ISGEN: A Byte Stream Instruction Set Generator

F DL Arci and J P Bennett
School of Mathematical Sciences
University of Bath
BATH, BA2 7AY

August 6, 1992

Abstract

Various methodologies have been devised for the design of byte stream instruc-
tion sets (Tan78, 5582). The second author has proposed an approach that is targely
automatic(Ben88). A set of instructions is derived that is optimal according to some
criterion, such as the size of compiled code. The choice of instructions is driven
by statistical analysis of a large amount of high level language code intended
for the instruction set under design. We describe a computer program which will
produce such an instruction set. The system has been successfully used to produce
bytestream instruction sets to support BCPL (RWS80), Poly(Mat85) and Eulisp (PN*90).
We present quantitative results showing the success of these designs. Byte stream
instruction sets are now largely restricted to interpretive intermediate codes, with
the majority of instruction sets being RISC, or derived designs. We outline current
work to produce ISGEN-GA which will generalise the methodology. so that RISC
type instruction sets can be produced automatically.

1 Background

An instruction set is the only interface the compiler writer has fo control the actions of a
computer. We call the difference between the possibilities of low level hardware and
high level language constructs the semantic gap. This is precisely what an instruction
set attempts to bridge.

Instruction set design is concerned with providing efficient ways to bridge this gap
and various strategies are viable. Among these we distinguish two main ones: the
first (CISC’s: Complex Instruction Set Computers) provides big complex instructions to
closely reflect the essential operators of a high level language, the second (RISC’s:
Reduced Instruction Set Computers (PD80)) forms its instruction sets with a small number
of very simple instructions and it is up to the compiler writer to choose the best sequence
of opcodes that matches semantically a particular high level language construct.

Early designs were very much influenced by what the designer felt ought to be in a
language oriented machine. It was not until the 1970°s that people started to analyze
statistically the use of existing instruction sets in order to provide data with which to
design future ones. Various formal design procedures were hence developed. A
common feature was the realisation of the need to start with a small core instruction
set containing only general purpose instructions and to augment it successively with
the necessary specicalised opcodes (Tan78, SS82).



Automated techniques that, given the necessary statistics, are able to augment a
generic byte stream Instruction set' have since been developed (BenB8). Although
examples in this paper all refer to byte stream sets the methodology presented is
general and work is being carried out o apply it to other styles of instruction sefs.

2 Designing an instruction set

We use a development of the methodology of Sweet and Sandman (SS82). We
give rules to choose an initial instruction set to support a particular language and
environment. We then provide automatic techniques to extend that instruction set
and thus improve it.

To achieve this we need a number of items:

+ We need a clear model of the high level language being used.
+ We need a clear model of the target architecture style.

« We need a typical body of code from the environment In which the language is
being used, to provide statistical information.

+« We need to quantify our criterion for instruction set quality.

A good model of the high level language comes from the designer’s experience,
but can be helped by statistical analysis of program usage. Most languages boll
down to operations to access data from various areas (stack, global area, constants
etc.): operations to manipulate that data (arithmetic, logical, relational etc.) and
operations fo manipulate the flow of control through the program (for loops, goto
statements, procedure calls etc.).

The model of the target architecture will govern what instructions are realistic. This may
be a philosophical choice (e.g. a decision to build a load/store RISC architecture) or it
may be constrained by circumstances (if you have a microcoded architecture which
supports byte stream instruction sets, you really have to use a byte stream instruction
set).

It is important that we consider a language being used, within ifs target environment.
The best instruction set to support C will be different if the language is being used to
run business software or if it is being used to run numerical simulations.

Finally if we are to choose new Instructions automatically we must have a way of
measuring how good an instruction set is. We could choose entropy (Abr63): the
average number of bits per symbol effectively used in an encoding. Entropy is a good
measure as it can be compared directly with the number of bits per symbol actually
used, but size of a sample body of compiled code is by far the commonest. A good
instruction set is then one which yields small compiled programs. The benefit of adding
a new instruction can be quantified by the reduction in size of o sample body of

'A byte stream Instruction set Is one where Instructions consist of a single byte opcode specifying the
required operation. possibly followed by a number of argument bytes. The number of Instructions In such
an architecture is limited by the size of a byte, which today almest invariably means there may be up to
256 opcodes. In case more are needed some of the existing ones can be selected to act os "escape’
opcodes and a subsequent byte can then act as a secondary opcode. Throughout the rest of this paper
we shall use the term "opcode’ to mean the Initial byte specifying the operation to be carred out and
‘Instruction” fo indicate the opcode together with Its arguments (BS89)



compiled code. Other criteria can be used, but are often harder to measure. For
example program speed involves simulation of bodies of code, and so for each new
instruction a simulation must be created (not impossible, but hard).

