
OCCAM-Oriented Software Tools

Algirdas Pakstas ; Danute Paketüraite, t Artüras Tamkevicius
Lithuanian Academy of Sciences

Institute of Mathematics and Informatics t

Abstract

For many years software engineers have been providing the engineers of
other fields with advanced design tools. But the tools uscd by software design­
ers themselves look quite primitive in comparison. Only CASE-like systems

developed during last years can provi de reasonable hclp to software developers.
Experimental software development systems ALADDIN /LAMP is oriented

to creation of distributed computer contrai systems (DCCS). Proposed ap­
proach to development distributed software configurations (DSCs) is based on

the mo dei o f virtual distributed software configuration (VDSC) wi th information­
transport ports (ITPs) as interconnecting servers.

Transputcr networks and OCCAM-written software are often used for

creation of DCCS. An approa.ch to ALADDIN/LAMP tools .extention for
OCCAM-written DSCs handling is discussed in this pa.per. Survey of tools
is presented (OCCAM-oriented st.ructure editor OSE, OCCAM structure ex­
tractor OSX, ALADDIN/OOB translator a.nd deadlock locator and analyser
DLA). A comparison with related works is given.

"This work was partially funded by NTNF. Dr.Aigirdas PaHtas oow with IDT NTH as NTNF
post.-doctoral research fellow. Current address: Division of Computer Systems and Telematics
(IDT), The Norwegian Institute ofTechnology (NTH), The University ofTrondheim, N-7034 Trond­
heim, Norway. Phone: +47 7 594485. Fax: +47 7 594466. E-mail: Algirdas.Pakstas@idt.unit.no.

IDanute Paketüraite now with Computing Center of the Bank of Lithuania, Vilnius
' Detailed a.ddress: Dept. of Software Engineering for Distributed Computer Systerns, Institute

of Mathematics and Informatics, Aka.demijos 4. 2600 Vilnius, Lithuania. Phone +7 0122 359702.
Fax +7 0122 359909. TELEX 261131 IMC SU, e-mail: {a.pakstas,arturas}@sedcs.mii2.lt

566

1 Introduction

For many years software engineers have bcen providing the engineers of other fields
with advanced design tools that considerably facilitate their jobs, relieve lhem of
tedious tasks, put them in control of the design process and help them to turn out
quality products. But the tools used by software designers themselves look quite
primitive in comparison. The typical design environment includes a text editor, a
compiler, perhaps a debugger, but hardly anything that could in fairness be char­
acterized as a design system. Only CASE-like systems developed during last years
can provide reasonable help to software developers.

In order to increase productivity of program development, different approaches and
related CASE-like tools have been developed. One of such approaches is "building''
of "distributed software configurations" (DSCs) from already existing blocks (19).

Transputer networks and OCCAM-written software are often used for distributed
computer control systems (DCCS) creation. According to the OCCAM-language
semantics the processes can interact via channels by sendjog messages [3) what arised
the deadlocks problem (see [29, 30)).

Concerning the operation of ALADDIN/LAMP system tools the interests in dead­
lock problems are the following:

• automated DSCs production (building) from the prepared components requires
the guarantee of DSC correct operation;

• deadlocks can arise and should be elimina.ted in the debugging phase of DSC
development.

The present pa.per considers an a.pproach to the OCCAM-oriented extention of AL­
ADDIN/LAMP software tools and deadlocks analysis in the transputer networks
when DSCs are written in OCCAM.

2 Model and Related Tools

Proposed a.pproach to development and analysis of OCCAM-programs is based on
the model of virtual distributed software configuration (VDSC) with information­
transport ports (ITPs) as interconnecting servers. The model was initially proposed
for the distributed computer control systems development by means of the AL­
ADDIN/LAMP system tools.

567

VDSC is a quadruplet

VDSC =< Blk;,Rapr;,ITP;,CS >,

where Blk;- program blocks, Rapr;- program blocks requirements for the hardware
or software using, IT P; - information-transport ports of the i-th program block, CS
- communication scheme which defines the topological structure of the links between
ITPs, i = L..N B (NB - the number of program blocks in DCCS) and j = O ... N P
(NP - the number of ports in DCCS).

