
V Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho

Performance Prediction by Trace Transformation

Celso L. Mendes'

Departrnent of Compu ter Science

U niversity o f Illinois

Urbana, lllinois 61801

E-rnail: mendes@cs.uiuc.edu

ABSTRACT

59

Performance stability is an essential feature for the widespread adoption ofmulticomputers. In this paper, we

repor! the preliminary st eps of ou r resea rch in performance prediction and extrapolation. Performance tuning,

guided by extrapola tion, may help achieve a substantial fraetion o f peak performance r ates across a broader range

of applications while providing guidance for code porting. We introduce a methodology for assessing st ability

of parallel programs, based on stability of the program execution graph, using time perturbntion a nalysis. For

progrnms with stable behavior, we present a model for performance predietion under a rchiteeture variations, by

transformation of the execution t races with parameters that reflect lhe differences in a rchiter.ture between two

systems. We iUustra te the use of this transformation with an example of a pa rallel PDE solver executing on a

multicomputN.

• Supportcd by thc Brasillan lnltilute of Spacc Ru carch (JNPE) and by e scholanhip from thc: B rasiUan Minlatry of Education,

Proceu CAPES-913/89-2

60 XIII Congresso da Sociedade Brasileira de Computação

1 Introduction

Ou r work focuses on massively parallel, mtssage-passing systtms. These systems, al•o known as multicompulers,

consist of a collection of autonomous processing nodes interconnected by a high-speed communication network.

Scalability is a key feature of multicomputers. Machines have been built with over a thousand processou, and

there are no insurmountable technological obstades that would preveni multicomputers from scaling to sizes

allowing multiple teraftop performance.

Oespite the performance potential of multicomputers, severa! factors have limited their widespread adoption.

Of these, their performance variability is a significant drawback. Exeeution of some programs may yield only

a small fraction of peak system performance, while others approach the system's theoretical peak efficiency.

Moreover, the observed performance may change substantially as application and architecture parameters vary.

Because performance tuning of parallel programs is time consuming and costly, and because performance

varies with application and arehitecture parameters, mechanisms for estimating program performance as a

function of application and architecture changes would accelerate the use of multicomputers. Eztrapolation uses

performance metrics and system analysis to predict the execution behavior o f programs in response to application

or architecture variations. Performance extrapolation can be used to help answer severa! important questions,

induding:

• Will the time spent porting a program to a a different parallel system yield performance gains that justify

lhe porting costs?

• How will application scale with larger input data sets?

• How wiU applieation performance change with system size?

The first of these is a cross-machine performance prediction, and is lhe main subject of this paper; lhe others

are extrapolations to a different configuration or problem size, and a re pari of our ongoing research. Ou r major

goal is to develop and evaluate a methodology for prediction and extrapolation. Performance tuning, guided

by extrapolation, may help achieve a substantial fraction of peak performance rales across a broader range of

applications while providing guidance for code porting.

For a given applieation running on a parallel machine, we will study its performance llability - how the

program behavior is a ffected by the architectural parameters of lhe underlying machine. Tracing is the basic

technique to capture program performance data. Using this data, we will then develop models that allow

performance extrapolation, as configuration parameters vary, for stable programs.

In the next section we list the major faetors involved in performance prediction, and review related work in

the area. In §3 we describe our approach to asscssing program stability, which is a basie requirement (or good

predictions. We introduce our model for prediction under architecture variations in §4, and show an example of

application in §6. Finally, we condude the paper and summarize ou r future work in §6.

V Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 61

2 Background: The Performance Prediction Problem

The ptrformanre prrdirlion probltm on massively parl\llel syslems has many possiblr dimen•ions, inrluding

lhose relaled lo sealabilily (e.g., changes in the number of processou), to machine charaeleristics (e.g., lype

of processor on lhe nodes or type of intereonneclion among nodes), and even lo lhe applicalion problem itself

(e.g., sise of data seis). These issues can be broadly grouped as those regarding lhe specific arehitecture o(the

maehine, and lhose intrinsically connected lo lhe nature of lhe appliealion. Along ali sucb dimensions, however,

lhe prediclion process foUows lhe same goal: extrapolation of performance results from some basic configuration

to a different, largel eonfiguration.

2.1 Architecture Effects

The compulalional power o f a mullicompuler is primarily dictated by lhe type o(processo r used in lhe proce5$ing

nodes. Mosl maehines today employ stale-of-the-arl commercial microprocessors as their eompuling engines.

Comparing lwo machines lhat use differenl processou is, however, a nontrivial lask, even for uniprocessors.

