
ISGEN: A Byte Stream lnstruction Set Generator 

F O L Arei cnd J P Bennett 
School of Mcthemctical Sciences 

University of Ba th 
BATH, BA2 7 AV 

August 6, 1992 

Abstract 

Various methodologies have been devlsed for the deslgn o f byte stream instrue­
tlon sets (Tan78. SS82J. The second author hos proposed on opprooch that ls largely 
outomatic(Ben88). A set of lnstructlons ls derived that ls optimol occording to some 
criter1on. such as the slze of complled code. The cholce of lnstrucflons ls driven 
by statlstlcol onolysis of o Jorge omount of high levei longuoge code intended 
for the instructlon set under design. We describe o computar progrom whlch will 
produce such on instructlon set. The system hos been successtully used to produce 
bytestreom instruction sets to support BCPL (RWS80J. Poly(Mat85l ond Eullsp (PN+9QJ. 
We present quantitativa results showing the success of these designs. Byte streom 
lnstruction sets ore now lorgely restricted to interpretive intermedlate cedes. with 
the mojority of lnstructlon sets being RISC. ar derived deslgns. We outline current 
work to produce ISGEN-GA whlch wlll generolise the methodology. so thot RISC 
type lnstructlon sets con be produced outomotlcolly. 

Bockground 

An lnstruction set is the only Interface the compilar writer hos to control the octlons of o 
computar. We cal! the difference between the possibillties of low levei hardware ond 
hlgh levei longuoge constructs the semanfic gap. This ls precisely whot on instruction 
set ottempts to bridge. 

lnstruction set design is concerned with providing efficient woys to b ridge this gop 
ond vorious strctegies ore vioble. Among these we distingulsh two moin ones: the 
first (CISC's: Complex lnstruction Set Computers) providas big complex instructions to 
closely reflect the essentlol operators of o hlgh level languoge. the second (RISC's: 
Reduced lnstructlon Set Computers (PD80)) forms lts instruction sets wlth c smoll number 
o f very simple instructions ond it ls up to the compilar writer to choose the best sequence 
of opcodes thot motches semonticolly o particular high levellonguoge construct. 

Eorly designs were very much lnfluenced by whot the designar felt ought to be in o 
longuoge oriented mochine. lt wos not until the 1970's thot people storted to onolyze 
stotisticolly the use of existing instructlon sets in order to provida doto with which to 
deslgn future ones. Vorious formal design procedures were hence developed. A 
common feoture wos the reolisotion of the need to stort with a smoll core instruction 
set contoining only general purpose instructions ond to augment it successively with 
the necessory speclolised opcodes (Ton78. SS82). 



308 

Automated technlques that. glven lhe necessary statlstics. are able to augment a 
generic byte stream instruction set1 have slnce been deveioped (Ben88). Aithough 
examples In this paper ali reter to byte stream sets the methodology presented ls 
general and work is being carrled out to apply lt to other styles of lnstructlon sets. · 

2 Designing an instruction set 

We use a development of lhe methodology of Sweet and Sandman (SS82). We 
give rules to choose an lnltial instruction sei to support a particular language and 
environment. We then pro vide automatlc techniques to extend that lnstruction set 
and thus improve lt. 

To achieve thls we need a number ot ltems: 

• We need a clear model of the hlgh levellanguage being used. 

• We need o clear model of the target archltecture style. 

• We need a typlcal body of code from the environment In whlch the language ls 
being used. to provlde stattstlcallnformatton. 

• We need to quantity our criterion for instructlon set quality. 

A good model o f lhe high levei language comes from lhe designar' s experlence. 
but can be helped by statistical analysis of program usage. Most languages boil 
down to operations to access data from varlous areas (stack. global area. constants 
etc.): aperatlons to manlpulate that data (arlthmetlc. logical. relatlonal etc.) and 
operations to manlpulate lhe ftow of contrai through the program (for loops. gato 
statements. procedure cails etc.). 

lhe model of the target archltecture wlll govern what instructlons are reallstlc. Thls may 
be a philosophlcal cholce (e.g. a decision to bulld a load/store RISC architecture) ar lt 
may be constrained by circumstances (lf you hove a microcoded archltecture whlch 
supports byte stream lnstructlon sets. vou really have to use a byte stream lnstructlon 
sei). 

lt ls lmportant thal we conslder a language being used. wlthln lts target envlronment. 
lhe best lnstruction set to support C will be different lf the ianguage is being used to 
run buslness software or lf it ls being used to run numerical simulations. 

