
V Simpósio Brasileiro de Arquitetura de Computadores. Processamento de Alio Desempenho 33 

Calculating Bounds for Delay in Communication 
Networks Under Real Time Constraints 

Claudine Chaouiya 
Departamento de Computação da UFC 

Campus do Piei, Bloco 910 
60021 Fortaleza - CE BRAZIL 

Alain Jean-Marie 
INRIA-Sophia Antipolis 

06902 Sophia-Antipolis Cedex FRANCE 

Abstract 

We study communication networks submitted to hard real t ime constraint. This 

constraint specifies that each customer must leave its arrival station before some fixed 

deadline. The study of bounds for the workload allows to deduce bounds for the delay 

of customers and discuss the "feasibility" of the real-time system. 

We first analyse the basic properties of a single server with two leveis of priority. 

Then we analyse a feed-forward network without loops. The case of a network of sta

tions with a ring topology is finally presented. For each of these topologies, we compute 

bounds for the workload of the stations. This calculus is based on the introduction 
of evolution equations. We also discuss periodicity and feasibility conditions when the 

arrival process is a superposition of periodic processes. 

Resumo 

Estudamos redes de comunicação submetidas a coudição estrita de tempo real. 

Esta condição implica que cada cliente deve deixar sua estação de entrada antes de 

uma certa data limite (dead-line). O estudo de limites para a carga permite deduzir 

limites para o atraso dos clientes e discutir a "factibilidade" do sistema de tempo real. 

Primeiro nós analisamos as propriedades básicas de uma estação isolada com uma 

prioridade de dois níveis. Pois analisamos uma rede feed-fonuard de estações sem looiJS. 

Enfim, o caso de uma rede em anel está apresentado. Para cada uma dessas topologias, 

calculamos limites sobre a carga das estações. O cálculo está baseado em equações de 

evolução. Discutimos tambem de periodicidade e de condições de factibilidade quando 

o processo de chegada é uma superposição de processos periódicos. 
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1 Introduction 

In this paper, we consider communication networks under a real time constraint, op

erating in a packet switched mode. In this context, the emerging high-speed networks 

address t he t ransmission of data, video and audio streams: it is the so-called service in

tegration. The Broadband lntegrated Services Digital Networks (BISDN) are projected 

to support such diversity of t raffic. In these networks, the setting of a new connection 

is based on a guarantee of service quality to the user. The latter has to specify some 

parameters of his traffic. This problem is really of current interesi since neither the 

nature of the information provided by the user nor the contrai access criterias are yet 

weU defined. 
Our study also applies to local data networks for real-time distributed applications. 

The contrai of such distributed applications is based on the communication between 

the various elements ( capLors, processors, etc). 

Given a set of cusLomers, described by their arrival dates (phase) , their service times 

and deadlines, Lhe problern is Lo decide whether or noL every customer wiU meet its 

deadlinc when served according to a. given policy. Because of the real time constraint, 

we are mainly interested in the determination of conditions for phase independent 

feasibility. The determination of bounds for the transmission delay in queuing networks 

has been studied in rccenL pa.pcrs for deLerministic models [5, 1) a.nd stochastic models 

[7, 2). We develop this bound approach for a single server, a feed-forward network 

and a ring network. For each of these systems, lhe special case of periodic arrivals is 

also discussed. We characterize Lhe exit process of the queue as R. Cruz [5, 6) does. 

However, ou r formulation by integral cquations allows us to derive more general results. 

In the case of a network, we believe t hat this formulation can lead to an improvement 

to the bounds. 

Most of the results presented in this paper can be found also in [4). 

2 Single server with two leveis priority 

2 .1 Basic properties 

ln this section, we study the basic properties of a single queue for which the arrival 

process satisfies a certain "burstiness" constraint . We assume that the service policy 

has two leveis of priority: the typcs of customers are grouped into two sets called / 1 

and / 2 and customers of type in /2 have a preemptive priority on the customers of 

iype in /1. Bctween customers of type in / 1 (respcctively in h), we necd not to specify 

the priorit). In ou r a.pplications, we shall use these two sets to model the set of local 

customers and t he set of externai customers which have a hie:her prioritv. 
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We discuss the stability of the system and give bounds on the workload of customers 

of type in I 1 and on the length of its activity periods. T he special case of periodical 

arrivals is discussed and we derive from the bounds previously obtained some feasibility 

conditions. 

