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RESUMO 
Neste trabalho é proposto um modelo generalizado para. redes de interconexão multinivel que 

extende as classes de redes existentes, como as SW- e CC-banyans. Partindo de esquemas para. 
identificação denodos entre estágios adjacentes, são estabelecidas fórmulas de conexão que permitem 
descrever um número extremamente elevado de novas subclasses de redes, expandindo o leque de 
topologias alternativas. Para. mostrar a. variedade e a. vantagem de algumas subclasses sobre outras, 
a. distância. média. entre nodos da. rede é calculada. para. redes de determinado ta.ma.nho. 

ABSTRACT 
In this work a. new generalized model for Multistage lnterconnection Networks (MINs) is proposed , 

extending the cla.sses of existing MINs, such as SW- a.nd CC-banya.ns. By introducing a labelling 
scheme for nodes in the network, a. connection formulais esta.blished tha.t makes it possible to describe 
a.n enormous number of new subclasses, extending substa.ntially the choice of alternative topologies. 
To give a fla.vor of the great variety a.nd advanta.ge of some subclasses, their average distance is 
computed for networks of given size. 
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1 Introduction 

The need for ever increasing performance has pushed computers that use the conventional von Neu­
mann architecture to its limits. A natural extension to the uniprocessor architecture is to add one or 
more processors to share the task of solving a single problem. By doing so, it is anticipated that the 
time that is taken to solve it in this multiple processor (or multiprocessar) system will be lower than 
in the single processar system. As expected, though, the task of connecting two or more processors to 
work in cooperation is not trivial, and many design issues are involved in building such a multiproces­
sar. Various interconnection networks (JCNs) have been suggested for use in multiprocessors, some 
within a particular context or with some application in mind. In this work, we will be dealing with 
the class of networks called Multistage Interconnection Networks, or MINs, of which many different 
sub classes exist. These networks are characterized by the fact tha.t nodes are laid out in stages, within 
whlch there are no interconnections, and connections exist only between nodes at adjacent stages. 

A number of MlNs have been proposed, among which we can cite baseline [15), delta [12), 
omega [8], indirect-binary cube (13], and flip [1]. These networks have been shown to be topologically 
equivalent to eacb other (15], and consequently, results obtained for one can be readily applied to the 
others. Banyan networks (6, 9, 14] constitute another large class of the many proposed topologies, and 
reports on their fault-tolerance properties, resource allocation algorithms and performance evaluation 
can be found in the literature [5, 7, 11]. 

Conceptually, a banyan network is defined in terms of a directerl graph representation, which is 
a Hasse diagram of a partia! ordering with a unique path between every base and apex. A base is 
defined as a node of in-degree O and an apex is defined as a node with out-degree O. We assume the 
convention that levels are numbered from base to apex, with level O corresponding to the base nodes, 
and level I corresponding to the apex nodes. A regular banyan is characterized by the fact that all of 
its nodes (with the exceptions mentioned above) have the same out-degree (called sprwd in banyan 
terminology) and the same in-degree (called fanout). These parameters are represented by the letters 
s and f , respectively. Two exarnples of banyan networks are shown in Figure 1. The left network 
is irregular and is restricted to special applications, such as directly mapping an algorithm into a 
network. The right network, being regular, is very appropriate for use in interconnection networks, 
both because data routing algorithms can be ea.sily specified, and because of its excellent properties 
for data manipulation due to the embedded tree structures. 

(a) Irregular (b) Regular 

Figure 1: Examples of ba.nyan networks. 

Regular banyans can be further classified into different networks, according to the connection 
scheme applied to the nodes. Two of them have been reported in the literature, the SW-banyan and 
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the CC-banyan. The former is defined as a recursive expansion of a crossbar structure (which itself 
can be thought of as a one-level SW-banyan), by interconnecting _,l-I such crossbars and f identical 
l - 1 SW structures, ali with the same fanout and spread. 