Flnaily if we are to choose new lnstructions automaticaily we must have a way of 
measuring how good an lnstruction set is. We could choose entropy (Abr63): the 
average number of bits per symbol effectiveiy used in an encoding. Entropy is a good 
measure as it can be compared directly wlth the number of bits per symbol actualiy 
used. but size of a sample body of compiled code is by for the commonest. A good 
instruction se tis then one which yields smail compiled programs. lhe beneflt of adding 
a new instruction can be quantlfied by the reduction in size of a sample body of 

1A byte slream lnslrucHon set ls one where lnstructlons conslst ot o slngle byte opcode specltytng lhe 
requlred operoHon, posslbly followed by o number of orgument bytes. The number of lnstructlons In such 
on orchllecture ls llmlled b y lhe slze o f o b yle. whlch loday olmosllnvorlobly means there moy be up to 
256 opcodes. In cose more ore needed some of lhe exlsllng ones con be selecled to o c t os 'escape' 
opcodes onda subsequent b yte con then act os o secondory opcode. Throughout lhe rest ot thls paper 
we shoR use lhe lerm 'opcocte' to mean lhe lnlllol byte specltytng lhe operotlon to be corrled out ond 
' lnstruc tlon' lo lndlcote lhe opcode togelher wllh lls orguments (BS89) 



compiled code. Other criteria con be used. but ore often horder to meosure. For 
example progrom speed lnvolves simulotlon of bodies of code. ond so for each new 
instruction a simulotlon must be creoted (not impossible. but hord). 

We will present three exomples to illustrote thls work. but in eoch cose stotlc code 
size hos been the criterion. lhe volue of this hos been justified elsewhere (Bennett. 
Schoepke). but helps to lmprove progrom speed by increoslng coche occuponcy. 
reducing worklng sets ond reducing progrom load times. Each example olso is a 
byte streom instruction set. However it should be mede clear that the methodology is 
equolly suited to fixed or vorioble formot instruction sets. provided suitoble design rules 
ore given. lndeed ISGEN-GA (discussed in section 5) is working with just such lnstruction 
sets. 

l he methodology 

We use a six step methodology. 

1. Based on our anolysis of the high levei longuoge and the target hardware we 
select a minlmal instructlon set which con support the language. lhis is the 
canonlcallnstructlon set. We match eoch hlgh levei construct wlth one or two 
lnstructions within the low levei orchitecture. Some constructs may need more 
than one instruction (typically loops need one at each end). Where lnstructions 
have the some semontics they are merged (for example the instruction for an IF 
statement is the some as the first instruction for a WHILE loop). 

2. We write a compilar for the cononlcal instruction set. and use lt to compile a 
body of code representativa of language being used In its target envlronment. 

3. We decide on a quontifiable design criterion. For exomple compactness of 
compiled code. 

4. We determine a set of rules for creating new instructions to add to the canonical 
instruction set. which may improve the instruction set according to the deslgn 
crlterion. For example if we are looking for compact compiled code and are 
working with o byte streom instructlon set we could use the rules: 

• Provida a new opcode with a reduce argument range (e.g LOAD-BYTE 
derived from LOAD-WORD); 

• Provida a new opcode with a speciflc argument value (e.g. LOAD­
CONSTANT-1 derlved from LOAD-CONSTANT-WORD); 

• Combine two opcodes (e.g ADD-WORD derived from LOAD-WORD and 
ADD). 

Note that ali these operations lead to instructlons which take less spoce. 

S. We collect stotistics on the body of code. and using the statistics identify the 
new instruction. which if created ond substituted wherever possible would lead 
to the biggest improvement occording to our design criterion. lhe instruction is 
ldentified by exhoustive seorching of ali posslble instructions. 

6. We then peephole optimise this instruction into our body of code. 

7. We repeot steps 5-6 until we hove sufficient instructions for our instruction set. For 
o byte-streom this would be when there were 256 instructions in total. 



