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ABSTRACT

In this paper we propose the use of multiple Omega networks as an interconnection system
for shared memory multiprocessors. This allows us to achieve a much higher bandwidth of
communication., accommodating the needs of current high-performance processors, including
those with multiple memory ports. We also obtain a very scalable system, by defining a
processor-switch-memory building block, that can be used in systems with processor count
in the range of a few units to several thousands. The performance evaluation of multiple
Omega networks is done through a simple analytical model that allows us to compare their
performance to a that of a single network, and investigate alternatives for processors with
multiple memory ports. The results show that the performance (in terms of bandwidth and
latency of communication) of systems with multiple networks is more stable with respect to
variations in systems parameters. such as number of processors and memory access rate, than
that of systems with just a single network.

'This work was supported in part by the National Science Foundation under grant NSF CCR 89-57310,
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1 Introduction

The Tunction of the processor-memory interconnec-
tion 1n a shared-memory multiprocessor is to provide
a logical link between any processor and any mem-
ory module. Many different organizations have been
proposed and used for this interconnection. At the
low and high ends of the bandwidth and cost spec-
trum we find the time-shared bus and the full cross-
bar switch. respectively. In between these two ex-
tremes, there is a rich variety of alternatives, which
have been the subject of extensive research. A very
popular class of interconnection networks, which has
received considerable attention from both the indus-
try and academia is the multistage interconnection
network (MIN) [12]. These networks are composed of
muitiple stages of crossbar switches, connecting pro-
cessors and memory modules. We will assume here
that the reader is somewhat familiar with the general

structure of MINs,

Most analysis of multistage interconnection networks
(MINs) consider the situation where the number of
processors. P. isequal to the number of memory mod-
ules. M (P = M = N). and the network has logg N
stages, with N/ A" switches (of type K x ') each, for

a total of S = ¥ logs N switches.

The approach described above has some disadvan-
tages. One of them is that today’s high-performance
processors can require very high memory bandwidth
(some even have multiple memory ports) and there-
fore the one-to-one ratio of memory to processor is
not enough to provide the necessary bandwidth. An-
other disadvantage is that the ratio of processors to
switches is not. in general. an integer (§ = K+ is
an integer only for N = A" with K modn = 0).
so that we cannot have a homogeneous processor-
switch-memory building block. very desirable for the

construction of highly-parallel systems.

In this paper we propose and analyze a multiple in-
terconnection scheme that allows us to build shared
memory parallel systems out of homogeneous ele-
menis. and provides adequate bandwidth for mem-
ory operations by advanced processors. This scheme
is composed of multiple Omega (also known as mul-
tistage shuffle-exchange) networks operating in par-

allel.

We start the paper with a brief description of the
Omega network. Ve then explain how multiple
Omega networks can operate in parallel. and how a
system can be built utilizing homogeneous processor-
switch-memory elements. We proceed with some
performance evaluation of multiple Omega networks,
showing their advantage over single networks, and

conclude with some discussion of related work.

2 The Omega Network

An Omega (or multistage shuffle-exchange) network
{6, 17] can be described by a pair of integers Q =
(N, K}, where N is the number of input and output
ports to the network, and K is the radiz of the net-
work. We only consider the simplest case, N = K™,
In this case, the Omega network consists of n stages,
each stage. in turn, is composed by a shuffle substage

and an exchange substage.

The shuffle substage is simply a reordering of the
inputs, obtained by applying the shuffle function
of radix A (Sk(i)), defined as follows: let i =
@n—1dn-2...a1ag be an input number in K-radix rep-

resentation (an—; ...ap are K-ary digits). then:

Sk(@n-18n-2...a1Q0) = @pun...a1G0an_;

This corresponds to a simple cyclic shifting of the
number. In the more interesting case that K is a

power of 2. ' = 2%, each K-ary digit is a set of



& binary digits. and a circular shift on the address

corresponds to a k-position binary circular shift.