SW-banyans can also be further divided into reclangular and non-rectangular SW-banyans, the 
only difference being that for the former the spread and fanout are the same. SW-banyans are 
described by a set o f numbers in the format ( "• j, I) for non-rectangular banyans, and by (", l) or 
(f, l) for rectangular banyans. For f = 2, this latter class has been shown to be isomorphic to the 
networks described at the beginning of this section, and as such, the resulta presented here can also 
be applied to those networks. Examples of rectangular and non-rectangular banyan networks are 
shown in Figure 2. 

(a) Rectangular (b) Non-rectangular 

Figure 2: Examples of rectangular a.nd non-rectangular ba.nya.n networks 

The SK-banya.n formulation represents a unification a.nd not a fragmentation of the networks 
issue, because the SW-banyan (a.nd ali of its isomorphic counterparts) is a member of the class of 
SK-banyans. This unification is even more evident when it is proved in [4) that a.nother class of 
ba.nyan networks, the CC-Ba.nyans, are also shown to be one of the subclasses of SK-Banyans. These 
two subclasses, which were thought to be unrelated, are unified under a single model, and shown 
to have common features. Also, significant understanding of the issue of network connectivity and 
distance properties have been attained by the study of SK-ba.nyans. 

The motivation to conduct this work carne from the work of Menezes and Jenevein [10) regarding 
the distance properties of KYKLOS double-tree networks. These results showed that, by changing 
the connections of the second tree in a.n appropriate and regular way, the dista.nce properties of this so 
modified double-tree were shown to be better tha.n for the conventional double-tree. This represented 
a break from traditional symmetric interconnection schemes of the past which have lead to symmetric 
redunda.ncy. The connections, while a break írom the past trends, are regular a.nd predictable from 
stage to stage. As the banyan networks have a.n embedded tree structure, they rnight also show some 
improvement by using some modified connection scheme, as will be shown in a latter section. An 
example of a.n SK-banyan is shown in Figure 3, in comparison to an SW-banya.n. 

The emphasis on the study of the distance properties of these new ba.nyan networks is justified by 
the fact that the delay observed in the transmission of messages across an interconnection network 
is closely related to their distance properties. This is particularly useful when studying single-sided 
networks, because base-to-base distance becomes quite important, and improvements in the distance 
properties are essential for rninirnizing communication overhead. It is desirable in this case that the 
distance between these nodes be as low as possible, without aggravating the distance properties of 
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Figure 3: SW-banyan and SK-banyan. 

the apex nodes. 

2 Definition of SK-Banyans 

We start ou r analysis by reviewing the basic properties o f an ( s, f, l) regular banyan, which were 
studied in detail in [14] . This graph is a Hasse diagram of a partia! ordering in which the following 
properties hold: 

• banyan property: there is one and only one path from any base to any a.pex; 

• l-levei property: ali base-to-apex paths are of the same length I; 

o regularity property: the indegree of every node, except the bases, is f and the outdegree of 
every node, except the apexes, is "· 

Two basic results can be proved for this graph. First, the number of nodes at each levei can be 
computed írom the parameters of the gra.ph. For an (,, f,l) regular banyan, tlie number of nodes at 
levei i is given by: 

n; = s'fl-i (1) 

and the number of edges between leveis i and i - 1 is given by: 

(2) 

Second, the nodes can be distinctively numbered within each levei, írom O up to n; - 1. Nothing 
can be said though, about other properties of the graph as no connection scheme between leveis is 
defined for an (s,f,l) regular banyan. Previous works ha.ve defined two connection schemes, lea.ding 
to two banyan networks: the SW-banyan and the CC-banyan. In this work, we further generalize the 
connection scheme, and then investigate which networks are generated írom this generalization and 
which reiationship they have with the SW- and CC-banyan networks. 