Severa! other faclors, in addition to lhe processor type, play an imporlanl role in overall performance: cache

organisalion, eompiler quality and 1/0 bandwidth. T he SPEC benchmarks [11] are a recent allempl lo address

lhis problem: performance data are reporled for eaeh of lhe individual benchmarks in lhe suíte. Users then

compare two machines by eonsidering only tbose benchmarks lhal most closely resemble their typical applicalion.

In paraUel syslems, inlereonnection nelwork differences also affecl overaU performance. High lateney, low

bandwidth or nelwork congeslion (due lo certain pallerns of communication in lhe applicalion) may cause some

o(lhe nodes lo experiente extended idle periods.

Any of lhese faclors can change the order or duralion of aclions during program execulion on different

hardware conflguralions. Intervals with lhe same duration on one machine mighl differ on anolher, and such

variations mighl be sufficienl to ereale distincl execution palhs in one of lhe processes of lhe paraUel program.

2.2 Application Effects

Tuning an applicalion on a specific paraUel machine consists of finding lhe correcl balance belween compulalion

and communicalion for a given data sei. This balance, also known as granularity, musl be sueh thal paraUelism is

achieved (by dividing lhe eompulalion among lhe processing nodes) and the overhead imposed by communication

is minimised. In absolute lerms, the granularily depends on lhe compulation and communication speeds of lhe

underlying hardware and software and on lhe application inpul data sei. Variations in any of lhese eomponents

can change an applicalion 's balance.

In some applicalions, behavior is highly dependenl on lhe input da la; mulliple execulions of a given program

on lhe same machine, wilh dislincl inpul da la sets, may differ dramalicaUy. Such variabilily makes lhe prediclion

lask extremely difficull. Conversely, applicalions wilh a delerminislic nalure are easier to model, making

performance prediction simpler and more reliable.

62 XIII Congresso da Sociedade Brasileira de Computação

2.3 Related Work

Ptrformanc~ pr~didion anrl the int~radion of hRrdwar~. softwllrt and appliration variatinn• hllv~ b-.n wid~ly

studied for both sequenlial and parallel systems. As an example, Saavedra·Barrera and Smith (10] proposed

a modcl for performance evaluation and prediction on uniprocessors. In this model, they identified standard

operalions and constructs in Fortran and characlerized application programs by lhe number and type o f these op

eralions lhal were execuled. By combining lhe program characterization with measures of machine performance

on the standard operations, it was possible lo estimale program execution time.

Three major faclors preveni lhe direct extension of this methodology to parallel systems. First, the char·

acterization of a parallel machine is more complex than of a uniprocessor, because of the interactions among

processou. Second, parallel programs have more behavior variabilily than sequenlial programs, even across

dif!'erent executions on the same machine. The third reason is thllt, in general, tbere is a bigger semanlic gap

between high-level program code and compiled code on parallel systems lhan in sequential ones.

In another approach, Mak .. nd Lundstrom (7] presented a method for predicling performance of parallel

computations. They modeled a parallel computation as a lask system with precedente relationships expressed

as a series-parallel directed acyclic graph and machine resources as service centers in a queueing network model.

On severa(tesl cases, they obtained very accurate predictions. However, Adve and Vernon [I] suggested recently

that stochastic models may creale unnecessary modeling complexity.

Lyon et ai (6) made another claim against slochastic models, by proposing performance onalysis at a macro

levei, thus ignoring particular details in the syslems or in the applications. They inserled synthetic perturbations

in a program, and measured their efl'ect on global performance. The major goal was to find locations in the

original program where optimization ef!'orls should concentrate.

3 Program Behavior and Stability

Analisys of program stability is an essential slep before performance prediction. In this section, we approach

this problem by studying performance data captured from program execution under varying conditions.

3.1 Characterization of Program Behavior

We use tracing to characlerize program behavior; tracing defines lhe sequence of activiti~s lhat occur during

execulion. A trace consisls of a sequence of evenl records lhat conlains a limeslamp and an evenl idenlifier lhal

uniquely associales the evenl wilh an activity in the program.

3.1.1 Program Model

We define a concurrent program as a group of lasks lhal communicate by exchanging messages. Every proceasor

executes exactly one of lhese tasks, and there is no ta:sk migraliou.

Each task consisls of a sequence of activilies, thal can be of three types: compulation, message sending and

V Simpósio Brasileiro de Arquitetwa de Computadores · Processamento de Alto Desempenho 63

message receiving, which we denote by C, S and R, respectively. The n'h occurrence of an event E on processor

i is denoted by Ej, where E E {C,S,R} .