For each type i E J1 and for any O ~ a ~ b, we define S;(a, b) as Lhe quantity of 

work of type i arrived in the interval [a, b ). We assume that the arrival process, for 

each type i E J., satisfies the foUowing bu rstiness constraint : 

Vi E i) , 3p;, A;, VO ~a~ b, S;(a, b) ~ p;(b- a)+ A;. (1) 

Thus for the whole quantity of work of type in 11 arrived in any interval [a, b), 

namely S 1(a,b), we have also: 

where p1 = Liet, p; and A = Liet1 A;. 

The arrival process of types in 12 satisfies a similar "burstiness" constraint: 

(2) 

Let W 1(t) be the workload of types in / 1 in queue at time t. Recall that a service 

policy is said to be non-idling (o r work-conserving) i f it is such that the serve r works 

as long as the queue is not empty. 

The foUowing lemmas establish the evolution equation of the workload processes 

and the stability condition for ~he server. 

Lemma 2.1 For ali non-idling service policy, W 1 is charocterized by the functional 

equation: 

The workload process W2 'atisfies: 

VO ~ a~ b, 

Finally, the total workload o f the server, given by W = W 1 + W2
, satisfies: 

VO ~a~ b, 

35 
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Proof The workload of types in h at an inst ant b equals the load at an instant a 

( a =::; b), increased by lhe quantity of work of types in It arrived in the interval (a, b}, 

minus the work done in the same interval. Since the policy is non-idling, t he server 

v·orks on types I 1 if and only if the workload of types in I 1 is positive and t here is no 

customer of type in ! 2 in queue. The evolut ion equation for W 2 is justified by the fact 

that types in ! 2 a re strictly preemptive on types in 11 • 

Conversely, these equations can be shown to have a single solution. 
D 

Lemma 2.2 I/ p1 + p2 < 1 then the system is stable, lhat is: 

VI~ O, 31' > t such that W (t') = O. 

Proof Assume that for some t, Vt' > t, W (t') > O. T hen, by lernma 2.1: 

W(t') = W (t) + S 1(t, t') + S 2(t , t')- ( t'- t ). 

Using the burstiness constraints ( 1) and (2), 

W(t') $ W(t) + A1 + A2 + (p1 + p2
- l )(t'- t). 

This last inequality leads to a contradiction: when t' is large enough, t he quantity 

in the right-hand side becomes negative. o 

In the following, we derive an upper bound for t he quantity of work done by the 

server on types in / 1 and for the workload W 1• These resulta are completed by a study 

of t he activity periods. One can note that these results are valid for any single server 

operating under any policy, by considering an empty set h. We assume that the queue 

is stable, i. e. p1 + p2 < 1, and that properties (1) and (2) hold. For simplicity, we also 

assume that at t =O the queue is empty (W(O) =O). 

In addition to the previous notation, let, for any set of types I , A1 = Lie/ A; and 

PI = Lie/ p;. 

An activity period of the system is defined as a time interval (a, b) such that 

J:l{W(u):o)du = O and such that there is no inte rval including (a ,b) and satisfying 

t his property. When t here is no preemption, this corresponds to the classical notion of 

a busy period during which the queue is not empty, with t he srnall difference that we 

allow W ( t) = O in such a busy period i f there is an arrival at t. ln others words, idle 

periods have a strictly positive duration. 