We will present three examples to illustrate this work, but in each case static code
size has been the criterion. The value of this has been justified elsewhere (Bennett,
Schoepke). but helps to improve program speed by increasing cache occupancy.
reducing working sets and reducing program load times. Each example also is a
byfe stream instruction set. However it should be made clear that the methodology is
equally suited to fixed or variable format instruction sets, provided suitable design rules
are given. Indeed ISGEN-GA (discussed in section 5) is working with just such instruction
sefs.

The methodology

We use a six step methodology.

1. Based on our analysis of the high level language and the target hardware we
select a minimal instruction set which can support the language. This is the
canenical instruction set. We match each high level construct with one or two
instructions within the low level architecture. Some constructs may need more
than one instruction (typically loops need one at each end). Where instructions
have the same semantics they are merged (for example the instruction for an IF
statement is the same as the first instruction for a WHILE loop).

2. We write a compiler for the canonical instruction set, and use it to compile a
body of code representative of language being used in its target environment.

3. We decide on a quantifiable design criterion. For example compactness of
compiled code.

4. We determine a set of rules for creating new instructions to add to the canonical
instruction set, which may improve the instruction set according to the design
criterion. For example if we are looking for compact compiled code and are
working with a byte stream instruction set we could use the rules:

« Provide a new opcode with a reduce argument range (e.g LOAD-BYTE
derived from LOAD-WORD);

+ Provide a new opcode with a specific argument value (e.g. LOAD-
CONSTANT-1 derived from LOAD-CONSTANT-WORD);

« Combine two opcodes (e.g ADD-WORD derived from LOAD-WORD and
ADD).
Note that all these operations lead to instructions which take less space.

5. We collect statistics on the body of code, and using the statistics identify the
new Iinstruction, which if created and substituted wherever possible would lead
fo the biggest improvement according to our design criterion. The instruction is
Identified by exhaustive searching of all possible instructions.

6. We then peephole optimise this instruction into our body of code.

7. We repeat steps 5-6 until we have sufficient instructions for our instruction set. For
a byte-stream this would be when there were 256 instructions in fotal,

302



310

There is scope for refinement of the technology. An opfimising compiler would
do betfter than our peepholer with a new instruction for instance. With modern
techniques it would be possible to create an instruction definition, rebuild the compiler
and recompile the sample code, but the effort is not really worth it. We often
create instructions initially, which are rendered less valuable by later instructions. For
example we may generate LOAD-CONSTANT-BYTE fo load small constants, and then
generate LOAD-CONSTANT-ZERO and LOAD-CONSTANT-ONE as two specific cases.
However these two cases are almost all the load consiants less than one byte, and
the existence of load constant byte can no longer be justified.

Ultimately these problems are because we are using a local optimisation, whilst we
need a global optimisation.

3 ISGEN-1 and ISGEN-2

ISGEN works by taking a set of statistics on a given instruction set and a set of rules
and considering which rule would maximise some specified design criterium (e.g.
compactness of compiled code, entropy of the instruciion set). To achieve this it
exhaustively considers all possibilities of design rule applicatfion. The first version of
ISGEN, ISGEN-1 adjusts the statistics according to the generated instruction and then
repeats the whole process until a prefixed number had been reached.

The deduction of new statistics is unfortunately prone to error and ISGEN-2 now performs
peephole substitution of each generated instruction followed by statistics recollection.

ISGEN-2 takes about twenty minutes on a SPARC station to generate 256 instructions
from an initial canonical set of 40, using three design rules. The design rules used are
the ones outlined in the previous section. Factors that affect performance are:

+ the number and complexity of design rules

+ the size of the code sample

« the number of instructions needed.

4 Case studies

ISGEN has been successfully used to produce byte stream instruction sefs to support
BCPL (RWS8Q). Poly (Mat85) and EuLisp (PN*+90). This section quantitatively analyzes Its
performance in each of these cases.