Our basic model of communication assumes nonb(od:ing ~tnd• and blocking ~ceivc1. This means that a

task can proceed aner sending a message, even if the destination processar has not executed the corresponding

~ceive. That allows overlaped computation and communication.1 When the program executes a ~ctive, however,

it remains blocked until the required message arrives.

3.1.2 Execution Grapha and Partia! Ordera

We represent a parallel program by a directed graph where each trace event corresponds to a graph node.

Directed edges define the event order. Every edge can also be associated with a numeric value, corresponding

to some function of its initial and terminal vertices (e.g., the t ime between the events). We rtfer to this graph

as lhe progrom e%eculion graph.

A particular execution of the program, represented by the program execution graph, defines a relation on the

set of events in the execution. This is Lamport's happen1 befo~ ~lation [4J, denoled by <. It has t he following

properties:

1. IC Ej and Ej are events t hat occur on the same task i, and Ej occurs before Ej, lhen Ej < Ej.

2. I f Sj is an event corresponding to lhe end o f a message send on task i and R'j is an event rdated to lhe

end of the corresponding message receive on task i, then Sj < Rj.

3. For any events E,F,G (in any tasks), if E< F and F < G, then E < G. Events E and F are said to be

concur~nl if E{. F and F{. E .

Thua, < is an irreflexive partia! order on the set of all events of lhe execution.

3.2 Program Stability

As we observed earlier, if the same program is executed on two different machines, it is possible that two different

execution graphs will result. As an example, consider Figure 1, whith shows a program with three tasks. The

second and third tasks compute (reprcsented by modules A and B , respectively, in Figure 1), and then send a

message to the first task. This first task receivea messages in whatever order they arrive. lf the received message

iJ from module A, some additional processing is required al the first task.

Assuming two given machines M 1 and M, with different processors, the observed behuvior might vary

depending on the nature of the computation: the first machine could be able to com pu te module A f as ter than

module B , while the aecond machine could compute B faster than A. Under this assumption, Figure 2 shows

the corresponding execution graphs. The set of events is the same, but there are different partia! orderings.

Speciflcally, we have the following relationships on each machine:

1 Our def\nJtlon o(n.on6lodinr ~enJ d.ift"en from aome vcndon' nomenc:lature; for example, by our deR.nhion, lnlel't utnJ la a

nonbloddnc ull, becawe the tender tuk can procc:td u aoon u the mell&&e buff'cr Ja frec, indcpendcnt o(the rcc:clvu tatk' atahu.

64 XITI Congresso da Sociedade Brasileira de Computação

TASK I TASK 2 TASK 3

~ c;~

Figure 1: A parallel program fragment

• Machine M 1: S~ < Rl , S~ < R~ , C/ < R~ Rl and SA concurrent

• Machine M2 : SA < Rl o s~ < Rf o Rf < C/ Rl a nd S~ concurrent

We can detect such changes in lhe partia! event order by analyzing lhe corresponding execution graphs: lhe

graphs are equivalent (or, in graph theorelic terms, i•omorphic) if and only if lhe partiaUy ordered seis of evenls

are identical.

lf we simply assumed that lhe execution graph of a given program remained lhe same for every possible

machine, our predictions could potentially fail , depending on lhe progra m and on lhe machines. The execution

graphs of some programs present lhe same partia! order of events across machines; we caU these programs •lable.

Othtr programs may have different eucution graphs even for two executio ns on lhe same m achine and data set.

We call these programs un•lable. Predicting performance for this last class of programo is much more di!'lcult ,

and is beyond lhe scope of this study.

Hence, lhe first slep in performance prediction is evaluating program trace stability.

3.2.1 Meuage Receives and Stability

Based on the model of §3.1.1, repeated executions of the same program with lhe same input data can have

ditrerent event orders only if messages are received and processed in a different o rder. Our implicit assumption

is that multiple messages sent by the same processar are delivered to lhe receiver in the same order as they a re

sent by lhe originating processar.

In turn, the pol ential instability depends on the semantics and generality of the receive call. The most

fl exible form aUows the t aslt to receive any message, from any sender; further processing is required t o identify

lhe sender and the characleristics of lhe message. AI another extreme, lhe receiving taslt might specify which

V Simp6sio Brasileiro ele Arquitetunl ele Computadores - Proc:essarneoto de Alto Desempenho 65

MACHINB M :
I

MACHINI! M
2
:

Figure 2: Execution graphs of lhe same program on two different machines

type of message, and úom which sender, it is willing to receive; in this case, arriving messages tbat do not

conform to tbe specifications are temporarily buffered. The receiving task is kept bloeked until the specified

message arrives. An intermediate approach specifies some of the parameters for a required message; the receiver

may obtain a message from severa(senders, as long as that message satisfies the specified constraints.