Define t he function f by: f (t) = O if t he server is not working, and J(t) = i if 

the server is working on a customer of type i. The key result for obtaining bounds on 
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the workload W 1 is the following bound on the quantity of work done by the server on 

customers of types in I Ç I 1• 

Lemma 2.3 For any subset I Ç I 1 and any O :S a < b, 

J.
b AI+A2-A/ 

l (J(u)E/}du :$ A1 + PII 2 ( 1 ) + Pr(b- a). 
a - P - P - PI 

Proof Consider first the case where W(a ) >O. Let c= sup{t :S aiW(t) = 0}. Such 

an instant exists, since the system is assumed to be stable and the initial workload 

is zero. This instant is the beginning instant of the activity period containing a. We 

h ave: 

lb l (J(u)E/}du 

lb l {J(u)E/}du 

lb l {j(u)E/}du 

1" l {J(u)E/}du 

(a- c)+ la l(J(u)tU}du 

(a- c)+ la l {J(u)el}du + 1" l (w>(u)>O}du, 

where l is the complementary of I in I 1 • This follows from the fact that (c, a) is included 

in an activity period, so that i f the server is not working on type I, then it is either 

working on a type in I2 or working on a type in l . Observe that the sum of t he two 

last integrals is less than a - c. 

Given that W(c) =O, we have J: l {J(u)E/}du :S S1(c, b). The same holds for l. 

Using properties (1) and (2), we obtain: 

1b l (J(u)e/}du 

:S Ar+ PI(b- a+ a- c)- (a - c)+ min{a- c, Ar+ Pr(a- c)+ A2 + p1(a- c)} 

Ar+ Pl(b- a) + min{p1(a- c), A 1 
- A1 + A2 + (p1 

- PI + p2 - l)(a- c)} . 

It is easily checked that under the stability condition, ma.x%<!0 min{p/.:t, A1
- A1 + 

A2 + (p1 + p2- I ).:r} = p1(A 1 + A2 - A1 )/( 1- p1 - p2 + PI ) . The lemma follows in this 
case. 

If now W (a) =O, the proof can be easily adapted. o 

A similar a.pproach provides a bound on the workload of types in /2 of the server 

(see [3, 4] for more details): 
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Theorem 2.4 /f the system is stable and W(O) =O, then 

'lt;::: o, 

Remark that i f the set / 2 is empty, the bound reduces to W 1(t) $ A 1• One can 

consult [8) for further discussion on this latter bound. 

Finally, we give a. bound on the length of the activity periods of the system {the 

proof should be found in [4)) . 

Theorem 2.5 /f p1 + p2 < I and W(O) =O, then the duration 6 o f any activity period 

satisfies: 

2.2 Periodicity and feasibility 

Let us r.ow assume that the a.rrival process of tbc queue is periodic. For each type of 

customer i E / 1 U /2, we define: 

• L; the (constant) service time of a customer, 

• R; the period of the arrival proccss, which is assumed to be an integer, 

• 4>; the instant of the first arrival (initial phase), 

• for types in 11 , u; the constant deadline. such tbat L; $ u; $ R;. 

The quantities L., R; and 4>; will be expressed in the same unit. Let r• be the 

common period of types in / 1 , that is the least common multi pie of the R;s, i E / 1 , 

and let r 2 be the period of the arriva.l process of types in J2. We define also r the 

common pcriod ( least common multi pie of r• and r 2 ). 

One can prove that under the above hypothesis, the workload W 1 of types in / 1 

becomes periodic after a transicnt period depending on the initial workload of types 

in lt [3]. 

Observe that conditions (I) and (2) hold with: 

A;= L;, Vi ,A 1 =L L;, and A2 =L L; , 
iei, iE/2 

When p1 + p2 < I, the system empties in every period. We have provcd i11 (4) that 

a.nother bound for the length of the activity periods holds when the arrival process and 
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the preemption process are periodic: 

(3) 

We shallsay that a task set is feasible if1 starting from an empty system (W(O) = 0)1 

the delay of every customer is less than its deadline1 for any initial phase. One may 

envision severa! approaches to feasibility: 

• testa with tmjectory which reduce the problem to the study of certain trajectories 

obtained with particular phases. They consist in verifying the feasibility of task 

sets on these trajectories1 which may involve the simulation of the system. For 

the case of a single server 1 first studies of this type of feasibility tests were done 

by C.L. Liu and J .W. Layland [10). S. Lefebvre-Barbaroux has established such 

a test in the case of nonpreemptive policies [8]. In [3] we have shown t hat this 

approach fa.ils in general for networks. 