2.1 Labelling scheme 

The labelling scheme consista of a tuple <levei, order> in which the first number identifies the levei 
in which this node is Jocated, and the second number identifies the order of the node within that 
levei. Normally, as is the case for multistage interconnection networks, the leveis are numbered from 
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O to I, and the nodes are numbered from O up to the maximum number of nodes in the particular 
levei minus one. Typically, the numbering of nodes is done with a number system different from the 
decimal system to make it easier to specify routing algorithms. 

Based on these considerations, we adopt the following labelling scheme for an ( 3, /,I) regular 
banyan, illustra.ted in Figure 4: 

Levei numbering: 

• vertex leveis are numbered using a. decimal base, from O to I, and this number is called the 
(vertex) leuel number, 

• the top vertex levei, called the apex levei, is numbered I; 

• the bottom vertex levei, called the base levei, is numbered O; 

• edge leveis are numbered like vertex leveis, with levei i being the edge levei between vertex 
leveis i + 1 and i. 

Node numbering: 

• a.t each levei, including the a.pex and the base leveis, nodes are numbered from O to n; - 1, 
where n; represents the number of nodes within tha.t levei, as given by Equa.tion 1; this number 
is called the order number, 

• cach order number is a. numeric string composed of two substrings, one of them possibly empty, 
the rightmost substring in base f, and the leftmost substring in bases; an order number for a. 
node at levei I- i is represented, according to this forma.t, as a. sequence of digits in the form: 

where the indexes are defined within the range [0,1- 1]; 

• each node in the graph is identified by a tu pie <levei number, order number> 

Figure 4: Levei a.nd node numbering schemes on a.n (s,J, I) regular ba.nyan. 
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2.2 Connection scheme 

The connection scheme to be used for SK-banyans will be defined in terms o( a connection formula, 
whlch specifies whlch nodes at an adjacent,lower levei are connected to a particular node at a higher 
leve!. This can a.lso be written as a relation R between the two nodes, the relation being that if two 
nodes a and b are related (aRb), then there is an are between these two nodes, the node at the upper 
levei (a) being the final vertex, and the node at the lower levei (b) being the initial vertex. We will 
wri te t he relation R as " ..... " , to mean "is connected to". Assum.ing the node numbering described 
before, we can describe the connections as pairs of tuples in the forro: 

node < level,ordernumber > - node < levei- l,ordernumber > (3) 

U sing the notation given previously for writing the node number as a composition o f two numbers 
in bases 3 and / , we can write the connection formula. above as: 

where: 

node < 1- i, (·· ·d;+ldi+ld;),(d;-tdi-l""")J > -+ 

node < 1- i -1,(·· ·t/;+2{;+1),({;{;_1{;-2 .. ·)J > 

• I- i- levei number of the node at the upper levei (O~ i~ I- 1) 

• d; - digits in base "' or f of the order number for a. node at the upper levei 

• I( - digits in base s or f of the order number for a. node a.t the lower levei 

• I( = F(d;) for some function F . 

2.3 Recursive definition 

(4) 

One wa.y to define a gra.ph is by giving a construction algorithm to obtain it. Thls method will be 
adopted here beca.use it leads na.turally to a recursive definition, as is the ca.se for an SW-banyan. 
For SK-ba.nyans, we start with a. basic gra.ph, whlch corresponds to a one-level network, a.nd proceed 
to define a. recursion algorithm to obtain gra.phs for networks with hlgher number of leveis. This 
definition is presented in a. Corma.t that is not directly implementable, but it serves the purpose of 
denrung graphs which a.re SK-banyans. 

Algorithm 2.1 

• Basic step: an (s , f, 1) SK-banyan is Kn,m• the complete bipartite directed graph with n and 
m vertices in etJch set, and for which n = s and m = f . 

• Recursion step: an (s,f,l) SK-banyan is constructed from an (s,/, 1-1) SK-banyan by ap­
plying the following rules: 

1. Multiplicity rule: generate 3 copies of an (s, f,l-1) SK-banyan, numbering them f rom 
O to s - 1. Name these graphs the top graphs. 