Generality is not without price. As we saw in the example of Figure 2, lhe use of an unspecified receive

operation maltes lhe program unstable. Consider, for example, a program slightly different from the one in

Figure 1. The only dilference is that, now, a certain I!IJH! of message is specified fo r every receive operation.

With this constraint, the partia! event order is tbe same for botb graphs. The event order o f tbis new program

is not sensitive to speed dift"erences between lhe two machines. Predicting lhe program 's performance on a new

syslem requires only the computation and communication cha racteristics of lhe new system; tbe event sequence

is unchanged.

3.2.2 Time Perturbation

Dilfetent features on two machines may change the execution graph of a given program. Our problem consists

of predicting the program behavior on a lorgd macbine, based on its bebavior on a ba•e machine and lhe

arcbitectural featu%es of both machines. Ií the execution graph does not change significantly across macbines,

we can confidently use tbe event order on the firsl machine as a basis for prediction.

One possible way lo assess program stability r~lies on lime p<!rturbation anolv•i• [6]. The idea is to perturb

tbe original program and verify tbe eft"ect of such perlurbation. Severa! instrumented versions of the program are

executed, each with a specillc set o f time delays inserted in lhe code. By comparing the execution graph obtained

in each experiment with tbe original execution graph, tbe sensitivity of program behavio r lo perlurbations can

be assessed.

The design of lhe required experimento includes lhe sdection of code locntions where delays will be inserled;

each such location constitutes a faetor. For each experiment, factors are set at one of their possible leveis (e.g.,

66 XIIl Congresso da Sociedade Brasileira de Computação

delay or no-delay). In a fuU factorial design (3], with p locations selected, we must conduct 2P experimenta to

determine the influence of each of the p perturbations. However, in practice, a mucb smaller number is needed,

because interactions between distinct perturbations a re not always significant.

Consider a program with two Caetors, and denote the locations of the factors by D1 and D2• lmplementing

a fuU Caetorial design requires executing and analyzing the behavior o f .Cour versions oC the program:

I. D1 = D2 = No-delay (regular program)

2. D 1 = No-delay, D 2 = delay

3. D1 = delay, D2 = No-delay

4. D, = D2 = delay

3.2.3 Graph Analyeis

We can detect variations in the program execution graph, exposed using time perturbations, by testing for

isomorphism of the corresponding execution graphs. Altho ugh it is not known whether graph isomorphism is

an NP-complete problem, no polynomial time algoritbm is known (8].

In our case, testing for isomorphism is insufficient - two execution graphs might be similar, but not iso

morphic. We need to determine how "similar" they are. In other words, we need a metric to compare graphs.

Under this metric, isomorphism means complete similarity. Graphs with high degrees of similarity represent

nearly stable behavior.

The metric we propose is based on subgraph isomorphism. Let C 1 and C2 be two graphs with n vertices.

We define the •imiloritv• between G 1 and G2 as the degree of the largest isomorphic graphs H 1 and H 2 , where

H 1 is an induced subgraph of G1 and H 2 is an induced subgraph of C 2• We a1so define the rli•lonee d between

graphs C, and C2 by d = n- •·

Under these definitions, the foUowing two statements are equivalent for any graphs C 1 and G2 with n

vertices (12]:

I. There exist isomorphic graphs H 1 and H 2, each with at least n- d vertices, such that H1 is an induced

subgraph of C 1 and H 2 is an induced subgraph of C 2 •

2. There ex.ists a graph C with at most n + d vertices having two induced subgraphs c; and G~ such that

c; is isomorphic to C 1 and G~ is isomorphic to G 2 •

This means that, having G1, we need to add at least d more vertices with appropriate edges to obtain graph

C, which will a1so contain C2 as a subgraph. Use the notation d(C; , GJ) to represent tbe distance between

graphs G; and G; and the symbol :!! to represent graph isomorphism; the CoUowing properties hold for any

graphs C;, GJ and G• of degree n (12]:

V Simpósio Brasileiro de Arquitetura de Computadores • Processamento de Alto Desempenho 67

Thus, d is a m<lric in Ih~ s~t of graphs of d~gree n. It can be used to compare graphs G1 and G 2 , and

provides a quantitative measur~ o f similarity. Algorithms for dirttl computation of d are known (5). However,

Ih~ time complexity of these algorithms is O(n!) for an n node graph. The larg~ number of nodes cxpectcd in

most e:r;~cution graphs maltes lhe eost of cxact isomorphism lcsts prohibitive.

3.2.4 Alternativee for Graph Compariaon

Beeause computing lhe exaet distanee belween two execution graphs is intractable with current algorithms,

we seelt approximations that cxploit sp~ciftc f~atures of cxecution graphs. In particular, they consist of p

intereonn~ct~d linear chains, one for each task.