• test on pammeters of the system 1 such as message lengths and periods 1 or load 

factors. These conditions are much easier to compute but are often only necessary 

or only sufficients. In the case of a single server with periodical arrivals operating 

under the preemptive policy "Rate Monotonic" 1 a sufficient condition for feasi

bility has been proven [101 11]: if the load factor (our p) satisfies the stability 

condition then the set is feasible. The bound approach leads to this kind of tests 

for feasibility. 

We are interessed here in feasibility test for customers of type in / 1• lnequality 

(3) provides a sufficient condition for the feasibility of the task set ft under any work 

conserving policy1 be it preemptive or nonpreemptive: 

. { Ai+ A2 T( I 2)} . 
!DIDl I 21 p+p :=;t;nmu;. 

- p - p •E/1 
(4) 

lndeed, the delay of any customer is clearly bounded by the length of the activity 

period to which it belongs. Because of its general nature1 this condition is very weakl 

and better conditions are known for some classes of service disciplines [4). Using t he 

information of the discipline for types in ft 1 one can improve the above condition. 

2.2.1 Preemptive priorities 

In this paragraph1 we assume that each type of customer in lt has a fixed priority and 

can preempt customers with lower priority. Assume that customer types are ordered 

according to decreasing priority. The delay of a customer of type i E 11 is not infiuenced 

39 
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by customers of types j > i (but is preempted b.Y, any customer of type in J2). This 

allows us to refine condition ( 4 ). 

T heorem 2.6 A sufficient condition for the task set !1 to be feasible under the fixed 

preemptive priority is: 

L}=l L;+ A2 

~ u; . 
1 - L:i=1 L;/ R; - p2 

2.2.2 FIFO service discipline 

ln this paragraph, we assume that the server operates under the FIFO (First 1n First 

Out) se.rvice policy for types in ft. ln this case, the delay of a customer in 11 dependa 

only on the workload found upon its arrival, and on the process of types in J2 (and not 

on future arrivals in IJ). This allows to derive a feasibility condition which is better 

than ( 4 }(3):. 

Theorem 2.7 The task set 11 with p1 < 1 is feasible by FIFO if: 

(5) 

3 A feed-forward communication network 

3.1 Basic prop erties 

The general problem of the stability of a network with loops and multiple classes is 

complicated [1). We first study the case of a feed-forward network. In (3, 4) we have 

considered the simpler case where stations are connected in series with preemptive bus. 

We now generalize the results to any topology such that the network does not contain 

loops (a tree topology for instance). 

Consider a feed-forward network with N stations. Each type of customer has its 

route specified. 1n this type of feed-forward network without loops, one can define a 

depth levei. The stations are numbered in arder of their depth (see figure 1}. Since 

there are no loops in the network, we can ignore communication delays. 

Let us give some additional notations: 

• I( e) the set o f the messages arriving directly at station e (local messages ), 

• M (e) the set o f the messages arriving at station e from stations o f lower leve! 

(externai messages), 
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1 2 5 
Typel -~~-r\____ 
/~~~ 

/ / ~ 
"- I . 

Type 2 "-
3 

· · · · · · · · · · · · 

Type 3 . . ... . \-Q)' · · · · · · · ==r) · : 
Figure 1: Feed-forward net.work 

• let N k be the set o f stations at the k1h levei. Stations o f the lowest levei ( N d are 

never preempted by externai messages, 

• A • = Eie/(e) A; the iargest quantity of local work which can arrive simultaneously 

in the station e, 

• p• = Eie/(e)uM(e) Pi the load factor of station e, 

• PÍ = E;er p; the load factor of messages of type belonging to some set I C 

(I ( e) U M(e)) at station e, 

• w· the workload process in station e, 

• VO :s; a :s; b, s•( a, b) the quantity o f local work arrived at station e during the 

interval [a, b], 

• r the trojectory functjon of station e defined by: f"(t) = o is station e is not 

emitting at instant t (because w•(t) =O), and /"(t) = i if the station is emitting 

a message of type i. 

We assume that the local arrival process at eacb station e satisfies the burstiness 

property (1). By lemma 2.3 and induction we shall prove that the quantity of work 

from other stations also satisfies such property. 

The following lemma states the functional equation for the workload w• of any 

station of the network. 