The exchange substage consists of N/K K x K cross-
bar switches. The first crosshar is connected to the
first K inputs and outputs. the second crosshar to the
following K inputs and outputs. and so on. Figure 1
shows an 0 = (16.4) network. Typically, two unidi-
rectional Omega networks are used to build a system:
one (forward network) goes from the N processors to
the N memory modules, while the other (reverse net-
work) goes from the memory modules back to the

processors, as shown in Figure 2.

Routing in an Omega network is easily accomplished.
We first label each stage, starting with n — 1 for
the stage closest to the input, and decreasing by
one as we move down the network, until we la-
bel with' 0 the stage closest to the output. Sup-
pose now that a request entering the network at
input i = @p-1ap-2...a189 Wants to reach output
0 = ba_ibn_a...bibo. The message then enters the
network through stage n — L. When this message
reaches the exchange substage of stage I, it then se-
lects output by of the crosshar switch, At the last
stage of the network (stage 0), this request will be

emerging at the desired output.

Some of the important parameters of a shared-
memory multiprocessor system built around an
Omega network are the number of processors P, the
number of memory modules M, and the number of
switches S, in each of the networks (forward and re-
verse). From the way the network is constructed. we
have:

P=M=N

.‘v .\r
= —n= — - N
” K"T & logx

Therefore. the ratio of processors to switches is
P/S = K/logg N. Today's reasonable values for K

are &. 16 and 32. and the above ratio is larger than 1
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even for system with thousands of processors. Table 1
shows the processor-switch ratio (and other parame-
ters) for some systems utilizing an Omega network.
We only list those systems for which P/S is an inte-
ger. These systems have the interesting property that
they can be built utilizing a single type of building
block: a processor-switch-memory element composed
of two switches (one for the forward and the other for
the reverse network), P/S memory modules and P/S
processors. The systems are not scalable, though, be-
cause the P/5S ratio (an therefore the building block)

is different for each system size.

Since a high performance processor is usually the
most expensive and most difficult to design compo-
nent in the system, we would like to have a lower
processor /switch ratio, if this buys us some additional
performance (and indeed it does, as we will show lat-
ter). We also want to have a building block that can
be used for systems of different sizes. We recognize
that the general case of systems that can be built
utilizing homogeneous elements composed of p pro-
cessors, s switches and m memory modules deserves
attention. but in this paper we only treat the particu-
lar case of systems utilizing elements with 1 processor,
9 switches (1 for the forward network, and 1 for the

reverse network), and m memory modules.

We also only consider systems utilizing complete net-
works: those that use all the inputs and outputs. Sys-
tems with a varied number of processors can be built
by utilizing only a subset of a complete network (we
call these incomplete networks). The Cedar multi-
processor (5], for instance, utilizes a 2-stage Omega
network of 8 x 8 switches. Normally, this network
would have 64 inputs and outputs, but Cedar only
utilizes a subset of it to connect 32 processors to 32

memory modules.
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3 Multiple Omega Networks

3.1 Performance Motivation

An important performance drawback of the Omega
network is that the number of inputs and outputs of
the network is the same. This can cause considerable
conflicts in the routing of requests. Let us assume
that each input (of the whole network or of a single
switch) can accept o new request every cycle. We
then say that a conflict occurs whenever two or more
inputs want to reach the same output at the same
time, and we define throughput {of the network or
switch) as the number of requests that reach the out-
put in each cycle. divided by the number of inputs

(the maximum throughput is therefore 1.0).

Independently of the configuration of a particular
Omega network, it cannot produce more throughput
than a crossbar. f we assume uniformly distriboted
randorm selection of outputs by the inputs, and always
one request per input every cycle, the throughput of a
N % N crosshar approaches the limitof 1—e~! = 0.632
as .V approaches > (for a 16 x 16 crosshar the value
is 0.644) [7]. The Omega network cannot do better
than this. and as the number of stages in the network
increases, the throughput ratio between the Omega
and the crossbar decreases. See Figure 8 for a plot of
these throughputs (the formulas used to obtain these

figures are derived in section 4).