We.are currently investigating lhe effectiveness ohwo approaches to Ih~ graph com parison pro blem. The first

approach compares two graphs by pairwise comparison of individual taslt cxttulion traces, o ne trace from each

graph. We loolt for lhe maxintum possible mapping belween verliccs of the same type in lhe t wo traces, such

that lhe original event order in each trace is preserved. Under our previous assumption that graph vertices can

be of typcs C , S, R, each taolt traceis a linear string E1, E1 , .. . , E~ , with E' E {C, S, R}. Finding lhe maximum

malch betw~en lhe cxecutions of each lask corresponds to finding lhe longes! common subst!ing between lhe

strings representing each task trace. We approximate lhe similarity • by lhe total number of matcb .. from lhe

comparison of ali pairs of corresponding taslt traces.

We can prove that lhe number of matches found by this trace comparison procedure is always grealer tban

or equal to lhe number of matches lha! would be obtained by the cxact procedure. lf this were not tbe case, in

one of tbe taslt traces tbe number of matcbes would be strictly smaller than in the exac:t proccdure; this violates

tbe assumption that the proecdure finds a longe~t common substring, and t hus it ean not be true. Hence, the

approximatcd distante is less than or equal to the real distanee d.

A sttond approach to comparing two execution graphs divides botb graphs into ~x~cution r~gions . The

molivalion is tbat many acientiflc programs ~xhibit iterative b~havior , which produces patterns in their cxeculion

grapbs. By delttting and comparing such patterns in lhe two graphs, we reduce lhe problem to a series of much

amall~r grapb isomorphiam probl~ms. This might aUow us to use exact algo rithms for ealculation of graph

diatanecs.

4 A Model for Performance Prediction

Aner det~rmining that a given program has stable behavior, performance prediction can begin. The goal of

building a mod~l ia to eatabliah guidelines for lhe pr~diction procesa. Th~ pr~diction consi•ts of anal:·,ing

68 X1li Congresso da Sociedade Brasileira de Computação

(e) IPSC/1 - CSEND (11) IPSC/160 - CSEND

.....

...

Figure 3: Time to execute a •end on lhe Intel iPSC/2 and iPSC/ 860

program traces on one machine and, by applying lhe model, generating corresponding traces for lhe new system.

We implicitly assume that lhe number of tasks is lhe same on both systems.

4.1 Architectural Parameters

Performance predictio'n support is based on transformations of each trace event. Event timestamps from lhe

original trace are a,Jjusted to reftect lhe predicted duration of lhe corresponding adivity on lhe new system.

For computation activities, lhe major transformation adjusts lhe ratio of processar speeds. By assumption

this ratio can be a constant or dependent on some asped of lhe code. The s implest approximation assumes a

single ratio that could be deriv.d eather from published performance data fo r lhe two processors (e.g., SPEC

ratio). or by executing a sequential version o f lhe program on lhe two systems and computing lhe ratio of lhe

to tal executio n times.

A beUer alterna tive uses a variable r alio. Event recordo usually contain some information about lhe type of

computation (e.g., p rocedure or loop identification). Jfsome information about lhe effediveness ofthe processors

on differ~nt tode (ragments is known, one can derive a more realistic hansformation.

In regard to communieation, we tnke a simplified approach and make no assumptions about lhe underlying

interconnection network or lhe rnessage passing software - ali elements o f comrnunication cost are extraded

from traces of cornrnunicatio n benchmarks. Frorn lhe benchmark data one can build a model of lhe time to send

or receive messages of a given lengLh.

As an eumple, consider lhe Intel iPSC/2 and iPSC/860. Ahhough their interconnedion netwo rks are the

same, they use different processors, and their software message-passing le tencies are different. Figure 3 shows

lhe tinw to execute a 1end operatio n, as a funr tion o f message length, on the two systems. Given this data and

lhe size o f a message, one can transform lhe times o f und events observed in application traces.

V Simpósio Bl"8$iltiro de Arquitetura de Computadores - Processamento de Alto Desempenho 69

compule
A

- õompãi,
c

Original
Trace

T I'IIIUfonned
Trace

Eve:nt I' -
o
•_} <ompute

A'
2 ':f- õõmjiu"iõ -
• B'

5 ~·~~
Bvent I Bvc:nt 2~

12

time

Bvent l

Evcnt 3 --

-Evenl) '

(a) Conslanl ralio

-•

10

11
12

_ ..
A _ ..
B

- ec,tnp;~e

c

Original
Trace

TI'IIIUfonned
Trace

12

Hvent I'

Evc:nt I Event 2;

Event J~

Bvmtl

. ;i_ ..
A'

- -·
-· :~:- ~~~ ll'
- > c·

fi ----

10

11

- 12

lime

K(A)=O.S
K(B)=0.2S
K(q=l

(b) Variable ratio

Figure 4: Ttansformation of computation traces

4 .2 Prediction Model

Our predidion model specifies transforms for computation, message transmission and message receipt events.