The CS is presented by directed graph CS = (PORTS, LINKS).

POR:I'S = < ITPdi = l...NP >,
LINKS = < (ITP;,ITP;)IITP; := ITP;,i,j = l...NP >,

where NP is total number of ITPs. An expression like "IT P; := IT P;" designates
that IT P; receives messages from IT P;, i.e. that these ITPs are linked.

Such VDSC representation is directly mapped to ALADDIN language syntax and
semantics. More details about this model are presented in [19). For a practical
VDSC use the fact that all links between ITPs are defined in CS is very important.
Therefore, the VDSC description can be used as the data for the statical analysis of
potential deadlocks.

An approach to ALADDIN/LAMP tools extention for OCCAM-written DSCs han­
dling is shown in Fig. 1 where the following subsystems are shown:

• OSE (OCCAM-Oriented Structure Editor);

• OSX (OCCAM Structure eXtractor);

• translator of system architect's Janguage ALADDIN/OOB;

• DLA (Deadlock Locator and Analyser).

The Example of Small DSC in OCCAM. The adopted approach will be il­
lustrated with the DSC example (see Fig. 2 from [30]). The DSC has &hree pro­
cesses that are executed in parallel: Producer, Buffer and Consumer. The process
Producer produces the messages and sends them via. the channel prod to the process
Buffer up to filling buffer of this process, a.fterwards sends the messa.ge a.bout the
completed reception via. the channel endprod.

The process Buffer has limited size buffer - till 10 one byte messa.ges (see Fig. 3).
The process Consumer receives these messages via. the channel cons and sends to

568

Figure 1: OCCAM-oriented extention of ALADDIN/LAMP tools

the screen via the channel screen. The requests for following messages are sent via
the channel more. When ali messages are passed, the process Buffer informs about
this process Consumar via the channel endcons.

3 OCCAM-Oriented Structure Editor OSE

3.1 Advantages of using a structure editor

Advantages of using a structure editor are the following(l4]:

• Ali documents produced are guaranted to be syntactically correct.

• As syntactic aspects are handled by the editor, users may concentrate on more
interesting issues. A programmer, for example, has better things to do than
keyword typing, worrying about proper indentation, etc.

569

prod com ·············· ·::----=---..················..,.,------,-·········· keyboar4······· ·····... / ···... more .. · ······· ... screen
------<>':... Producer) eodprod<... DufTer . ..-'~·-.. Consumer _: -

······················ ················ ···

Figure 2: An example of distributed software configuration with a. process Buffer,
which has limited size

• Many language-dependent operations, which are hard or impossible to achieve
with text editors, become possible.

• A fiexible structural editor is a powerful tool for implementing progra.mming
or documenta.tion sta.ndards.

• More generally, a structural editor brings ali the benefits of a "smart" tool
that knows about the structure of the document it manipulates.

• When the Janguages considered are software languages such as prograrnming or
design languages, structural editor simplifies the task of writing other software
tools. Most software tools acting on progra.ms, designs, specifications, a.nd the
like must at some point perform some parsing to get the input documents into
a suitable interna! forro. If a structural editor is used, this task is no Jonger
necessary; the structural editor has its own interna! forro, usually some kind
of tree structure, that can be used by other tools.

More detailed review of structure-oriented concepts is presented in (24).

3.2 lmplementation and user interface

The editor runs on IBM PC/XT/AT under MS-DOS. The editor was implemented
in Turbo Pascal on the top of Turbo Professional package text editor, which opera.tes
similar to Borland lnternational Turbo Pascal editor (4].

User interface was developed on the basis of Borland's windows and menus libraries.
General work style with OSE is very similar to Borland's Turbo compilers (the same
names of menus and ALT-keys for the sarne functions). Editor OSE can operate in
two main medes: te::t mode, structure-oriented mode.

In the text mede the editor operates as conventional full screen text editor. Com­
mands set is very similar to Turbo Pascal 's editor commands set .