2. Nu:nbering rule: renumber every node in copy i of the top graphs by attaching digit i 
{in base s) to its order number in the most significant pasition, and by increasing its levei 
number l>y one. 
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9. N ull graph rui'!: generate a null graph o f order f 1, and label every node with a number 
from O up to f 1 - 1 (in ba3e f) and as3ign them the letll!l number O. Na me thi3 graph the 
bottom graph. 

~- Connection rule: connect every base node of the top graphs to f nodes of the bottom 
graph, according to the connection formula defined for this leve/. 

Top 
graphs 

Connection 
pattern 

Copy O Copy 1 Copy s -1 

o o o 

Bottom graph 

Figure 5: Dlustration of the construction algorithm. 

This algorithm is illustrated graphically in Figure 5. As can be inferred from the concept of the 
connection formula, not all of them preserve the banyan property, and it is clear from Algorithm 2.1 
that the key to preserving this property is the definition of the connections between the base nodes of 
the top graphs and the nodes of the bottom graph. This isso because the only step in Algorithm 2.1 
where a. connection is specified is the connection rule, which is related only to the base edge levei. 
For future reference, we also define wha.t is meant by "upper" and "lower clusters". The set of f 1- 1 

base nodes of each one of the s top graphs is called an upper cluster, and the set of f 1- 1 nodes of the 
bottom gra.ph whose node numbers ha.ve the same most significant digit is called a /ower cluster. 

2.4 Examples of connection formulas 

We now examine some examples of connection formulas, and the gra.phs that results from them. 
First, we make some observa.tions. As was defined before, a.nd a.ccording to Algorithm 2.1, there are 
s upper clusters and f lower clusters a.t the levels that correspond to the top a.nd bottom graphs, 
and as a consequence, up to s x f bijections can be defined between them. This can be conveniently 
represented as a.n s x f ma.trix in which entry (i,j) corresponds to the bijection between an upper 
cluster from copy i to a lower cluster whose MSD is equal to j. Also, beca. use the cardinality o f lower 
a.nd upper clusters is given by f 1- 1, the bijections between them will ha.ve to be defined between sets 
of va.rying ca.rdina.lity, which will increase with the number of leveis. Thi6 implies tha.t although we 
still are dealing with s x f ma.trices, the cMdinality of its elements will depend on the number of 
leveis. 

A second observa.tion rega.rds the rela.tionship between connection formulas for different leveis. 
lf they are not related at ali, we have a graph whose properties are not readily obtainable, as the 
irregular connections between leveis would be hard to model analytica!Íy. On the other ha.nd, if we 
impose some relationsbip between the connection formulas for different leveis, a regularity may arise 
from it that makes it possible to study the graph with a. tra.ctable model. To avoid extending the 
subject, we restrict the analysis here to graphs whose connection formulas are the same for alllevels. 
The extension to the more general case is left for future research. 
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Besides following a common formula we will sa.y that, if the bijections defined between two leveis 
are arbitra.rily chosen a.nd bea.r no rela.tion to the ones defined between other two leveis, we have 
what will be called a non-uniform SK-banyan. Accordingly, if the bijections at a.ny levei are chosen 
according to the same procedure, tbe graph will be ca.lled a uniform SK-banya.n. Again, to avoid 
extending the subject, we will restrict the a.na.lysis bere to only the uniform cases. As it will be seen, 
this already covers most of the interconnection networks being studied currently, as well as a la.rge 
number of cases that bave not been reported before. Examples of non-uniform SK-ba.nyans will be 
provided !ater, aftcr we present some exa.mples of uniforrn SK-banya.ns. We formally define a uniform 
SK-banyan to emphasize the ca.ses that will be a.na.lyzed in following cbapters. 