The transform is applied on an event-by-event basis. We read event records from the original t race, adjust their

timestamps, and generate predicted event recorda for the new machine.

4.2.1 Computation Evento

We transform computation events using the processor speed ratio. Timestamps for the new machine are com

puted by adjusting tbe durations of the corresponding intervaJs. Figure <la iUustrates tbe transformation of a

trace with a computation speed ratio of 0.6. In this case, tbe transformation consisb of computing timestamps

for evenb I' , 2' and 3', based on the timestamps of.events 1, 2 and 3.

In gene.ral, intervals with computation activity are transformed as foUows:

C,= K C 1

wbere C1 is the activity duration in lhe original machine, C, is lhe predicted duration in t be new machine,

and K is the computation speed ratio of machines. In tbe more g~Mral case, K is a function of tbe kind of

computation in the intervaJ. As an example, Figure 4b shows a variable ratio K , whicb assumes a different value

for each computation module.

4.2.2 Communication Evento

UsuaJly, traces contain two events for each message transmission: 1end begin and 1end end. Send begin events

delimit the end of a computation interval and lhe beginning of a message transmission. Their times of occurrence

are transformed using lhe computation speed ratio of the previous computation intervaJ.

70 XIll Congresso da Sociedade Brasileira de Computação

Original Troces Trana rormec1 Tru>e~

TMt Toolt Toot TIOI:
1 ' 1 '

1 """'' 1 1 CCCllp •,. - A'
A --~ :. C'

~A)oCU > c ~-) 3----
B,- • • Jt(C)oO.$ """'" •

.~
•-- • • -SBND B: 8 ' o·

f 4- -
s:- ' ' RBCBIVB --· ., 'RBa!IVB - • -s: ~·- I ~--

8 ' """'" Jt(B)ol 10 10 o lO lO

s!- u 11 11 11

" "
Jt(D)oO.•

" - . u
sBHD u - ll -s: u u

s: - .. I<RBCBIVB -s: ,,_

Figure 5: Transformation of message-related events

For 1end end events, like event Ef in Figure 5, the original interval is transformed by a function derived from

the message Iength and the communieation characteriaties of both machines. Assuming that both messages in

Figure 5 have length b, lhe rule for transformation is

Sz=~ S,

where 5 1 is lhe duration of the 1end interval on the original system, Sz is the predicted duration for the new

system, and ft (b) and / 2 (b) are lhe times to send a message of le.ngth b on the original and new systems,

respectively, obtained from their communication eharaderisations.

Evenh related to receiving a message can aiso be of two types: ~ceiue begin evento and ~ceiue end evento.

Evenh of type ~ceiue begin are transformed exaetly like 1end begin evento.

To transform ~eeiue end evento, we assume that communieation eharacterisations are also available for the

message ~ceivt operation. The basie rule for transformation in thia case ia:

where g2 (b) ia the time to execute a ~ceiue for a message of length b on the new system; this value can be

obtained with a benehmark similar to Figure 3, for lhe corresponding ~ceivt operation. Auuming in the

example of Figure 5 a value of 1 for g2(b) on both meuages, the interval between evento E! and E~ ia reduced

in the transformed trace to half of its original value.

For the case of event r;: in Figure 5, direct use of ou r basic rule for ~ceiue end evento would lead to a eau.sality

violation: in the predicted trace, the message would be received before the end ofthe underlying •end operation.

In situations like thia, we must follow the behavior of a real system, by respeeting eausality dependentes. A

~ceiue end event should not occur before lhe l t nd end event of lhe same message. Thus, we must delay the

predicted time of event E~ until the ltnd operation completes, in this case at instant 8. We can now complete

ou r general rule for transformation of ~ceiue end evenh, by considering causali~y effects:

V Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 71

wh~r~ R2 is th~ pr~tlirt...! <luro.tinn for th~ n~w r<uil·~ op~r~•tion, compntttl by our bo.sic rnlt; f;•••~ is th~

predieted instant for lhe beginning o! the rtctív~ opero.tion, o.nd t;~4 i.o lhe predicted insto.nt for lhe end o! l he

corretponding rend opero.tion.