570

PROC BoundedButter
(CHAJ OF BYTE producer, consumar,
CHAI OF AIY endprod, endcons, =ore)

(lO]BYTE butter
:l{T in, out
300L t ermination
BYTE any
SEQ

in : = O
out := O
termination := FALSE
WHILE IOT (termination)

SEQ
ALT

(in<(out+10))tproducer?buffer(in REM 10)
in : '" in + 1

(out < in) a more ? any
SEQ

consumer ! buffer (out REM 10]
out : = out + 1

(out = in) a endprod ? any
SEQ

more ? any
endcona ! any
termination : = TRUE

Figure 3: An OCCAM-program fragment with limited size Buffer process

In the syntax-oriented mode the commands set is very similar, but these commands
operate a little bit different, because in this mode the editor works not with char­
acters but with OCCAM-2 syntax constructs. The main editor task is to support
correct program structure until editing. In this mode programmer is restricted in
freedom. He/she can't use commands that break correct program structure. Pro­
gram is developed by selecting an appropriate template. The programmer can make
choices from a menu or use ALT-keys.

4 OSX and ALADDIN/OOB translator

OCCAM Structure eXtractor OSX has the following functions:

571

1. A.nalysis o f the OCCA.M-programs, extraction o f names o f interconnected pro­
cesses and used channels. The OCCAM synta.x analyser for OSX is under im­
plementation by means of grammar-based technique as described in [20, 25].
It should be noted that only this analysis and extraction functions of OSX are
language-dependent. Other two functions are universal.

2. ITPs interconnection scheme reconstruction. According to virtual DSC model
each channel in the OCCAM-program is associated with two information- tra­
nsport ports that belong to the different processes. In the used example for
the processes Buffer and Consumer the channel cons is mapped into the 2
ports: output ITP Buffer .cons and input ITP Consumer . cons.

3. ALADDIN-written VDSC description preparation (example is shown in Fig.
4). Neither information about distributed hardware configuration nor assign­
ments of program blocks on workstations are presented here.

It's easy to see that LINK-operators contain all information whlch is necessary for
potential wait-for-graph constructing. For the more deep analysis and OCCAM­
program simulatiQll all n.ec.essa.ey infonn.ation presented in OCCAM-progra.rns leaves
in theü: ALADDIN-descriptions. For exampfe, the B'uffer. prod (input ITP} has a
limited queue Iength which is equal to the buffer array size as defined in the OCCAM­
program (Fig. 3).

ALADDIN/OOB translator task isto build DSC using already existing components
and to prepare the data for DLA (a list of interconnected ports according to LINK­
operators, see example in Fig. 5}. This list also can be prepared: rrumuaJly a.ccord:ing
to availaOie non-standard specifications.

5 Deadlock Locator and Analyser DLA

One of the most important problem, which arised during the creation of distributed
software configurations (DSCs), is deadlocks between interacting processes[9, 32] .
Deadlocks were and still should be the subject of research, because their influence
on normal computer systems behaviour is obvious.

5.1 Deadlock detection problem

Deadlock detection has been studied extensively in the context of concurrent opera­
tion of monoprocessor time-sharing systerns. Deadlock can occur in such systems due

572

to cyclic patterns of requests for exclusive access to system resources. Algorithms
for deadlock prevention, detection and recovery are standard material in operating
systems textbooks (e.g. [11]).

Such algorithms have also been extended to distributed systems, where concurrent
processes may execute on different processors. As was discovered in [15, 17, 18]
during DSC debugging and maintenance in the DCCS-oriented software development
system ALADDIN/LAMP (see [16, 19)) the problem of deadlock elimination was also
faced.

In this work we'll use the folowing deadlock definition which is formed on the basis
of [16]: "The deadlock arises when ali processes (two or more) of the same group
sending the messages are infinitely blocked and can not be uecuted without special
system interactions because o f waiting messages from the processes o f this group".

So, according to [10] this type of deadlock may be called a communication deadlock
where a process waits to communicate with any one from a set of neighbors in
comparison with resource deadlock, which assumes that a process becomes unblocked
only after it receives all the resources for which it is waiting.