Lemma 3.1 For a/l station e E Nk, lhe workload process w• satisfies the following 

evolution equation: Vb ~ a ~ O, 

w·(b) = w•(a)+s•(a,b)+ L ll(/P(u)EM(e)}du-(b- a)+ lltw•(u)=O}du. (6) 
peu.<,.N, 

41 
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We shall assume that the condition of stability is satisfied for each station: 

pl' < 1 Vp. (7) 

The following theorem establishes a bound for the workloa.d for any station of the 

network: 

T heorem 3.2 Define by recurrence lhe sequences: 

8 ' = L B~(e) '+A', (8) 
pEUo$ •N, 

B• -AI 
B1 = A1 + Pll •-'- •, 

- P • P1 
(9) 

for e E Nk+l> k = I, ... , /( - L (where /( is the number of leveis in the network} 

and I Ç / (e) U M(e), with /JP = AP for ali stalions p E N1 at lhe lowest leve/. Then, 

assuming the system is slable, we have: 

Ve, Vt, w•(t) $ BM(e)· ( 10) 

Proof We actually prove by induction that for ali e, 

i/ 
Vt , w •(t) S B_M(•l• 

and 

i i/ 

V/ Ç / (e), Va < b, ll{f•(u)E/}du S B1 + p1(b- a). 

For e E Nlo claim i/ reduces to w•(t) s BM(e) =A·. which is true by theorem 2.4. 

Likewise, claim ii/ is true by !em ma 2.3. 

Assume the claims have been proved for ali p E Ui<kN;. Any station e E Nk can be 

seen as a server in isolation with its local arrivals and the arrivals of messages emitted 

by some stations p E Ui<kN;. Remind that the local arrival process satisfies: 

Vi E I ( e), VOS aS b, S;(a,b) S A;+ p;(b- a), 

In addition, from the induction hypothesis, we have for all p E Ui<kN;: 
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so that finally: 

B• - A• + (p•- PM(c))(b- a). 

Let now I Ç I( e) U M (e). Applying a reasoning similar to the proof of lemma 2.3 

yields cla.im ii/. Cla.im i/ follows from theorem 2.4. O 

We now give a bound on the length 5 of the activity pE'.riods of any station. Based 

on equation (6), an argument similar to that of theorem 2.5 yields: 

T heore m 3.3 The length li of any activity period of station e satisfies the bound: 

3.2 P eriodicity and feasibility 

Let us now assume, as in section 2.2, that lhe arrival process is periodic. In the case 

where the service policy is FIFO ora static priority ( for lhe local customers), we can 

prove that the systems couples in finite time with a. periodic regime [3). The period of 

station e E Nk+1 is T• the least common multiple of local messages and of ali messages 

emitted by stations p E U;~kN;. 

We assume here that externai messages h ave a strictly preemptive priority upon lhe 

local ones. In this context we shall speak on the feasibility of lhe local set of messages 

(as the deadline refers to the date of lhe end of emission at lhe entry station ). A 

general feasibility test similar to condition ( 4) is derived from theorem 3.3: 

V e, 
B• 

--< min u· 
l - p• - iE / (c)uM (c) " 

which is valid for any work conserving discipline. Once aga.in, this condition can 

be improved is the service discipline is a fixed preemptive priority. lf messages are 

emitted in the FIFO order, we have an improved condition. The following condition is 

a consequence of theorem 2.7. 

Corollary 3.4 lf ali stations are F/FO. a sufficient condition for· feasibility i.• 

V e, 
B• . 

----.-- < mm u;. 
1- p• + PM(c) - iE/(c) 

43 



44 XIll Congresso da Sociedade Brasileira de Computação 

4 Ring network 

In this section we consider the case of n stations which communicate around a uni
directional ring network (2). The model is similar to the one presented in section 3 

but we shall assume now that a message emitted wiU preempt the stations it wiU go 

through. Thus, externai messages never accumulate in a station, but only preempt it. 

It is now necessary to take transmission delays into account by introducing d•P• the 

transmission delay between the station e and the station p. 