5 Trace Transformation Example

To illuslrate lhe trace transformation method presented in lhe previous section, consider a trivial PDE solver,

which iteratively compute~ lhe heat propagation on a bidimensional metal plate, under fixed boundary temper·

atures. The problem i.o discrelised into N rows and N columns, and at each time step, N 2 new grid values are

computed, bo.sed on lhe grid values írom lhe previous lime step. This process repeats until a steady state i.o

reached.

Thi.o algorithm ho.s lwo pho.ses that repeal over lime: calculo.tion o! new grid values, and convergence checking.

One possible parallel implementation of lhe algorithm o.ssigns a set o! contiguous grid rows to eo.ch processar;

each processar computes the new grid values o.s weU as a local convergence check, and a global convergence check

occurs at lhe end o! each time step.

Figure 6 showa lhe lifetimea o! each phase from an inslrumented version o! thi.o algorithm running on t wo

processors o! an iPSC/ 2. The vertical axi.o o! each graph represents the execution t ime o! each phase, and lhe

horisontal axi.o represents lhe iteration. The lifetimes for lhe grid calculation are quite sto.ble, o.s the time to

compute lhe N 2 new grid values is relatively independent ofthe mo.gnitudes o f lhe values. However, thelifetimes

for lhe convergente test have a significant variation across iterations. As execution proceeds, lhe grid becomes

more uniform, and more points reo.ch lhe steady state. The convergente eheeking algorithm must examine more

points at each iteration to verify that convergente has not been reached. Figure 7 illustrates the execution graph

for an iteration of this program with four processors.

The preci.oe values of lhe procedure lifetimes on a given processar depend, among other !actors, on tbe grid

sise, on lhe relative position of lhe processar in lhe grid, and also on lhe spedfic type of processar being used.

We conducted lhe foUowing prediction experiment: based on the traces obtained from exe<ution of lhe PDE

program, instrumented with lhe Pablo tradng library (9], on four nodet o! an iPSC/2 and with a 64x64 grid,

we applied our transformation model to compute lhe predicted traces for an iPSC/ 860.

The flrst step in lhe prediction was to execute the communi<ation benchmarks on both the iPSC/ 2 and

iPSC/ 860, to characterise their communieation performance. Then we executed a smaller version o! lhe PDE

program (32x32 grid sise) on reduced configurations of both machines (two processou eacll). We measured the

amount of time spent by the processors on each procedure for this reduced problem, and used these values to

derive the computation speed ratios between lhe machines, shown in Table 1.

Aner transforming lhe original iPSC/ 2 traces, we executed the same program on an iPSC/860, and compared

the retulb with our predictions. For each iteration, we computed the ratio between lhe predicted and observed

lifetimes of each procedure and message-passing !unction; lhe average values of such ratios are in Table 2. The

72 XIII Congresso da Sociedade Brasileira de Computação

IPSC/1 · POR 3hll,l PB'•• nock-0
o-of.e(-.JoW ,- ,-

~------------·~--·-·- - -

...

...

_ ,

(a) New Grid Calculation

....

IPSC/1· PDR Jhn ,1 Pll't ,O
~(-.) o W

, ..
.....

"' ...

.--
. ...

'----- - - ___ .._ ____ , _, ...
(b) Convergente Checking

Figure 6: !ter ative PDE solver lifetime traces from parallel exe<ution o n two nodts of an iPSC/ 2

I P rocedure 11 node-0 I node-1 I

lterEdge 14.2 14.4

Converged 8.5 7.8

lterate 21.3 20.9

Table 1: Computation speed rati'>s belween iPSC/ 2 and iPSC/860 for reduced PDE problem

total execution times were 21.19 sec (observed) and 17.80 sec (predicted), with a prediction error of 16%.

The largest errors found in Table 2 were for lhe i .. nd operation on nodes O and I. A dose analys~ of lhe

observed traces showed that network contention caused a deviation from regular behavior: in Ih~ program, both

nodes execute the i .. nd operation nearly at lhe same time (see again lhe execution graph in Figure 7), and thus

one of I hem succeeeds, while lhe other must wait for their common network channel to betome available. Abo,

lhe real behavior under such condit ions for l he iPSC/860 is ditrerent from lhe iPSC/2.

6 Conclusion and Planned Work

In this paper, we have reported preliminary steps of our research in pe rformance prediction and extrapola

tion, namely the modeling o f performance under architecture variations. We are currently complementing th~

preliminary study with models for scalability of boi h machine and problem si&es.

