of these applications. This'is true also for non-rectangular SK-banyans, and SK-
_banyans belonging to other subclasses, specially the multiple-digit case.

4 Conclusiens. =" - iagn Bas D0 MR S0 R

New subclasses mth very distinct and Jmproved propemes over the prewously known SW- and CC
banyan networks were proposed. By mtroducmg the concept of a connection formula and the'use
of any bijection to determine the final arrangement of connections in-a banyan, we extended the
treatment of multistage interconnection networks enormously. This classification further allows to
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Figure 12: Base-to-base average distance for SW-, CC-, and optimal SK-banyans (cont’d.).
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Figure 12: Base-to-base average distance for SW-, CC-, and optimal SK-banyans
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Figure 13: Distribution of average distances for all (3,3) uniform, single-digit SK-banyans.