The limiting thronghput (as N — 2¢) of m N x N
crossbars operating in parallel to connect NV proces-
sors to m.\' memories is given by m(1 — e~/™) [7],
notice thav m N x N parallel crossbars is essentially
the same as one N x m.\" crossbar. This is an upper
limit for the throughput of multiple Omega networks
in parallel. and Figure 9 is a plot of this limit for dif-
ferent values of m. As we can see, the use of multiple

interconnection networks can substantially increase

the bandwidth between processors and memories.

In view of the above discussion, interconnection
networks for shared memory multiprocessors need
to provide a memory/processor ratio better than
one. In fact. since high-performance processors may
have multiple memory ports, the ratio of mem-
ory/processor has to be larger than p, where p is
the number of imemory ports per processor. This in-
creased bandwidth between processor and memory
become even more important as the speed of mem-
ories and switches fails to keep up with the speed

improvemeni of processors.

3.2 Using Multiple Networks

One means to achieve a higher memory/processor ra-
tio is to use multiple Omega networks in parallel. We
will show how this can be done, with the additional
benefit of making the ratio of number of switches to
number of processors fixed for a wide range of system
sizes. This implies that a processor-switch-memory
element can be used as a building block for highly-

parallel systems.

Table 1 shows the processor/switch ratio for various
Omega networks, this ratio is K/ logy N. If we pro-
vide two switches (one to be used in the forward
network and the other in the reverse network) for
every processor in the system, that means we can
build K/ logy ¥ Omega networks in parallel. thus in-
creasing the total throughput between processor and
memory. We will also provide &' memory modules
per processor. reducing the probability of conflicts in
memory accesses, and compensating for the differ-
ence in speed between processors and memories. The
next paragraphs will show how to build systems using

these components.

A set of ' memory modules is grouped together into

a supermodule. A supermodule has K inputs and K



outputs, and any input can access any memory mod-
ule, and any memory module can access any output.
This can be accomplished by using A" x A" crossbar
switches between the inputs and memory modules,
and between the memory modules and outputs, as
shown in Figure 3. In the case of a system with
P = M, each memory module is usually divided
into multiple banks (which may be capable of per-
forming accesses simultaneously, in order to compen-
sate for the long memory cycle time), which would
roughly correspond in size to the independent mod-
ules in the case of multiple networks (the total mem-
ory size should be approximately the same in both

cases).

Let us first consider the case of one memory port
per processor. The system then consists of N pro-
cessors, m = K/ logy; N Omega networks of the type
Q =(N,K), and M = NK memory modules. Each
Omega network has % logx N switches, and there-
fore the total number of switches in the system is 2NV
(N for the forward networks, and N for the reverse

networks). The system is built as follows:

1. We first build m Omega-networks of type (N, i),
and label them Qq,Q,...,Qm-; (this is done

both for the forward and reverse networks).

2. To the outputs of the forward networks and in-
puts of the reverse networks we connect the su-
permodules. There are N supermodules (KN
total memory modules), and m networks (of each
type) with X' connections per network. Output
i of forward network j is connected to input j
of supermodule i, and output £ of supermod-
ule [ is connected to input ! of network k. for
0<ik<N=Land0<jI<m~-1.

3. Using a 1 : m demultiplexer, we connect pro-

cessor P; to the the i** input of all m forward
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networks to P;.

See Figure 4 for an example of how two Omega net-
works are used in parallel to connect 16 processors to

64 memory modules.

Each of the supermodules is connected to the m
networks (forward and reverse). Notice that m in-
puts and outputs of each supermodule are used (1 <
m < K). We partition the modules inside a super-
module by exclusively assigning module i to network
i mod m. This guarantees that there will be no con-

flicts in the crossbar switches inside a supermodule.

For a processor to access a memory module, it must
now first select the appropriate network, and then the
message must be routed through the network. Since
we have essentially increased the bandwidth of the
connection between processor and memory by using
m Omega networks in parallel, the chances for a con-
flict are smaller than using a single Omega network.
Figures 10 to 15 compare the performance (in terms
of network bandwidth and delay) of multiple Omega
networks to that of a single network. Again, the for-
mulas used to obtain these figures are derived in Sec-

tion 4.