BCPL

BCPL. as used in the Tripos command environment, is a language closely related to
C. It has a very simple structure, but the same basic ideas underlie most imperative
programming languages. It is ifs very simplicity that suggested the possibility of an
approach uncluftered by excessive detail,

The target architecture chosen was a High Level Hardware Orion, which is a 32 bit
soft microprogrammable mini computer built form standard bit-slice TIL. It supports



byte stream instruction sets, with a hardware switch on a byte operand provided in
the microengine. The example canonical instruction set is therefore a byte stream
instruction set where arguments to all opcodes are 32 bits in length. A set of 48
instructions mapping one to one to high level language concepts was chosen as a
canonical set (Appendix A). A compiler from this canonical instruction set was written
and 500K of compiled canonical code obtained by compiling the 102 BCPL programs
that constitute the Tripos command environment.

Code was optimised for static size. The evaluation of the results was carried out
with the aid of a simple peephole optimiser which added the new instructions to the
existing code. Code shrunk to 28.53 % of its original size. The synthetic instruction set is
non-orthogonal as only instructions that are actually needed are generated.

POLY

ISGEN was used to refine an instruction set for the polymaorphic programming language,
POLY (Mat85). This uses a 16 bit byte stream instruction set as an infermediate code
output by the compiler front end. Maithews wished to refine this to reduce the space
occupied by this intermediate code. It was hoped that the resultant instruction set
would also be suitable for microcoding as a machine to run POLY directly. The existing
intermediate code, consisting of 24 instructions was taken as the canonical instruction
set. Sample statistics were provided from 214074 bytes of compiled code.

Out of the 232 instructions proposed by ISGEN Matthews accepted only the first
97. responsible for about 85 % of the improvement and incorporated them into his
compiler. This new compiler produced 82560 bytes of compiled code, a reduction to
38.57 % of the original code size. These new statistics were then fed back into ISGEN,
which proposed a further refinement of the instruction set to achieve a reduction in
code size to 29 % of the original size. This result is rather more impressive than the
reduction to 28 % achieved with BCPL in that it was achieved not over an arfificially
verbose 32 bit canonical instruction set, but over an existing 16 bit instruction set.

BEEP: A BytecodE for EulisP

Eulisp is the draft European Lisp System (PN+90). Compilation to a bytecode provides
a very convenient and compact way of representing programs so that they can run
efficiently in a reasonably small amount of memory.

A canonically compiled code sample of 446051 bytes was used as initial data for the
optimization. Code was again optimised for static size and shrunk to 5% of its original
size, although the result has to be evaluated in the light of the fact that the canonical
instruction set used generates particularly verbose code.

311



312

Static Code Size vs Opcodes Generated

Percentage of initial size

100%

1%
40 60 80 100120 140 160 180 200 220 240

Opcodes

Figure 1: It is the first few instructions generated that contribute fowards most of the
savings

Plofting code size against opcode number (figure 1) actually shows that it is the first
few opcodes that get generated which are responsible for the biggest savings in
accordance with Benneft and Smith (BS89).

The entropy of the new instruction set has been calculated and amounts to 7.31 bits
per symbol. This nearly optimal entropy is a very significant resulf especially in the light
of the fact that only 230 (7.4 bits) out of the 256 opcodes generated are used. Entropy



calculations and instruction frequencies can be found in Appendix C.

5 Improving ISGEN

ISGEN uses a greedy algorithm to generate new instructions thus assuming successive
substitutions to be independent. This is not necessarily the case and choosing the
transformation that leads to the best saving at each step, i.e. locally optimizing a
construct, may not achieve a globally optimal encoding. To solve this problem some
form of lookahead or a different optimization technique need to be adopted.

Genetic Algorithms (Hol75) have been proved to be a valid optimization technique
especially when the final goal is robustness: getting the right balance between
efficiency and efficacy that allows to survive in many different environments. The
need for robustness is very much felt when designing instruction sets. Automated
instruction sets design tools face the challenge of balancing a variety of architectural
features, the fine tuning of which is critical to the performance of a fast, economical
computer which will run efficiently a wide range of applications. Our goal is to exploit
the principles of genetics and the techniques of genetic algorithms to evolve robust,
close to optimality, efficient processors from a basic functional specification.

Work is being carried out o develop suitable operators that allow to hybridise the prin-
ciples of ISGEN with the techniques of Genetic Algorithms. In this hybird methodology
a complete compiling instruction set is considered to be a single chromosome. Genes
are made up of nucleotides, which are defined as possible instructions obtained under
design rules from @ canonical genotype. Evolutionary pressure applied to an initial
population of pseudo randomly generated chromosomes yields better and better
instruction sefs.

The new program will be able to cope in a straightforward way with different styies of
instruction sets and it will be easy to adjust to optimise different features. Methodology
used and performance of ISGEN-GA are the subject of a forthcoming paper.