At present there are a number of methods for prevention, avoidance and detection­
repairing of the deadlocks (see [9, 32, 10)). Very often deadlock detection methods
are based on distributed maintenance of the "wait-for-graph", that shows which
process is waiting for a resource held by which other process [13, 28, 5, 26, 27).
Deadlock detection is reduced to finding cycles in this graph.

Programrning language OCCAM was created for development of DSCs running on
transputer networks. According to the OCCAM-language semantics presented in [3)
the processes can interact via channels by message sending. And naturally deadlock
detection problem was also faced (see [29, 30, 31]).

Although the approach of mainta.ining a wait-for-graph and searching for cycles in
it is estimated as problematic for development of run-time monitors for parallel
prograrnming environments [6) this approach is still acceptable for static analysis of
parallel prograrns. The similar method for static deadlock analysis was adopted in
the ALADDIN/LAMP system tools [21, 22, 23) .

5.2 OCCAM Language and Deadlocks Features

An OCCAM program comprises the collection of processes that can be executed in a
serial or parallel fashion [3]. OCCAM defines the basic processes to be assignement
process, input process and output process.

573

Input and output processes operate via OCCAM channels and provide the synchro­
nised interprocess communication between concurrent processes. The channel is used
to pass data from one concurrent process to another.

According to the proposed definition, the deadlock arises as a result of infinite waiting
for the messages. In OCCAM-programs we have 3 typical cases:

1. Incorrect interprocess protocol. Process A completed the data passing to
the process B, but didn 't inform about it, and as result the process B waits
for messages and blocks the other processes that are interconnected with him.
This case is typical not only for transputer networks, but also for other types
of distributed systems.

2. Incorrect process-coordinator implementation. If the .. process-coordi­
nator" hasn't the possibility to accept more than one message from coordinated
processes, then the other messages will be lost. The processes, that sent " lost"
messages, will wait infinitely for confirmation and will block other processes.
This case is typical for OCCAM-language, when variable value is assigned from
severa! channels in parallel.

3. Incorrect externai environment {"human inspired deadlocks"). This
special kind of deadlocks arises as result of deadlock cycle closing via externai
non-machinery environment, i.e. when humans are also active processes in
distributed system (terminal 1/0, manual switching, etc.).

According to this classification in the example presented above (Fig. 2) cases 1 and
3 may occur. Case 2 wasn't presented.

5.3 Implementation

DLA [21] uses recursive algorithm for the search of cycles in potential wait-for-graph.
This graph is constructed of the two parts: externai (according to interconnection
scheme CS described in ALADDIN-program by LINK-operators) and internai (de­
rived from the same original information taking into account semantics of process­
to-ITP calls, i.e. "internallinks").

DLA outputs potential deadlocks list (see example in Fig. 6) and structural scheme
of processes interconnection (pseudographical, see example in Fig. 7). In the Fig.
7 program blocks are shown as rectangles, output and input ITPs are marked by
symbols ">" and "<". The !ines like " .. . " mean the "internai port connections"
that DLA adds to the interconnections list according to the principie "ali inputs

574

with ali outputs" . The !ines "---" mean externai links between ITPs that belong
to different blocks.

Human inspired deadlocks can be ana.lysed according to corresponding ITPs param­
eters external-in and external-out (see Fig. 4). This possibility is optiona.l and
should be defined before running DLA.

6 Related works

In this section we'll present a survey of systems, related to development of OCCAM­
programs. The typical environments for OCCAM programs development are In­
mos Transputer Development System TDS (oriented to IBM PC-based computers
witb connected tran~puters) and Inmos OCCAM Programming System OPS (ori­
ented to IBM PC-based computers without transputers) [8, 7]. Howevcr, alternative
OCCAM-environments and supporting tools a.lso are created' [12, 2, 1].

"Folding editor" concept. In the Inmos TDS and lnmos OPS are included "fold­
ing editors" . A "folding editor" extends the principie of tree structured directories
in to a text file. This a.llows the simultaneous display of large text amounts, by "fold­
ing" text sections away behind a descriptive heading. This results in a tree structure
very similar to the sub-directory structure of, for example, MS-DOS. ·

With suitable text structuring it should be possible in most circumstances to ensure
that no display exceeds a single screen at any one time. To access text which is
fo!dcd a.way you cán either ENTER tbe containing fold, in which case the contents
of the fold and its header are the only displayed text, or you can OPEN the fold, in
which case the contents are displayed in the context of the surrounding text.