The building block shown in Figure 5 can be used to
build systems with K, K2, ..., KX processors. The
ratio of memories and switches to processors is kept
fixed for all the system sizes, and in this sense the sys-
tem is very scalable. The connections between com-
ponents, though, is not fixed, and different system
sizes require different wirings (which is not a scalabil-
ity feature). The performance of the interconnection
system does not scale perfectly, since the number of
parallel networks decreases as the number of proces-

sors increases.

Table 2 shows some characteristics of systems with 8,

networks Q. Q;, Q,,—y, and using a m : J mylpi-
R B 3Sﬁ~l. 256, 1024. 4096, 65536 and 1048576 pro-

plexer we connect the i'® output of all in“fevbrse!

INSTITUTO
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cessors with a maximum of 4 stages in the network,
built using switches of size 8 x 8. 16 x 16 and 32 x 32
(the systems with more practical interest have 8 to

4096 processors).

3.3 Processors with Multiple Memory
Ports .

Some high-performance processors need more than a
single port to memory. with 4 being a more reason-
able number. We can accommodate such processors
by using a 4 x m crossbar between the processors and
the networks, as shown in Figure 6. This crossbar
we added is now a source for contentions, and affects
the performance of the system. Another option is to
treat each physical processor as 4 virtual processors,
giving to each of the memory ports of the processors
an input in all parallel networks, as shown in Fig-

ure 7. Figures 16 and 17 compare the performance
of these two approaches, using expressions derived in

the next section.

4 Performance Evaluation

The basic expressions used in this paper for the per-
formance of a crossbar switch can be found in [7]. The
performance model used here for multistage intercon-
nection networks is very similar to that of Patel [8].
More complete analytical performance models can be

found in [4, 9].

A basic assumption for the derivation of our perfor-
mance models is that the processors generate uni-
formly distributed random requests for memory mod-
ules. That means that in a request a processor re-
quests a given memory module with probability 1/M/.
Furthermore. all processors generate requests at the

same rate, A (A < 1.0 requests/cycle).

4.1 Performance of a Crossbar Switch

Consider a n x m crossbar switch. In each cycle it re-
cei;‘es requests from its n inputs, and routes as many
requests as possible to its m outputs, requests that
cannot be routed to the desired output in a given cy-
cle can be dropped or (more realistically) stored in
a FIFO queue for that input, so that they can retry
latter (for our analysis we are assuming that retries
are performed. but we ignore the effect of the retries
in increasing the request rate). Define r; as the in-
put bandwidth for input i, i.e. the average number
of requests received at input  in each cycle. Define
b; as the oufput bandwidth for output i, i.e. the av-
erage number of requests reaching output i in each
cycle. If r =rp=r, = ... = rn-, and each input
requests all the outputs with same probability, then
bo=b=...bpn=y = b, and

-2 o

m

The total bandwidth of the crossbar is mb (b can also
be defined as the normalized bandwidth, since it is
the total bandwidth divided by the number of out-
puts).

The efficiency of a m x n crossbar switch can be de-
fined as

==2l-(-3)] @

The efficiency e is the probability that a particular
request from an input will be satisfied in a given cycle,
therefore, each request experiences, on the average, a

delay of
o 3
e

cycles in the crossbar.

If the crossbar is of type K x K the above expressions

for bandwidth and efficiency become

. [1_(1_1—':_)"] (4)



4.2 Performance of Omega Networks

After these initial considerations, we can proceed
with the modeling for single and multiple Omega net-
works. We will only analyze the performance of the
forward network (processors to memories), sice we
believe this is enough for a comparison between single
and multiple neiworks. We also ignore the effects of
the initial demultiplexer (connected to the processor).
since this is not necessarily an active device. It may
appear that for the case of multiple networks there is
an additional switch hidden inside the supermodule.
but in fact, this switch adds roughly the same de-
lay as the circuitry in a singie memory module with

multiple banks.