Defl.nition 2.1 An (s, f, I) unifonn SK-banyan is an (s, f,l) SK-banyan for which the 
same connection formula and the same bijectioru are used throughout ali leveis. 

Besides specifying the connection formula., we will a.lso make use of a connection fonnula diagrom, 
which will serve as a visual aid to illustrate the action performed by the connection formula on the 
digits of a node's order numbar. In tbis diagram, the upper pa.rt represents the digits of a node at 
an upper levei, a.nd the lower pa.rt represents tbe digits of tbe nodes at the lower levei to wbich it is 
connected. Tbus, the upper pa.rt represents just one node, whereas the lower pa.rt represents a range 
of f nodes. Tbe relation between tbe digits of the upper and lower levei nodes will be represented 
by a down arrow ("!")to mean exactly the identity bijection, or by a thicker down arrow ("JJ.") to 
mea.n a.ny bijection, including the identity. 

A good example to illustrate these points is the SW-banyan. This is a very regular graph which 
has been studied extensiveiy, a.nd whose properties are well understood. For these reasons, we choose 
it as the first exa.mple in the definition of a connection formula. 

SW-banyans 
A construction definition for SW-ba.nya.ns is usually given in terms of a connection rule: there 

is an a.rc from a vertex at levei i (O :S i < I) to a vertex a.t levei i + 1 if a.nd only if their digit 
representation differs only at the i'" digit position. In our connection formula notation, this would be 
equiva.lent to tbe d's a.nd ri•s being different only at digit i. Formally, we ca.n write it in tbe format 
shown in Figure 6. 

node < 1- i,(· .. d;+ldi+td;),(d;-tdi-2'' ')/ > .... 
node < 1- i- l,(···d;+2d;+t),(jd;-1di-2" ·)J > 

Connection formula di~a.m 
I d,_1 I · · · I c~;+l I c1; I c~;_í .. · I do I 

! ! ! ! ! ! 
I dt-1 I · · · I d;+l I i I di-1 I · · · I do I 

O :S j :S f- 1, O :S i :S I - 1 

Figure 6: Connection formula for SW-banya.ns. 

There a.re two observations to make. First, tbe ri's bave been substituted by their images under 
some bijection, whicb a.re in this case tbe corresponding values for tbe d's. Tbe function F as defined 
in Equation 4 is the identity function, except for digit i, whose values span tbe range [0, f - 1]. 
Secondly, a.s suggested previously, the connection formulais the sa.me rega.rdless of the levei, the only 
difference being on wbich digit it acts. This digit itself is defined by the edge levei, and because only 
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one digit is affectrd this leads to the regularity of the properties of the SW-banyan, as mentioned 
before. A (3,3) SW-banyan is shown in Figure 7. 

Figure 7: A (3,3) SW-banyan. 

SK-banyans 

Although SW-banyans are actually one of the subclasses of SK-banyans, they were presented 
independently in order to demonstrate the unifying concept of SK-banyans. In fact, one connection 
formula that is fundamental to the concept of SK-banyans is based on the connection formula for 
SW-banyans. The difference is that, instead ofusing the identity as the function that relates the d;'s 
to the d; 's, we allow any arbitrary bijection, as stated in the recursive algorithm. Following t he work 
provided in [3}, we present the case in which just one digit "is submitted to a bijection , and we will 
refer to the graph as a uniform, single-digit SK-banyan. 

Uniform, single-digit SK-banyans 
The basic principie of SK-banyans, as presented in section 1, is to rearrange connections between 

nodes at two adjacent leveis, with the objective of irnproving the distance properties of the graph 
by avoiding redundant connections. In the connection formula for SW-banyans this is not the case 
because nodes that differ in just one digit at the upper levei will be connected to the same nodes at 
the lower levei. One way to avoid this is to submit the same digit in the two nodes' order numbers 
to different bijections. This way, they can be connected to different nodes at the lower level. 