Our next step ~ to implement the required tools lo exlract lhe execution graphs from t races, and analy&e

l heir slruclure in lerms of simila rily as indicaled in §3. We will use lhese lools lo sludy lhe behavior of time

perturbed versions of programo, in which dtlays are inserted in systematic patlerns. In addilion to tbe PDE

V Simpósio Brasileiro de Atquitetwa de Computadores· Processamento de Alto Desempenho

.......... _
(.....)

-o
T ...

I -' -'

Figure 7: Execution graph for an iteration of lhe PDE program with four processou

73

program, we will be using message-passing codes from the HPF / Fortran O Benchmark Suíte ('l), a ray-tracing

program, which has a more dynamic behavior and thus becomes n potential candidate to inslability, and a

variety of other paraUel codes. For tbe programs which present stable behavior, we will perform ali the three

types of extrapolations mentioned before: cross-machine prediction, extrapolation to more processors and to a

larger problem.

We will run these experiments on available lntel's (iPSC/2, iPSC/860 and Paragon XP / S) nnd Thinking Ma

chines's (CM-S) multicomputers. With such machines, we can run cross-machine tests whert only the processor

is changed (iPSC/ 2 and iPSC/ 860), lhe interconnection network is changed (iPSC/ 860 and Paragon), or both

I Function 11 node-0 I node-1 I node-2 I node-3 I

IterEdge 1.19 1.11 1.19 1.10

Converged 1.30 0.99 1.02 0.97

lterate 1.01 0.99 0.86 0.73

isend 0.29 0.48 0.82 O.S7

csend O.S7 0.78 0.85 0.78

crecv 0.7S 1.22 1.00 1.22

Table 2: Average ratios between predicted and observed lifetimes across iterations of the PDE program

74 XIII Congresso da Sociedade Brasileira de Computação

processo r and network vary (iPSC/2 and Paragon, o r Paragon and CM-5). For the scalability tests, we will be

using the faster machines (Paragon or CM-5), which also comprise a higher number ofprocessors.

After running the experiments, and quantitatively comparing the predietions with actual results, we will

perform a criticai evaluation of ou r models. The goal in this phase is to quantify lhe accuracy of the models

across a range of application codes. We will be looking for possible weaknesses in the models, or unforeseen

sources of anomalies in the extrapolation process.)f appropriate, the models will be refined, and new experiments

conducted.

References

[I] Aov&, V. S., ANO VERNON , M. K. The influence of random delays on parallel execution times. In

Sigmttric1 Procuding• (San Oiego, May 1993).

(2) A.G .MOHAMEO, G.C.Fox, VON LASZEWSKI , G., M.PARASHAR, T.HAUPT, K.MILLS, Y.Lu, N.LJN , ANO

N. YEII. Application benc.hmark set for Fortran-0 and High Performance Fortran. Tech. Rep. SCCS-327,

Northeast Parallel Architectures Center, 1992.

(3] JAJN , R . The Art of Computer Sy•tem• Performance Analy1i1. John Wiley k Sons, New York, 1991.

(4] LAMPORT, L. Time, clocks, and l he ordering o f events in a distributed system. Communtcation• o f tia e

ACM !U, 7 (July 1978), 558-565.

(5] LEVJ, G. A note on the derivation of maximal common subgraphs of two directed or undirected graphs.

Calco/o 9 {1972), 341- 352.

(6) LYON, G., SNELICK, R ., ANO KACKER, R . Synthetic-perturbation tuning of MIMO programs. Tech. Rep.

NISTIR 5131, National lnstitute ,.f Standards and Technology, February 1993.

(7] MAK, V. W ., ANO LUNOSTROM, S. F . Predicting performance o f par aliei computations. JEEE Tran1action•

on Para/lei and Di.tributed Sy•lem1 1, 3 (July 1990), 257- 270.

[8] REAO, R . C., ANO CoRNEIL, O. G . The graph isomorphism disease. Jouma/ of Graph Theory 1 (1977),

339- 363.

(9] REEo, O. A., AvoT, R. A., MAouvAsTnA , T. M. , NoE, R. J ., SHJELos, K. A., ANO ScHWARTZ,

B. W . The Pablo Performance Analy1i1 Enutronment. University of lliinois at Urbana-Champaign, 1992.

(10) SAAVEORA-BARRERA, R. H., S~fiTH, A. J ., ANO MIYA, E. Performance prediction by benchntark and

machine characterization. IEEE Tran1aclion• on Computer~ " 38, 12 (Oecember 1989), 1659- 1679.

(11] SPEC. SPEC benchmark suíte release 1.0. SPEC Newlietter ~. 2 {1990), 3- 4.

[12] ZELJ:;,u, B. On a c<rtain distanc~ betw~en isomorphism classes of graphs. Ca1opi1 pro pilloudní malem

atiky 100 (1975), 371- 373.