Consider an Omega network Q = (N, K). It has, as
discussed before, n = logy N stages. The stages are
numbered n = 1,n = 2,....0. Let r; be the input
bandwidth for the switches in stage [, and b; be the
output bandwidth for the same switches. Then the

input bandwidth for the whole network is:
P =2 (6)
and the output bandwidth for the whole network is:
b=1by (O]

and, since the outputs of stage ( are the inputs for

stage [ — 1, we have:

r-1 =b (8)

L:ofine the function F(r, A') as

Flr.R)= [l—(l—%)x] (9)

and let

Fle.K)=1r (10)

Fle.Y=F(F~Yx. K).K)y i>1 (11)
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then

bi=F(rK)=F"""(r.K)=F"""(A\K) (12)

and

b=by=F"(r.N)= F"()\.K) (13)

where n = log; V. r is the (normalized) input band-
width of the network, and b is the (normalized) out-

put bandwidth.

The total delay in the network is the sum of the delays

in each stage. The delay in stage [ is

_1_n_ FP"YAK)
dy = i i —F""[a\.!\') (14)
and the total delay in the network is
l=n=1 op_j1 -
g 5 S (0 K) (15)

£ TFEINER)

4.3 Performance of Multiple Net-
works

In the case of m parallel networks (m = K/ logg V),
we essentially divide the requests from each processor
into m equal parts, one for each network. Therefore,

for each network:

A
r== (16)
b=F" (%.K) (17)
I=n=l pn-i-1 (A 7
d= £ K) (18)

The m parallel networks have m times more outputs
than a single Omega network, therefore to compare
the bandwidths of both approaches we introduce a
new parameter, B, the normalized network band-
width:

B=b,

for a single network

(19)

B = mb. for multiple networks (20)

B is the bandwidth the network provides for each
processor. and therefore it is a fair measure of perfor-

mance. Note that 0 < B < 1.
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Figures 10 to 12 compare the bandwidth of single and
multiple Omega networks for switches of size & x 8.
16 % 16 and 32 x 32, respectively, for A = (1.00.0.50)
and various numbers of processors. \We observe that
for all cases the bandwidth of multiple Omega net-
works is better than that of a single network. however
the difference is larger for heavier traffic. This indi-
cates that the use of multiple Omega networks is jus-
tified for systems with high performance processors.
that have higher memory bandwidth requirements.
The difference in performance is also higher for sys-
tems with larger switches. this is expected since for
the same number of network stages, larger switches
mean more networks in parallel (see Table 2). Very
important is the fact that the normalized bandwidth
is much less sensitive to the nurr;ber of processors. in
the case of multiple networks. This is a good scala-

bility and stability feature.

Figures 13 to 15 compare the network delay of single
and multiple Omega network for switches of size 8 x 8,
16 x 16 and 32 x 32, respectively, for A = (1.00, 0.50)
and various numbers of processors. We observe that
the delay through multiple networks is less than
through a single network, a direct consequence of the
increased bandwidth. We also observe that the de-
lay through muitiple networks is less sensitive to the
traffic intensity than the delay through a single net-
work. Again. as it was for the bandwidth, this is a
desirable property. since it makes the whole system
less sensitive to this parameter, relieving, at least in

part. the worries of the user.

4.4 Performance for Processors with
Multiple Memory Ports

The above expressions for network bandwidth and
delay are also valid for the case of processors with
multiple memory ports. if we use the virtual processor

approach and define \ as the request rate per port

{We obviously have to scale the r-axis in Figures 10
to 15 by the number of ports per processor). If we
use the crosshar approach, we then have to take into
account the effect of the crossbar at the beginning of
the network. For a processor with | memory ports,
this is a 4 x m crossbar, and its efficiency is given by

(again, A is the request rate per processor memory

port)
m p R .
C:—H[l—(lﬂm)] (2')
and the delay through this crossbar is
d, = 1 (22)
er