The advantage of this system is that it eiiminates the need for seemingly endless pag­
ing through long fileli to fin<i the section of interest, a.llowing you to move down the
tree structure, following the (hopefully) 4kscriptive headen, to locaie tlle texi you
require. "Foldin~ editors" combine the syntactic elision and holophrasting concepts
for program display. ·

Origami. System Origarni [2] is a "folding editor", similar to, and inspired by, the
editor included in the Inmos TDS. Origarni is not a. word processar (although many
of its features would be useful in a word processar), but it comes into its own as a
program editor for structured languages. The code structuring is obvious from the
screen display, a.lthough no actua.l code may be visible (i.e. "full elision").

575

Exis~ing files, not produced using Origami, may be imported into Origa.mi, a.nd then
folded up for future use, and ease of development. These files can be further edited
either using Origami or some other editor, and compiled in the norma.! wa.y.

CODE. In the [1) is presented system CODE as a user-friendly (pull-down menus
for user interface) PC-based learning tool for para.llel programming. CODE helps
users learn OCCAM-2 by writing programs for a single transputer, checking for
errors and debugging during execution.

Components of CODE are: Folding Editor compatible with the Inmos TOS fold­
ing editor for generating Inmos TOS compatible source files; Syntax Checker for
checking synta.x errors in OCCAM-2, reporting if the errors encountered and gener­
ating the object file for the Interpreter; Interpreter and Debugger for program
executing in debug and non-debug modes, deadlock detecting and process monitor­
ing, simulating of computing and com.municating times for any process; Lister for
preparing of program source code listings with or without line numbers, opening all
nested folds in program.

Maio emphasis of this system is learning of parallel program.ming in OCCAM. At the
moment system CODE is only related work covering deadlock detection in OCCAM­
programs which is kno\vn by the authors.

7 Conclusions

The problem of software development for para.llel systems and distributed compu ter
control systems was discussed in the paper in respect to creation of distributed
software configurations. The model of virtua.l DSC was used as a basis for proposed
"building" approach. The Deadlock Locator and Ana.lyser DLA and OCCAM Struc­
ture Extractor OSX were offered as helpful tools for reliable OCCAM-based DSC
development, because they provide faster DSC checking and support the visualiza­
tion of program structure. OCCAM language features that are the most important
for deadlocks ana.lysis were shown in the paper.

The OCCAM-oriented structure editor OSE was presented as helpful tool for pro­
gram writing in OCCAM-2, because it provides faster program development and
supports program structure. The editor can be used for learning aims too.

DLA and OSX implementations for ffiM PC under MS-DOS were developed as
components of integrated OCCAM programming environment including structure
editor, compiler, debugger, deadlock ana.lyser and process configurator. DLA can

576

be used not ooly for OCCAM but for otber parallel aod object-oriented laoguages
too. Ali wbat is oecessary - to develop correspoodiog structure extractor for tbe oew
target laoguage (PSX for Pascal, etc., see Fig. 1). DLA aod OSX cao be useful also

as components of reverse eogineering technology.

References

[1) CODE - user-friendly PC-based learning tool for parallel programming- tbe first of its kind
in tbe world! C-DAC - Centre for Development of Advanced Computing, Pune University
Campus, Ganesh Khind, Pune 411 007, INDIA, 1989.

[2) Origami User Cuide , 1990. 9p.

(3) G. B111ett. OCCAM-3 Reference Manual. INMOS Limited, Mar. 1992. 190p.

[4) Borland lnternational. Turbo Pascal. User's Cuide. Versíon 5.0, 1988. XII1+350p.

[5) A. Elmaglllmid and A. Datta. Two-pbase deadlock detection algorithm. IEEE Trans. Com­
put., 37:1454-1458, 1988.

[6) D. G. Feitelson. Deadlock detection without wait.-for-graphs. Parollel Computíng, 17:1377-
1383, 1991.

[7) INMOS Limited. TDS e.O. TDS tools. Beta release documentation, July 1986.