An example of a uniform, single-digit SK-banyan is shown in Figure 9. 
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node <l-i,(· · ·d;+,di+td;).{d;_ld;_, ... ), > -+ 

node <l-i -l,(· ··d;+2d;+t),(jd;_1c!;_, • . . ), > 

Connection formula. di~am 
I d1-1 I · · · I d;+l I ct; I ct;_) • · · I do I 

! ! ! ~ ! ! 

Figure 8: Connection formula for uniform, single-digjt SK-banyans. 

CC.bnnyans 
This class of banyan networks has different connection rules than those for SW-banya.ns. Their 

na.me comes from the fact that their underlying graph ca.n be laid out on the suríace of a C)rlinder 
as a. Crossha.tch pa.ttern. They present a ricber set of shlft-rotate permuta.tions tha.n SW-ba.nya.ns, 
as well as better distance properties for the base nodes. Althougb they are generally defined using 
a.n intricate gra.phical construdôon al~oritbm, it wu shown in (2] that they ca.n also be constructed 
recursively, v1a an a.lgonthm similar to the one used for SK-banyans. In this wa.y, CC-banya.ns can 
be thought of as another of the subclasses of SK-ba.nyans, with a different set of connection formulas 
than those used for uniform SK-banyans. We tan write the connection formula for CC-banyans as 
shown in Figure 10, and the corresponding graph is shown in Figure 11. 

2 .5 Optimal SK-banyans 

Different CGMs will genera.te graphs with different base-to-base a.verage distantes, and hence there 
should be some triterion upon which one can find an equivalente class of graphs that satisfies a 
number of properties. In [4], such criterion was defined, and it eliminated the need to actually 
compute the distante properties of tbe graphs as, once it was deftned, analytical expressions for the 
distance properties could be used instead. In the case of MINs, two properties are most important: 
that the average distance be the lowest and that the grapb be base-symmetric, that is, tha.t any 
base nodes have the sa.me distante properties. The networks generated within such conditions were 
t:alled optimal SK-banyans, and they are considered in the next section when compa.risons are drawn 
between them and previous networks (SW- and CC-banyans). 

3 Distance Properties of SK-banyans 

In the study of an interconnection network, an onen used figure for performance evaluation is the 
computation of its distance properties, usually in terms of average distante. Other measures of 
importante include finding the diameter of the graph or finding a regular gr~ph (of degree d) with 
maximal order and minimum diameter k. In our case, we will restrict the analysis to the computation 
of the average distance. 

3.1 Average distance 

The computation of tbe average distance properties of a graph involves, in general, computing the 
distance matriz D of tbe graph, each entry d;; in D corresponding to the distance between nodes i 
and i. Given the nxn adjacency matrix A of a grapb, its distance rnatrix can be computed from it by 
using one of several algorithms. In the case of SK-banya.ns, since computing resourtes will be assumed 
to be present only in apex and base nodes, we will be interested in computing the distance properties 



Figure 9: A (3,3) uniform, single-digit SK-banyan. 

of these nodes only, and for this reason the corresponding distance matrix will be a submatrix of the 
distance matrix for the whole graph. From this distance submatrix, the average distance from a node 
i to the other nodes can be computed from: 

_.,M d·· 
- L-j:\ IJ (5) 

( d;= M 

where M is the cardinality of the subsetlof nodes involved, and indices i and j refers now to entries 
from the distance submatrix. If we wan~ to compute the average distance between ali nodes to ali 
nodes,1 we can compute it from: 1 

I 
! M M 
1- _ Li=t Lj=l d;; (6) 
fi- M2 
I 

3.2 Distance Properties of SW-J CC-, and optimal SK-Banyans 

The values of the average distance were icomputed from the equations derived in (4] for thes~ sub· 
I classes, and are plotted in Figures 12(a~ to 12(d) for eacll fanout. For f = 2, CC- and op,timal 