The normalized bandwidth through this crossbar,
which is equal to the input rate of the parallel Omega

networks, is

e )

and, using the previous expressions, the total network

(23)

normalized bandwidth is

b= F"(r,K) (24)
B=mb (25)
and the total delay through the network is
I=n—=1 p_i-| -
d=4d, + Z T (rn k) (26)

= Fn=l(r.K)
Figures 16 and 17 compare the network bandwidth
and delay (respectively) for the virtual processor and
crossbar approaches. The virtual processor approach
uses 4 network inputs per processor, and therefore,
using the networks we discussed, systems with 2. 4,
8. 16, 64, 256, 1024, 16384 and 262144 processors can
be built. The crossbar approach does not change the
number of processors in the systems that can be built.
i.e. 8, 16, 32, 64, 256. 1024, 4096. 65536. 1048576.
Notice that systems with 8. 16, 64, 236 and 1024 pro-

cessors can be built using both approaches.

In general we would expect the virtual processor ap-

proach to deliver better performance, since it provides



more replication, and avoids an extra crossbar stage.
However. for these particular systems that we are con-
sidering, the crossbar approach delivers better band-
width for systems with 1024 processors, and better
delay for systems with 16 and 1024 processors. This
is explained as follows: for systems with a 1024 pro-
cessors, the virtual processor approach uses 2 Omega
networks of type (4096,8) in parallel, which have 4
stages of switches. while the crossbar approach uses
16 Omega networks of type (1024.32), which have
only 2 stages. This more than compensates for the
extra crossbhar stage and the replication in the virtual
processor approach. Similar considerations are also

valid for the systems with 16 processors.

5 Related Work

Tang and Mendez [16] have identified the efficiency
of data transfer hetween processor and memory as a
limiting factor in the performance of vector comput-
ers, and they concluded that the number of memory
modules in a system should be proportional to the
product of memory access ports and the memory cy-

cle time (in units of processor cycle time),

Szymanski and Fang [15] have analyzed several con-
figurations of switches and banyan networks, and
compared the performance of a single network to that
of multiple parallel networks (with equivalent total
cost) and concluded that single networks perform bet-
ter for small systems and light loads, while parallel

networks are better for larger systems or heavier traf-
fic.

Smith et al. [13] discuss the need for supercomputers
to support scalability, and recognize that the domn-
inant scalability problem is the support of shared
memory for multiple processors and memory ports.
One of the solutions they propose is the extension of

multistage interconnection networks such as used in
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the Cray Y-MP, that in this particular case connects
8 processor to 256 memory banks. Smith and Tay-
lor [14] do a performance analysis of such networks,
which have a fanouf. since they connect a number
of processors to a larger number of memory mod-
ules. This fanout can be either wide (fanout at the
beginning of the network, processor side) or narrow
(fanout at the end of the network, memory side). The
authors’ results show that wide fanout gives better
performance than narrow fanout. and that an equal
number of memories and (total) processors ports is of

little value for supercomputer design.

Shing and Ni [11] address the problem of memory
and interconnection network contention by essen-
tially time-multiplexing physical resources (network
switches and memory modules). Each user of a phys-
ical resource has a designated time slot in which it

can use the resource.

Robbins and Robbins [10] solution to increase the ef-
ficiency of shared memory systems involves no change
in the interconnection network, but only in the mem-
ory system. Each physical bank, in a system such as
the Cray Y-MP, is replaced by a logical bank consist-
‘ng of a number of physical banks. The authors claim
that such change allows a Cray Y-MP - like system

to scale up to 64 processors.

Franklin and Dhar [2] present some considerations on
physical constraints and modularity issues in the de-

sign of a large (2048 x 2048) interconnection network.

Andrews, Beckmann and Poulsen (1] have developed
some networks that provide efficient cache coherence
schemes for svstems with hundreds and thousands of
processors. Since the use of caches reduces the mem-
ory bandwidth required by processors. this is another
solution for the problem of providing enough memory
bandwidth.