[8) INMOS Limited. TDS e. o. U:1er manual. Beta release documentation, June 1986.

[9) S. Isloor and T . Marsland. The deadlock problem: An overview. Computer, 13(9):58-78, 1980.

[10] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys, 19(4):303-
328, Dec. 1987.

[11] S. Krakowiak. Principies of Operatíng Systems. MIT Press, Cambridge, MA, 1988.

[12) D. Macfarlane, M. Webb-Johnson, and J. Galletly. PC-OCCAM. Journal of Microcomputer
Applications, (12):191- 212, 1989.

[13] D. Menasce and R. Muntz. Locking and deadlock detection in distributed data base. IEEE
Tran:J. on Software Eng., SE-5(3):195-202, 1979.

[14] B. Meyer. Cepage: Toward computer-aided design of software. The Journal of Systems and
Software , (8):419-429, 1988.

[15] A. Pak&tas. Programming support of reserving and bandling deadlock and other e.xceptional
situations in distributed systems. In FTSD-10, Proc. 10th lnt. Conf on Fault-Tolerant Systems
and Diagnostics, Varna, Bulgaria, pages 142-147, Sept. 1987.

(16) A. Pak&tas. Distributed Software Configurations: Analysis and Development. Mokslas, Vilnius,
1989. 223p., (in Russian).

[17) A. Pak&tas. Exceptional situations mechanism for interaction environment. In FTSD-1!!:
Proc. Jtth Inter. Conf on Fault-Tolerant Systems and Diagnostícs, Prague, C:echosloval:ia ,
page 357, Sept. 1989.

577

(18) A. PakStas. :VIethods and algorithms of distributed deadlock delection for DCCS on-line diag­
nostic subsystem. In Technical Diagnostics'90: Proc. 7th IM ECO TC 10 Symp. on Technical
Diagnostics, Helsinl:i, Finland, Sept. 1990.

(19] A. Pak~tas. Archilecture, organization and building of distributed software configurations for
the microcomputer control network. In U. Jaak.so and V. Utkin, cditors, Automatic Control.
World congress 1990. "In the Service of Manl:ind". Proceedings of the 11th Trienn1al World
Congresso f lhe International Federation o f Automatic Control, August 1990, Ta llinn, Estonia,
pages 123-128, Oxford, UK, 1991. Pergamon Press. Vol.4.

(20) A. Pak!tas, R. Meidute, and G. Stradalov. A sofLware system for parser constructing wit h
full-screen debugging facilities. In System Sciences X, Inter. Conf. on Systems Sciences, page
145, Wroclaw, Poland, Sept. 1989. (Abstr. of Papers).

[21) A. Pakãtas andO. Paketüraite. DLA: Locator and analyser of deadlocks in dimibuted software
configurations. In FTSD-13, Proc. 13th International Cnjenna. em Fcnú.f- To&1lll<ltf Sptcm.s
a11d Diagnostics, Varna, Bulgaria, pages 171-176, June 1989-

[22) A. Pak.ua.s, D. Pa.ketüraiié, and S. Pak!tiené. Tools for Anafysis and Simulation of Ois­
tribute<! Computer Control System in Object-Oriented SofLware Development Environment
ALADDIN/ OOB. In 9th IEEE Worbhop on Real-time Operating Systems and Software,
13-1./ May, 199!, Pittsburg, PA, USA, May 1992.

(23) A. PakAtas, D. Palcetüraité, and A. Tamkevi6us. OCCAM-Oriented Extention of AL­
ADDIN/ LAMP SofLware Tools. In TAPA-9!: Proc. Transputer and Parai/e/ Applications
Conf., Nov . ./-5, Melbourne, Austrolia, Nov. 1992.

(24) A. Pakttas and A. Tamkevilius. OSE: OCCAM-Oriented Structure Editor (preliminary ver­
sion). In Proc. 3rd Nordic Worl:shop on Programming Environment Research, Tampere, Fin­
land, Jan. 1992.

(25) A. Pakttas and N. Zolotariov. Synta:r-oriented Components of Distrihuted Systems: Develop­
ment and Debugging Tools on the Basis of Formal Ducriptions. Nauka, Moscow, 1991. 280p.
(in Ruaaian).