Again, the arrival process at each station is supposed to satisfy the burstiness 

constraint. We first establish a sufficient condition for stability. Then we discuss the 

case of periodical ar rivais. Finally we present some bound for the quantity of work done 

by any station during a certain time interval, and therefore a bound for the workload 

of any station. 

station (p+ I) 

~ 
o 

station n station I 

-

-
station 2 

\ 

_) 

o 
§1 

Figure 2: Ring uetwork with n stations 

OITO: 

OOJJ: 

Lemma 4.1 For an11 station e o{ the rinQ network. the workload procesç w• is cltar·

acterized by lhe functional equation: Vt 2:: O, 
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Proof One can remark that for any station e and for any instant t , 

1 = l(w•(t)=O} + l(w•(t)>o}!L l{J•(t-d,.)eM(e)}] + l {w•(t)>o}!L l{J•(t-cl,.)i!M(c)}l· 
p~c p~e 

(11) 

lt simply signifies that we have three disjoint events corresponding respectively: to 

an empty server (in this case, the channel state is not relevant ), to a server not empty 

but preempted, and to a server occupied and not preempted. 

At any instant t ~ O, the workload of any server e is equal to the quantity of work 

arrived (i. e. w•(O) + s•(o, t)) minus the quantity of work done. This latter is t minus 

the time during which the server was not working (either because it was empty, or 

because is was preempted). This quantity is directly deduced from (li). o 

Theorem 4.2 Any station e of the ring network is stable if: 

p• = L Pi < 1. 
iEM(c) 

The proof is similar to the proof of lemma 2.2, see (3] for details. 

In the case of periodicals arrivals, we have no succeed in determining the periodicity 

of the workload process of any station. Even in the case for which the periodicity 

could be established, its value is not the least commun multiple of the periods of ali 

the customers (3] . 

We a.re now interessed in the obtention of bounds. The arrival process does not 

need to be periodic. We have to define additional notations: 

• for ali station p = 1, . .. , n, dp is the delay associated to the transmission through 

the section between station p- 1 and p (d1 is the delay of transmission between 

station n and station 1 ), 

• for any couple (p,k), where pisa station number and k E IN" , we define the time 

interval: J! = [O, E~=I dp-i] , 

• for ali station p, ali subset o f types J Ç J(p) and ali k E IN": 

fi.P _ Ap + _.~in(k,n-2) Bp-i,k- i 
Bp,k - AP + p J L..-•=1 M(p) 

J - J PJ 1 _ ("~in(k-l ,n-2) p-i ) + p ' 
L...•= O PM(p) PJ 

(12) 
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with Bj•0 = O and p~(p) = pP, by convention. 

Theorem 4 .3 For ali k E JN• , the quantity of work of type J done by a station p 

during the interval [a, bJ included in rr verifies: 

(13) 

Proof For k = 1, any station p observed during Lhe interval Jf = (0, dp-d behaves 

as if it was in isolation. Actually, messages from statiow(p-1) have aot time to arrive 

at p. We can apply lemma 2.3 which gives a bound for the quantity of work done by 

a single server: 

J.
b AP - Ap 

'v'( a, b} Ç If, 
4 

1{/(u)eJjdu :s; Aj + pj J + pj(b - a)= Bj'1 + pj(b- a). 
1-pP+pj 

Now, suppose the asscrtion verified for k- I, and for any station of the network. 

During the interval /f, the station p may be preempted by stations p - i with 

i= I, ... ,min(k, n- 2). Note also that if u E 1; then (u- E!=l dp-i) E rr::. 
Let p be a station, J Ç J(p) and (a, b} included into /f. We denote ap = sup{t :s; 

a,WP(t) = O} the beginning of the occupancy period of station p which contains a (if 

WP(a ) = O, the proof is easily adapted, considering the next instant less than b for 

which the workload is positive). Then, 

But, 

min(k.n- 2) f." 
L 1 {JP-•(u-"m;o(>.n->) d _ ,)EM(p)}du 
i=l Gp L...nal P 

min(k,n-2) 

:s; L (B~~~~-i + P':.iiv)(a - ap)], 
i= I 
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the induction hypothesis justifies the last inequality. Finally, with (a- ap) = /3 

l l {IP(u)EJ}du $ A~+ p~(b- a+ /3)- (l 

+ min {P. S(J(p)\JJ(ap, ap + (l) + min~-
2

\B~f(~~-i + Jl,.i(Pl/3)} 

$ A~+ p~(b- a) 

{ 

min(k,n-2) min(k,n- 2) } 

+ min ~/3,/3( t; P'Mip)- 1) +A~+ ~ B~t(~~-i . 