Hsu and Yew {3] propose the use of hierarchical (clus-
tered) systems to reduce the bandwidth requirements
of interconnection network. and show that this is par-

ticularly important in face of packaging constraints.

6 Conclusion

We have shown how multiple Omega networks can
be used to build a shared memory multiprocessor that
has a higher bandwidth between processors and mem-
ories and is also highly modular, and scalable from
systems with a few processors to thousands of proces-
sors. The use of multiple Omega networks allows us
to accommodate even the needs of high-performance

processors with multiple memory ports.

Current high-performance RISC microprocessors run
at speeds of 50, 100 and even 200 MHz (DEC Al-
pha), some already have multiple memory ports (Mo-
torola MCB88000 and Texas Instrument TMS320C40).
Each of these processors requires enormous memory
bandwidth, and if we are going to build shared mem-
ory multiprocessors with hundreds or thousands of
these processors (to surmount the Teraflop perfor-
mance barrier, while keeping the flat memory pro-
gramming model), high-performance interconnection
between processors and memories will be a key issue
for the success of this enterprise. We believe that the
use of multiple Omega networks operating in paral-
lel is a viable alternative to the construction of such
systems. since it provides the necessary bandwidth,
keeps the delay through the network within accept-
able values. and has the scalability properties that are

essential for the design of massively parallel systems.

As future work. we plan to generalize the topics in
this paper io networks built with homogeneous el-
ements of p processors. s switches and m memory
modules. considering the use of incomplefe networks

and investigating the optimization of networks in the

cost-performance space. We also plan to study the
system and application level performance of shared-
memory multiprocessors that utilize multiple Omega
networks.
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Figure 1: An Omega network of the type @ = (16,4). This network has 16 inputs, 16 outputs, and 2 stages
of 4-way shuffle and 4 x 4 switches.
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Figure 2: Typical use of 2 unidirectional Omega networks to build a shared-memory multiprocessor. In this

particular case. 2 of the networks of Figure 1 are used to build a system with 16 processors and 16 memory
modules
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Figure 3: A supermodule contains K independent memory modules. Any of the K inputs can reach any
memory module, which in turn can reach any of the K outputs. The way the supermodule is used there is
never a conflict in any of the switches.
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Figure 4: An illustration of the use of multiple Omega networks to both increase the bandwidth between
processors and memory modules, and improve the ratio of memory modules to processors. In this case, two of
the networks of Figure 2 are used to connect 16 processors to 64 memory modules (16 supermodules). Ma_;
represents the 16 supermodules. lg 0~y and Opo~y represent input and output 0 for the 16 supermodules.
respectively. [j o_; and Oy -y represent input and output 1 for the same supermodules.
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varies with the size of the system, therefore the multiplexer and demultiplexer used with the processor must
be programmable. Also. there must he A physical memory modules contained in the supermodule. The I's
and O’s are local inputs and outputs, respectively (they are not interconnected).
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connected to G4 memory modules, using the same ensemble as in Figure 4.
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Figure 8: A comparison of throughputs of crossbar
switches (solid lines) and Omega networks (dashed
lines) built with K x K switches (K =8, 16,32). An
Omega network (N, K), with n = logy N stages is
compared to a crosshar switch of size K™ x K™ (same
number of inputs and outputs).
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Figure 9: The limiting throughput of m .V x .\ par-
allel crosshars (or one X' x m.V crosshar) as N — 2c.
Notice how the use of multiple interconnections be-
tween processors and memories increases the band-
width of communication.
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Figure 10: A comparison of normalized network
bandwidths for single Omega networks (dashed lines)
and multiple Omega networks (solid lines) built with
8 x 8 switches, for different input rates (). The sys-
tems that can be built have 8, 64, 512, and 4096 pro-
cessors for the case of a single network, 8, 64 and 4096
processors for the case of multiple networks.
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Figure 11: A comparison of normalized network