310 

There is scope for refinement of the technology. An optimlsing compilar would 
do better than our peepholer wllh a new instruction for instance. With modern 
techniques it would be possible to creote on instructlon definítlon. rebulld lhe compilar 
and recomplle the somple cede. but the effort is not reolly worth it. We oflen 
create instructlons ínltiolly. which ore rendered less voluable by loter lnstructions. For 
exomple we may generate LOAD-CONSTANT-BYTE to load small constants. ond then 
generate LOAD-GONSTANT·ZERO and LOAD-GONSTANT-QNE os two specífic coses. 
However these two cases are almost ali the lood constants less than one byte. and 
lhe exístence of load conslanl byte can no longer be justified. 

Ultlmotely lhese problems ore becouse we ore usíng o local optimísation. whilsl we 
need a global optimisalion. 

3 ISGEN-1 and ISGEN-2 

ISGEN works by taking o set of stotlstlcs on o given lnstructlon set ond o set of rules 
and consldering whlch rule would moximise some specified design criterlum (e.g . 
compactness of complled code. entropy of the instructlon set). To achleve this it 
exhaustively considers ali possibilities of design rule opplication. The first version of 
ISGEN. ISGEN-1 adjusts lhe stotlstics occordlng to lhe generated lnstruction ond then 
repeats the whole process untll a prefixed number hod been reached. 

The deductlon of new statistics is unfortunately prone to errar and ISGEN-2 now performs 
peephole substltutlon of each generated instructlon followed by statistics recollectlon. 

ISGEN-2 takes obout twenty mlnutes on o SPARC stotion to generote 256 instructions 
from on inltlol canonicol set of 40. using lhree deslgn rules. The deslgn rules used ore 
lhe ones out11ned In the previous section. Foctors thot offect performance are: 

• lhe number and complexity of design rules 

• the size of the code som pie 

• lhe number of instructions needed. 

4 Case studies 

ISGEN has been successfully used to produce byte streom instruction sets to support 
BCPL (RWS80). Poly (Mat85) ond Eulisp (PN +9Q). Thls sectlon quontitotively onolyzes lts 
performance in eoch of these coses. 

BCPL 

BCPL. os used in lhe Tripas commond environment. is o longuoge closely related to 
C. lt hos o very simple slruclure. but lhe some bosic ideos underlie most Imperativa 
progrornming longuoges. lt is its very simpllcity thot suggested the possiblllty of an 
opprooch uncluttered by excessiva detoil. 

The torget orchltecture chosen wos o High Levei Hardware Orion. which is o 32 bit 
soft microprogrammoble mini computar built form stondard b it-slice TTL. lt supports 



byte streom instruction sets. with o hardware switch on o byte operond provlded in 
the microengine. The exomple cononlcol instruction set is therefore o byte streom 
instruction set where orguments to ali opcodes ore 32 bits in length. A set of 48 
instructions mopping one to one to high levei longuoge concepts wos chosen os o 
cononicol set (Appendix A). A compilar from this cononicol instruction set wos written 
and SOOK of compiled cononical code obtalned by compiling the 102 BCPL progroms 
that constitute lhe Tripas command environment. 

Code wos optimised for stotic size. The evoluotion of the results wos corried out 
with the oid of o simple peephole optimlser whlch odded the new lnstructions to the 
existing code. Code shrunk to 28.53% ot its original size. The synthetic instruction set is 
non-orthogonol os oniy instructions that ore octuolly needed ore generoted. 

POLY 

ISGEN wos used to refine on instruction set for the polymorphic progromming longuoge. 
POLY (Mot85). This uses o 16 bit byte stream instruction set os an intermedlote code 
output by the compilar front end. Matthews wished to refine thls to reduce the space 
occupied by this intermediate code. lt was hoped thot the resultant instruction set 
would also be suitable for microcoding as a machine to run POLY directfy. The existing 
intermediate code. consisting of 24 instructions was taken as lhe canonical instruction 
set. Sample statistlcs were provided from 214074 bytes of complled code. 

Out ot the 232 instructions proposed by ISGEN Matthews accepted only the first 
97. responsible for about 85 % o f the improvement and incorporoted them in to his 
compilar. Thls new compilar produced 82560 bytes o f complled c ode. a reduction to 
38.57% of the original code slze. These new statfstfcs were then fed back into iSGEN. 
which proposed a turther refinement of the lnstructfon set to achieve a reduction in 
code size to 29 % of the original size. This result is rother more lmpresslve than the 
reduction to 28 % achieved with BCPL in that it was achieved not over an artificially 
verbosa 32 bit cononicallnstruction set. but over an existing 16 bit instruction set. 