The maximum of this minimum is reached for: 

AP _ AP + "min(k,n-2) B p-i,k- i 
{3 _ J L-a= J M(p) 

- l _ ("min(k, n-2) p-i ) + p ' 
L-a=t PM(p) PJ 

hence the expression for B~·k. 
o 

We h ave obtained a linear recurrence for terms B~·k. This recurrence converges 

under certain conditions which do not always correspond to the stability condit ion. lt 

seems that the sole stability condition does not insure t he existence of bounds. For 

a more detailed discussion of that point, see (3, 6). We have assumed t hat externai 

messages have a strictly preemptive priority upon local messages. We could write 

bounds for more general case but these bounds would probably diverge sooner. 

In networks with loops, the analysis is difficult, essentially because messages emitted 

by some station have an influence on the t raffic of other stations, which influente in 

return this particular station. It is hope that ou r approach based on evolution equations 

can be improved to derive better bounds. The question of the stab ility of networks is 

currently under study. 

References 

(1) C.S. Chang, Stability, Queue Length a nd Delay, Part I: Deterministic Queueing 

Networks, IBM Research Report 17708, IBM Research Division, 1992. In Proc. 

IEEE Conf. on Decision and Control, vol. 1,1992. 

(2) C .S. Chang, Stability, Queue Length and Delay, Part 2: Stochastic queuing 

networks, IBM Research Report 17709, IBM Research Division, 1992. In ..... roc. 

IEEE Conf. on Decision and Control, vol. 1,1992. 

47 



48 XITI Congresso da Sociedade Brasileira de Computação 

(3] C. Cha.ouiya, Outíls pour la valídatíon de contraintes de synchronisation dans 

des systemes dístribués, PhD Thesis, University of Nice·Sophia Antipolis, Octo

ber 1992. 

(4] C. Chaouiya, S. Lefebvre-Barbaroux and A. Jea.n-Marie, Real-Time Schedul

ing of Periodic Tasks, To a.ppea.r in Scheduling Theory and its Applications, P. 

Chretienne, E. G. Coffman, J. K. Lenstra., Z. Liu, (Eds.) J. Wiley, 1993. 

(5] R. L. Cruz, A Calculus for Network Dela.y, Pa.rt 1: Network Elements in lsola.tion, 

IEEE Trcms. lnformation Tlaeory, 37, No 1, pp. 114- 131 , Ja.nua.ry 1991. 

(6) R.L. Cruz, A Calculus for Network Dela.y, Part ll: Network Analysis IEEE 

7hms. Information Theory, 37, No 1, pp. 132- 141, Ja.nua.ry 1991. 

(7) J. Kurose, On computing per-session performance bounds in high-speed multi

hop computer networks, In Performance Evaluation Review, vol.20, Newport, 

1992. ACM SIGMETRICS and Performance'92. 

(8] S. Lefebvre-Ba.rbaroux, Files d'attente avec arrivées atypiques: environnement 

aléatoire et superposition de flux périodiques, PhD Thesis, University of Pa.risXI, 

Orsa.y, February 1992. 

(9] S. Lefebvre-Ba.rbaroux, A. Jea.n-Marie a.nd C. Chaouiya, Problemes d'ordon

na.ncement d'une superposition de flux périodiques sous contrainte temps-réel, 

INRIA R<>search Report 1576, March 1992. 

(10] C.L. Liu and J .W. Layland, Scheduling Algorithms for Multiprogramming in 

Hard-Reai-Timc Environment, Joumal of the Association for Computing Ma

chinery, 20, No 1, Janua~y 1973, pp. 46-61. 

(11] O. Serlin, Scheduling of Time Criticai Processes, AFIPS Conference Proceedings 

SJCC,40, Atla.ntic City, 1972. 