bandwidths for single Omega networks (dashed lines)
and multiple Omega networks (solid lines) built with
16 x 16 switches, for different input rates (A). The
systems that can be built have 16, 256. 4096. and
63536 processors for the case of a single network, 16,
256, and 65336 processors for the case of multiple
networks.
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Figure 13: A comparison of input-to-output delays for
single Omega networks (dashed lines) and multiple
Omega networks (solid lines) built with 8x8 switches,
for different input rates (A). The systems that can be
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Figure 14: A comparison of input-to-output delays
for single Omega networks (dashed lines) and multi-
ple Omega networks (solid lines) built with 16 x 16
switches, for different input rates (A). The systems
that can be built have 16, 256, 4096, and 65536 pro-
cessors for the case of a single network, 16, 256, and
65536 processors for the case of multiple networks.
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Figure 15: A comparison of input-to-output delays
for single Omega networks (dashed lines) and multi-
ple Omega networks (solid lines) built with 32 x 32
switches, for different input rates (). The systems
that can be built have 32, 1024, 32768 and 1048576
processors for the case of a single network, 32, 1024,
and 1048576 processors for the case of multiple net-
works.
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n= -
K| N=P=M|logg N | Flogy N | P/S
8 B 1 1 5
8 64 2 16 1
8 4096 1 2048 2
16 L6 1 I 16
16 256 2 32 8
14 63536 4 16384 4
32 32 1 1| 32
32 1024 2 64 16
32 1048576 4 131072 8

Table 1: Some parameters for shared-inemory multi-
processors built around Omega networks. We show
those complete networks with no more than 1M in-
puts/outputs that can be built with 8 x 8, 16 x 16
and 32 x 32 switches, and have the property that the
ratio of processors to switches is an integer.

network bandwidth x number of processors

e A=1.0

*A=0.5

- (-1 1.4
o
-
1

0.3 ¥ i ¢
g W L

0.24 YW o
4 ¥

7 0 ARGy A P
0 2 4 6 8 1012 14 16 18 20 22

log, of the number of processors (V')

Figure 16: A comparison of normalized bandwidths
for networks built for processors with 4 memory
ports. The solid lines represent the values for net-
works that use the virfual processor approach (sys-
tems with 2, 4, 3, 16, 64, 256, 1024, 16384, 262144
processors). while the dashed lines are the values for
networks that use the crosshar approach (systems
with 3. 16. 32. 64. 256, 1024, 1096. 65536. 1048576
processors). \We notice that for systems with 8, 16,
64 and 256 processors the virtual processor approach
gives better results. while for systems with 1024 pro-
cessors the crossbar approach gives better results.

number

processors | switch size memory | of parallel
P=N KxK | M=KN| newworks
8 8% 8 64 B

64 3x8 512 4
40906 3x8 32768 2

16 16 x 16 256 16

256 16 x 16 4096 8
65536 16 x 16 104857 4
32 32 x 32 1024 32

1024 32 x 32 32768 16
1043576 32 x 32 | 33554432 8

Table 2: Some parameters for shared-memory mul-
tiprocessors buiit around multiple Omega networks.
All these systems have a processor-switch ratio of 1/2
{one switch to be used in the forward networks, the
other in the reverse networks). The number of paral-
lel networks used is m = K/ log, N, and the ratio of
memory modules to processors is K.

network delay x number of processors

7.0

1 eA=10

604 =*A=05 ""--..‘

5.0

4.0 1 |

3.0

2.0

1.0~

10 $ T

0 2 4 6 8 10 12.14 16 18 20 22
log, of the number of processors (V)

R C@—ro.

—_
—

Figure 17: A comparison of input-to-output delays for
networks built for processors with 4 memory ports.
The solid lines represent the values for networks that
use the virfual processor approach (systems with 2.
4. 8, 16, 64, 256, 1024, 16384, 262144 processors),
while the dashed lines are the values for networks
that use the crossbar approach (systems with 8, 16,
32, 64, 256, 1024, 1096. 65536, 1048576 processors).
We notice that the virtual processor approach gives
better results for systems with 8, 64 and 256 proces-
sors, while the crossbar approach gives better results
for systems with 16 and 1024 processors.