BEEP: A BytecodE for EulisP 

Eulisp is the droft Europeon Lisp System (PN+90) . Compilation to o bytecode providas 
o very convenient ond compoct woy of representing progroms so that they can run 
efficientfy in o reosonobly smoll amount ot memory. 

A cononically compiled code somple of 446051 bytes was used os lnitial data for the 
optimization. Code wos ogain optimised for static size and shrunk to 5% of its original 
slze. olthough the result has to be evaluoted in the llght of the toct thot the cononicoi 
instruction set used generotes porticulariy verbosa code. 

311 



312 

Static Code Size vs Opcodes Generated 

Percentage of initial size 

60 80 100 120 140 160 180 200 220 240 

Opcodes 

Figure 1: /t is the first few instructtons generoted thot contribute towords most of the 
sovlngs 

Plotting code size ogoinst opcode number (figure 1) octuolly shows thot it is the first 
few opcodes thot get generoted whlch ore responsible for lhe biggest sovings in 
occordonce with Bennett ond Smith (BS89). 

The entropy of the new instruction set hos been colculoted ond omounts to 7.31 bits 
per symbol. This nearly optimal entropy is a very significont result especially in the light 
of the foct that only 230 (7 .4 bits) out of the 256 opcodes generated are used. Entropy 



colculotions ond instruction frequencies con be found in Appendix C. 

5 lmproving ISGEN 

ISGEN uses o greedy olgorithm to generote new instructions thus ossumlng successive 
substitutlons to be independent. This is not necessorily the cose ond chooslng the 
tronsformotion thot leods to the best sovlng ot eoch step. i.e. locolly optimizing o 
construct. moy not ochieve o globolly optlmol encodlng. To solve this problem some 
form of lookoheod oro different optimizotion technique need to be odopted. 

313 

Genetic Algorithms (Hol75) hove been proved to be o volid optimizotion technique 
especiolly when the final gool is robustness: gettlng the rlght balance between 
efficlency ond efficocy thot ollows to survlve in mony dlfferent environments. The 
need for robustness is very much felt when designlng lnstruction sets. Automoted 
instructlon sets design tools face the chollenge of boloncing o voriety of orchitecturol 
feotures. the fine tunlng of whlch ls criticai to the performance of o fost. economlcol 
computar which will run efficiently o wide range of opplicotions. Our gool is to exploit 
the principies of genetics ond the techniques of genetic olgorithms to evolve robust. 
close to optlmolity, efficient processors from o boslc functionol specificotion. 

Work is being corried out to develop suitoble operotors thot ollow to hybridlse the prin­
cipies of ISGEN with the techniques of Genetic Algorithms. In this hybird methodology 
o complete compiling instruction set is considered to be o slngle chromosome. Genes 
ore mode up of nucleotides, whlch ore defined os possible instructlons obtolned under 
design rules from o cononical genotype. Evolutionory pressure opplied to on initiol 
populotlon of pseudo rondomly generoted chromosomes ylelds better ond better 
instruction sets. 

The new progrom will be oble to cape In o strolghtforword woy with dlfferent styles of 
instruction sets ond lt will be eosy to odjust to optimise different feotures. Methodology 
used ond performance of ISGEN-GA ore the subject of o forthcoming papar. 

6 Conclusions 

• We hove presented o tully outomoted tool copoble of generotlng a nearly 
optlmallnstruction set from o boslc specificotlon. 

• We hove showed its efficocy In optimlzing not only artificiolly verbosa canonical 
instruction sets. but real ones os well. 

• Automoted instruction set design tools hove the following odvontoges: 

- they ossist designing processors thot moke the most efficient possible use of 
their resources: different feotures con be finely tuned ot one time (e.g. stotic 
progrom size. bus load. instruction set size. register set size). 

- they reduce the design time: the designar is only required to outline the 
most general operotions o mochlne should be able to perform ond provida 
o compiler from the source longuoge to this bosic set. 

- they provida objective meosures of optimolity for the generoted instruction 
set. 



314 

- instructions ore odded or removed from a set according to objective effi­
ciency criteria. not occording to what lhe designar feels ought to be there 
or not. 

7 Acknowledgements 

We would like to thank the members of lhe Compuling Group at Balh Universlty and 
especiolly the EuliSP project leam who hove provided the envlronment in whlch this 
work could be carried oul ond Chris Burdorf ond Pete Broodbery for their coreful 
reoding and comments. 