6 Conclusions

« We have presented a fully automated tool capable of generating a nearly
optimal instruction set from a basic specification.

« We have showed its efficacy in optimizing not only artificially verbose canonical
instruction sets, but real ones as well.

+ Automated instruction set design tools have the following advantages:

- they assist designing processors that make the most efficient possible use of
their resources: different features can be finely tuned at one time (e.g. static
program size, bus load., instruction set size, register set size).

- they reduce the design time: the designer is only required to outiine the
most general operations a machine should be able to perform and provide
a compiler from the source language to this basic set.

- they provide objective measures of optimality for the generated insiruction
set.

313



314

- instructions are added or removed from a set according to objective effi-
ciency criteria, not according to what the designer feels ought to be there
or noft.

7 Acknowledgements

We would like to thank the members of the Computing Group at Bath University and
especially the EULISP project team who have provided the environment in which this
work could be carried out and Chris Burdorf and Pete Broadbery for their careful
reading and comments.

Francesco ARCI and Jeremy BENNETT were both supported by research studentships
from the Science and Engineering Research Council of Great Britain during the period
in which this work was carried out.



8 Bibliography

References

(Abr63) N. Abramsom. Information Theory and Coding. McGraw Hill, 1963.

(AK84) FJ. Ayala and J.AJr Kiger. Modern Genetics. The Benjamin/Cummings
Publishing Company, Inc., 1984.

(Ben88) J.P. Bennett. A Methodology for Automated Design of Computer Instruction
Sefs. PhD thesis, University of Cambridge, 1988,

(BS89) J.P. Bennett and G.C. Smith. The need for reduced byte stream intruction
sets. The Computer Journal, 32:370-373., April 1989.

(Dav91) L. Davis, editor. Hondbook of Genetic Algorithms. Van Nestrand, Reinhold,
1991.

(Gol89) D.E. Golberg. Genetic Algorithms in search, optimization and machine learn-
ing. Addison-Wesley, 1989.

(Hol78) J.H. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, 1975.

(Mat85) D.C.J. Matthews. Poly manual. Technical Report 63, Cambridge University
Computer Laboratory, 1985.

(PD80) D.A. Patterson and D.R. Ditzel. The case for the reduced instruction set
computer. Computer Architecture News, 6:25-33, August 1980.

(PN*90) J. Padget, G. Nuyens, et al. The eulisp definition version 0.69. Technical report,
University of Bath, 1990.

(RWSB0) M. Richards and C. Whitby-Strevens. BCPL - The language and its compller.
Cambridge University Press, 1980.

(5582) R.E. Sweet and J.G. Sandman. Empirical analysis of the mesa instruction
set. In Proceedings of the ACM Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 235-243, March
1982.

(Tan78) A.S. Tanenbaum. Implications of structured programming for machine archi-

tecture. Communications of the ACM, 21:237-246, March 1978.

(vdG89) A.J.van de Goor. Computer Architecture and design. Addison Wesley, 1989.

315



316

@ Appendix A: a canonical instruction set for BCPL

[ Instruction | Description
CALL a) Call procedure, current stack a; words, result left on internal stack.
FOR ajaga3 Start of FOR loop, control variable word offset a on local

stack, end value offset as on local stack, end of loop at byte offset aj.
Skip to a3 if loop complete.

ENDFOR a)aza3

End of FOR loop. control variable offset a; on local stack,
start of loop at offset a; backwards, loop increment a3,
Perform increment and loop back.

REPEATUNTIL @; | End of REPEATUNTIL loop, start at offset a;. Pop top of internal
stack and loop back if value is FALSE.

REPEATWHILE a, | Ditto, but loop if value is frue.

REPEAT a, Ditto, but loop back without looking at internal stack.

WHILE a; Start of WHILE loop, end at offset a;. Pop value off internal stack
and jump past end of loop if value is FALSE.

ENDWHILE a; End of WHILE loop, which starts at offset a; back.
Jump back a; unconditionally.

UNTIL a, As WHILE but jump If value is TRUE.

ENDUNTIL a; End of UNTIL loop, action as ENDWHILE.

IF a; Pop value from internal stack; jump forward offset a) if value is
FALSE.

UNLESS a, Ditto, but jump if value is TRUE

TEST a, Identical to IF, but forward jump is o point immediately after else.

ELSE a, Unconditional jump forward a;.

SWITCH ay, ..., a, | Perform SWITCH. a, is offset for DEFAULT, a; is number of cases.
Other arguments are pairs of value and offset for each case.