(26) M. Roesler and W. Burkbard. Resolution of deadlocks in object-oriented distributed systems.
IEEE Trans. Comput., 38:1212-1224, 1989.

(27) M. Singhal. Deadloc.k detection in distributed systems. Computer, 22(11):37-48, Nov. 1989.

(28) K. Sugihara, T. Kikuno, and N. Yoshida. Deadlock detection and recovery in distributed
database systems. Systems, Computers, Controls. Scripta Electronica Japonica, 15(1):48-56,
1984.

[29) M. Surridge. A topology independent, mioimal memory, deadlock-free, general message pass­
ing harness. EMS Report: Software Migration Aids for Transputer Systems (Contract Ex­
tension), Dept. of Electronics aod Computer Science, University of Southampton,. 1990. The
SERC/DTI Initiative in the Eogineerior; ApplicaLions of Tnuz.paters-. PIS.

[30] D. Talia. Notes on terrnination of Occam processes. Sigplan Notices, 25(9): 17-24, 1990.

(31) L. Waring. A general purpose communications shell for a network of traosputers. Micropro­
cessing and Microprogramming, 29:107-119, 1990.

[32) D. Zõbel. The deadlock problem: A classifying bibliography. SIGOPS Operating Systems
Rev., 17(4):5-15, 1983.

578

-- sottvare componenta
BLOCK Producer; -- BLOCK deacription

-- PORT descriptions
PORT keyboard (EXTERIAL_ II ; ...);

EBD PORT;
PORT prod (OUT; FORKAT : BYTE;

SIZE = 1; QUEUE = 1) ; EID PORT;
PORT endprod (OUT; ••.); END PORT;

ElO BLOCK ;
BLOCK But:ter ;

PORT prod (II ; FORKAT • BYTE;
SIZE: 1; QUEUE = 10); EID PORT;

PORT endprod (II; .•.); EID PORT;
PORT cons (OUT ; .. •); END PORT;
PORT more (II; . . .) ; EID PORT;
PORT endcons (OUT;

UD BLOCJ:;

BLOCIC Conauae:r;

) ; END PORT;

PORT cona (li; FORKAT : BYTE;
SIZE 2 1; QUEUE = 1); EID PORT;

PORT more (OUT; .••); EID PORT;
PORT endcona (II; ••.); END PORT;
PORT screen (EXTERIAL_OUT; ...);

EBD PORT;
EID BLOCK;
-- scheme ot interconnectiona
LIIK (Producer.prod => Buttar .prod)
LIIK (Producer.endprod => Butter . endprod)
LIIK (Butter.cons • > Conaumer.cons)
LIIK (Butter .endeona => Conaumer .endeons)
LIIK (Consuaer.more •> Butter.more)

Figure 4: A fragment of ALADDIN-program corresponding to DSC with limited size
Buffer process

PORTS " 12, I EXTERIAL LIIKS 5

OUTPUT: IIPUT:
Produeer.prod Buffer .prod
Produeer. endprod Buffer .endprod
Butfer .eons Consumer .eons
Butfer . endeona Conaumer .endeona
Conaumer .more Bufter .more

Figure .5: The example of DLA input data file format

PORTS • 12, # ALL LI!XS : 17

LIST OF ?OTEBTIAL DEADLOCKS:
1. Conaum~r . more Butter.more Butter .cons Consumer. cons Consumer.more
2. Butt•r . endcons Consumer.endcons Consumer.more Butter.mor e Butter.endcons

Figure 6: The list of potential deadlocks

I
I
I
I
I

Produe•r
.... Keyboard <<---

1
: >Prod >---->

I : >Endprod >- ---1--> l _____________________ l

· · · · prod <<---

: ... : endprod <<------

: .. . : more <<---------

: .. . : >cons >---->

: •.. >endcons >-------> _____________________ !

Cona1:114T
... cons <<---

: endcons <<------

. >more >---------->
I
I : >acreen >-------------

~---------------------1 v

?::.,:·:re 7: Structural scheme of DCS processes and their interconnections

579