SK-banyans have the same distance properties, for any number of leveis, and the average distance for 
--~--------------------------- ' 1 Again, we are referring to & su bset of nodes .• 

I 
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node < 1- i,(dt-t' ··d;+td;d;-td;-2'' ·do)J > -
node < I- i- 1, (dt-t" ·d;+t(d; + j](d;-1 + c;)[d;-2 + Ci-t]" ·[do+ Ct])/ > 

CC-banyan connection formula diagram 
I d, I I ... I di+l I d; I d;-1 I di-2 I ... I do 

l l l l l l l l 

c;= l!iJiJ 
Ck = l d•+;w J 

o$ j $f- 1,0 $i$ 1- 1,0$ k $i- 1 

Figure 10: Connection formula for a CC-banyan. 

SW-banyans is higher than the average distance of both. For higher values of fanout and number of 
leveis, the average distance for CC-banyans approaches that of SW-banyans. This shows that optimal 
SK-banyans are, with regard to average distance, a. more efficient topology for single-sided networks 
than the other two topologies. 

3.3 Distribution of average distance for (3, 3) SK-Banyans 

As an example of the wide variation of distance properties of SK-banyans with different CGMs, we 
present here the distribution in the average base-to-base distance of ali 10,077,696 possible (3, 3) 
uniform, single-digit SK-banyans, shown in Figure 13. This serves to illustrate some points. First, 
the equivalence classes under isometrism do not have the sa.me cardinality. This is in sharp contrast 
with the case for f = 2, where only two equivalence classes exist. lt can be conjectured that this is 
the only case for which this is true. For larger values of f (f > 2) it is expected that the equivalence 
classes will not ha.ve the same cardinality, as exemplified here for f = 3. 

Another point worth commenting on is that, in accordance with the expressions derived for the 
base-to-base average distance, the lowest value in Figure 13 corresponds to an optimal SK-banyan, 
whereas the highest value correspÕnds to SW-banyans. The value for CC-banyans is also shown in 
'the figure. As can be seen, the cardinality of isometric topologies for these subclasses is high, and it 
is expected that many isomorphisms exist for each of these.subclasses. 
· From' the 'results presented Ín this section. pJle can app;~ciate the w.id~ variety of ·.topologies 
provide(l 'by SK-liany~ns. Besides ' SW- and CC-banyans, which h~ve , been. -studied ~petensively, and 
have a very large range of a.pplications, optimal SK-banyans have 'superior properties that may be 
usefuJ in many of these applications. '.l;']lis is trile. also for non-rectangular SK-banyans, and SK-

' banyans belonging to other subclasses, sped~y· thé multiple-digit case. 

4 
. .. ·~ ,, ' .. L ,.J .... ,., ,' . , • • , : :.,: t···: ,,. • .• ~ ~,..; .--:· ~~· ,; :· .• ..,.;Ít./ · ·~' Í 

N'ew subcla:sses with Vfk y disti~ct ~d 1,q1proved properties.over t~e~ previo~~ly_.~nown $.W- andrCC-
banyan ~~t~?~k~· "':'fre.'Jl;o~osed. By i~trod~cing.'the, ço!lc'ept of a, connection. fopgula. anil t:he! ilse 
of any btJectJon to âeléi'mme the final arrangement of connections in-a.-banyan, we-ex-tended the 
treatment of multistage interconnection networks enormously. This classific'ati6n furtller àfiows to 
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Figure 11: A (3 ,3) CC-banyan. 

t:!<! fin.:! which subclasses are best suited for a given application. The distance properties of optirnal 
SK-banyan networks show that this subclass would have a defini tive advantage over other subclasses 
in single-sided networks. 
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Figure 12: Base-to-base a.vera.ge distance for SW-, CC-, a.nd optima.l SK-banya.ns 
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Figure 13: Distribution of average distances for ali (3,3) uniform, single-digit SK-banyans. 