BREAK a) Jump out of loop. Unconditionally branch forward a;.

LOOP a, Jump to end of loop. Unconditionally branch forward a;.
Really needs LOOPBACK as well for efficiency.

RESULTIS a, Unconditionally jump forward a, out of VALOF block.

ENDCASE a; Unconditionally jump forward a; out of SWITCH block.

RETURN a; Return from procedure. Absolute branch address given in
stack frame.

GOTO Jump to absolute address on top of internal stack

FINISH Terminate program




10 Appendix B: canonical BEEP

[ Number | Opcode name | Description

0 UNKNOWN Opcode 0 is left unused.

] PUSH-CONSTANT arg Push a word sized argument of the stack.

2 PUSH-REG Pop register class and register number.
Push selected register.

3 POP-REG Pop register class and register number.
Pop stack into selected register.

4 PUSH-DISPLAY Pop frame number, pop offset,
push display(frame, offset).

5 POP-DISPLAY Pop frame number, pop offset,
pop stack into display(frame,offseft).

6 BRANCH Pop condition result, pop destination.
If condition result is non nil then jump
fo destination.

7 JUMP Pop destination. Jump to destination.

8 CALL-IN-CURRENT-MODULE | Pop function number, call function.

9 CALL-IN-OTHER-MODULE Pop module name, pop function number,

call function.

10 RETURN Return from function call.
11 CONS Pop car, pop cdr, push a cons cell
cenfaining them.
12 GCIRAP Pop type. pop items-no. Trap to garbage
collector if allocation of ifems-no
items of type fype would cause a garbage
collection.
13 EQ Pop argl, pop arg?, push (eq arg! arg2).
14 PUSH-STATIC Pop static vector index.
Push value at index on stack.
15 CAR Pop arg, push (car arg ).
16 CDR Pop arg. push (cdr arg).
17 PUSH-NON-LOCAL-VALUE | Pop module name, pop index,
push value at index in values
vector of specified module on stack.
18 PUSH-LOCAL-VALUE Pop index,
push value at index on stack.
19 POP-LOCAL-VALUE Pop index, pop stack into
values vector at index index
20 PUSH-INTERNAL-FUNCTION | Pop function number,

push function object on stack.

317



318

[ Number | Opcode name Description

21 BEGIN-W-CC Install the function on top of
stack as the current
continuation and save previous.

22 END-W-CC Deinstall current continuation.

23 APPLY Apply function on top of stack to
arguments on top-1 of stack.

24 BEGIN-W-H Install function on top
of stack as the current handler and
save previous.

25 END-W-H Restore the previous handler.

26 ALLOC Allocate a display frame capable
of holding top of stack lisp objects.

27 DEALLOC Deallccate current display frame.,

28 CALL-SELF Call function tail recursively.

2 RPLACA Pop a lisp object from stack and push back
a cons cell holding the item just popped
in the car field.

30 RPLACD Pop a lisp object from stack and
push back a cons cell holding
the item just popped in the cdr field.

31 BEGIN-U-P Save function on top of stack
as the current cleanup pointer,
saving previous

32 END-U-P Restore previous cleanup pointer.

33 PUSH-DYNAMIC Push dynamic variable specified
by value on top of stack on the stack.

34 POP-DYNAMIC Pop dynamic variable number,
pop value, set variable to value just popped.

35 BIND Create fresh dynamically scoped
bindings for identifier on stack
and initialise the binding o top-1
of stack.

36 UNBIND Restore the previous dynamic
binding of the identifier on top
of stack. Unbinding must be in opposite
order to binding.

37 VECTOR-REF Pop index of element to access,
pop vector, push required element,

38 UPDATE-VECTOR-REF | Pop index of element to access,
pop vector, pop element and store
it in vector.

39 ALLOC-IREGS Pop and set number of input registers
used by function.

40 ALLOC-LREGS Pop and set number of local registers
used by function.




11 Appendix C: Entropy in BEEP

1 0] L1}
L
¥
I3
0
Al 1
4l 1
11
11
1
1
1
]
a
—— L)
0
1
3
.
'
0
11
v
1 o
[}
.
)
]
i
T
T
L X
Bis
1
Y
1

i

] Tomr
T v
0
.
e i
¥
o)
T
1
1] LS
a
1
T
I
Fr
3.
I Ta
i
0
[0 T
av
¥
1
7
7
A
1 i
T
EX11
1
a
(3L}
Ly
[}
(¥ 1]
a
wa:
L}
aa Y
)
2z 3

319