Froncesco ARCI and Jeremy BENNETT were bolh supported by reseorch studentships 
from the Sclence and Engineering Reseorch Council of Great Britain during the period 
in which this work wos carried ou I. 



8 Bibliography 

References 

(Abr63) N. Abramsom. /nformation Theory and Coding. McGraw Hill. 1963. 

(AK84) F.J. Ayala and J.A.Jr. Kiger. Modem Genetlcs. lhe Benjamin/Cummings 
Publishing Company. Inc .. 1984. 

(Ben88) J.P. Bennett. A Mefhodology for Automated Deslgn of Computar lnstruction 
Sets. PhD thesls. University of Cambrldge. 1988. 

(BS89) J.P. Bennett and G.C. Smith. lhe need for reduced byte stream intruction 
sets. lhe Computar Journal. 32:370-373. Aprll1989. 

(Dav91) L. Davls. editor. Hondbook of Genetic Algorithms. Von Nostrand, Reinhold, 
1991. 

(Gol89) D.E. Golberg. Genetic Algorithms In search. optimization ond machine learn­
lng. Addison-Wesley. 1989. 

(Hol75) J.H. Holland. Adaptatfon in natural ond ortlfictot systems. lhe University of 
Michigan Press. 1975. 

(Mot85) D.C.J. Motthews. Poly manual. Technical Report 63, Combridge Universlty 
Computer laborotory. 1985. 

(PD80) D.A. Patterson and D.R. Ditzei. lhe cose for the reduced instruction set 
computer. Computer Architecture News, 6:25-33, August 1980. 

(PN+90) J. Padget, G. Nuyens. et ai. lhe eullsp deflnition version 0.69. Technical report. 
University of Bath, 1990. 

(RWS80) M. Richards and C. Whitby-Strevens. BCPL - The longuoge ond lts compller. 
Cambridge Universlty Press. 1980. 

(SS82) R.E. Sweet and J.G. Sandman. Empirical anolysis of the mesa instruction 
set. In Proceedlngs of the ACM Symposlum on Architecturol Support for 
Progromming Longuoges ond Operoting Systems, poges 235-243. March 
1982. 

(Tan78) A.S. Tonenbaum. lmpiicotions of structured progromming for machine orchi­
tecture. Communicotfons of the ACM. 21:237-246. March 1978. 

(vdG89) A.J. van de Goor. Computar Archltecture ond des/gn. Addison Wesley, 1989. 

315 



316 

9 Appendix A: a canonical instruction set for BCPL 

I lnstruction I Description 

_C_All a 1 Call procedure, current stack a 1 words, result left on internai stack. 
FOR a1a2a3 Start of FOR loop, contrai vorioble word offset a1 on local 

stock, end volue offset a2 on local stock, end of loop ot byte offset a3. 
Skip to a3 lf loop complete. 

ENDFOR a1a2a3 End of FOR loop, contrai variable offset a1 on local stack, 
start of loop at offset a2 backwords, loop increment a3. 
Perform increment and loop back. 

REPEATUNTIL a 1 End of REPEATUNTILioop, start at ottset a 1. Pop top of Internai 
stack ond loop back if volue ls FALSE. 

REPEAlWHILE a 1 Ditto, but loop if value is true. 
REPEAT a1 Ditto. but loop back without looking at internai stack. 
WHILE a1 Start of WHILE loop , end ot ottset a1. Pop value off internai stack 

ond jump post end of loop if volue is FALSE. 
ENDWHILE a1 End of WHILE loop, whlch storts at offset a 1 back. 

Jump bock a1 unconditionally. 
UNTIL a1 As WHILE but jump lf value is TRUE. 
ENDUNTIL a1 End of UNTIL ioop , oction os ENDWHILE. 
IF a1 Pop value from Internai stack; jump forword offset a 1 lf value is 

FALSE. 
UNLESSa1 Dltto, but jump if volue is TRUE 
TEST a1 ldentical to IF, but forword jump ls to polnt immediately ofter else. 
ELSE G ) Uncondltional jump forword a 1. 
SWITCH at, ... , an Perform SWITCH. a 1 is offset fo r DEFAULT, a2 is number o f coses. 

Other orguments are pairs of volue ond offset for eoch cose. 
BREAK a 1 Jump out of loop. Unconditionolly bronch forword a 1. 
LOOPa1 Jump to end of loop. Unconditionally bronch forword a 1. 

Really needs LOOPBACK os well for efficlency. 
RESULTIS a1 Unconditionally jump forward a 1 out of VALO F b lock. 
ENDCASE a 1 Unconditionolly jump forword a1 out of SWITCH block. 
RETURN a1 Return from procedure. Absoluta bronch address g iven in 

stock freme. 
GOTO Jump to obsolute oddress on top of internai stack 
FINISH Terminate progrom 



317 

1 O Appendix 8: canonical BEEP 

I Number I Opcode nome I DescrlpNon 

o UNKNOWN Opcode O is left unused. 
1 PUSH-CONSTANT arg Push a word slzed argument of the stack. 
2 PUSH-REG Pop register closs and register number. 

Push selected register. 
3 POP-REG Pop reglster closs and register number. 

Pop stack lnto selected register. 
4 PUSH-DISPLAY Pop trame number, pop offset. 

push dlsploy(frame, offset). 
5 POP-DISPLAY Pop trame number, pop offset, 

pop stack inta display(frome,offset). 
6 BRANCH Pop condition result, pop destinotion. 

I f condition result is non nil then jump 
to destinotion. 

7 JUMP Pop destination. Jump to destination. 
8 CALL -IN-CURRENT-MODULE Pop function number, call function. 
9 CALL-IN-OTHER-MODULE Pop module nome, pop function number, 

call function. 
lO RETURN Return from function call. 
11 CONS Pop cor, pop cdr, push a cons celi 

containing them. 
12 GCTRAP Pop type, pop ltems-no. Trap to garbage 

collector if allocotion of items-no 
items af type type would cause a garbage 
coliection. 

13 EQ Pop argl, pop arg2, push (eq arg1 arg2). 
14 PUSH-STATIC Pop stotic vector index. 

Push value at lndex on stack. 
15 CAR Pop arg, push (cor arg 1). 
16 COR Pop arg, push (cdr arg 1). 
17 PUSH-NUN-LOCAL-VALUE Pop module nome, pop index, 

push value at index in values 
vector of specified module on stack. 

18 PUSH-LOCAL -VALUE Pop index, 
push volue ot lndex on stack. 

19 POP-LOCAL-VALUE Pop index, pop stock into 
volues vector ot index index 

20 PUSH-INTERNAL -FUNCTION Pop function number, 
push function object on stack. 



318 

I Number i Opcode nome I Description 
21 BEGIN-W-CC lnstoll lhe funclion on lop of 

stack as the current 
continuotion and sove previous. 

22 END-W-CC Deinstall current continuation. 
23 APPLY Apply function on top of stack to 

arguments on top-1 of stock. 
24 BEGIN-W-H lnstoll functlon on top 

of stack as the current handler and 
sove previous. 

25 END-W-H Restare the previous hondler. 
26 ALLOC Allocote o disploy trame capable 

o f holding top of stock lisp objects. 
27 DEALLOC Deollocote current disploy frome. 
28 CALL-SELF Call function tail recursively. 
29 R PLACA Pop o lisp object from stock ond push bock 

o cons cell holding the item just popped 
in the cor field. 

30 RPLACD Pop a lisp object from stock ond 
push bock o cons cell holding 
the item just popped in the cdr field. 

31 BEGIN-U-P Sove function on top of stack 
os lhe current cleonup pointer. 
saving previous 

32 END-U-P Restare prevlous cleanup poinler. 
33 PUSH-DYNAMIC Push dynamlc variable specified 

by value on top of stack on the stock. 
34 POP-DYNAMIC Pop dynamic variable number. 

pop value. set voriable to value just popped. 
35 BIND Create fresh dynamically scoped 

b lndings for identifier on stack 
and initialise the binding to top-1 
of stock. 

36 UNBIND Restare the previous dynomic 
b inding of the ldentifier on top 
o f stack. Unbinding must be in opposite 
arder to b inding. 

37 VECTOR-REF Pop index of element to occess. 
pop vector. push required element. 

38 UPDATE-VECTOR-REF Pop index o f element to occess. 
pop vector. pop element ond store 
it in vector. 

39 ALLOC-IREGS Pop ond set number of input registers 
used by function. 

40 ALLOC-LREGS Pop ond set number of local registers 
used by functlon. 



319 

11 Appendix C: Entropy in BEEP 




