V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 59

Performance Prediction by Trace Transformation

Celso L. Mendes*

Department of Computer Science
University of Illinois
Urbana, Illinois 61801

E-mail: mendes@cs.uiuc.edu

ABSTRACT

Performance stability is an essential feature for the widespread adoption of multicomputers. In this paper, we
report the preliminary steps of our research in performance prediction and extrapolation. Performance tuning,
guided by extrapolation, may help achieve a substantial fraction of peak performance rates across a broader range
of applications while providing guidance for code porting. We introduce a methodology for assessing stability
of parallel programs, based on stability of the program execution graph, using time perturbation analysis. For
programs with stable behavior, we present a model for performance prediction under architecture variations, by
transformation of the execution traces with parameters that reflect the differences in architecture between two
systems. We illustrate the use of this transformation with an example of a parallel PDE solver executing on a

multicomputer.

*Supported by the Brazilian Institute of Space Research (INPE) and by a scholarship from the Brazilian Ministry of Education,
Process CAPES-913/89-2

60 XIII Congresso da Sociedade Brasileira de Computagio

1 Introduction

Our work focuses on massively parallel, message-passing systems. These systems, also known as multicomputers,
consist of a collection of autonomous processing nodes interconnected by a high-speed communication network.
Scalability is a key feature of multicomputers. Machines have been built with over a thousand processors, and
there are no insurmountable technological obstacles that would prevent multicomputers from scaling to sizes
allowing multiple teraflop performance.

Despite the performance potential of multicomputers, several factors have limited their widespread adoption.
Of these, their performance variability is a significant drawback. Execution of some programs may yield only
a small fraction of peak system performance, while others approach the system’s theoretical peak efficiency.
Moreover, the observed performance may change substantially as application and architecture parameters vary.

Because performance tuning of parallel programs is time consuming and costly, and because performance
varies with application and architecture parameters, mechanisms for estimating program performance as a
function of application and architecture changes would accelerate the use of multicomputers. Eztrapolation uses
performance metrics and system analysis to predict the execution behavior of programs in response to application

or architecture variations. Performance extrapolation can be used to help answer several important questions,

including:

e Will the time spent porting a program to a a different parallel system yield performance gains that justify
the porting costs?

e How will application scale with larger input data sets?

e How will application performance change with system size?

The first of these is a cross-machine performance prediction, and is the main subject of this paper; the others
are extrapolations to a different configuration or problem size, and are part of our ongoing research. Our major
goal is to develop and evaluate a methodology for prediction and extrapolation. Performance tuning, guided
by extrapolation, may help achieve a substantial fraction of peak performance rates across a broader range of
applications while providing guidance for code porting.

For a given application running on a parallel machine, we will study its performance stability — how the
program behavior is affected by the architectural parameters of the underlying machine. Tracing is the basic
technique to capture program performance data. Using this data, we will then develop models that allow
performance extrapolation, as configuration parameters vary, for stable programs.

In the next section we list the major factors involved in performance prediction, and review related work in
the area. In §3 we describe our approach to assessing program stability, which is a basic requirement for good
predictions. We introduce our model for prediction under architecture variations in §4, and show an example of

application in §5. Finally, we conclude the paper and summarize our future work in §6,

V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 61

2 Background: The Performance Prediction Problem

The performance prediction problem on massively parallel systems has many possible dimensions, including
those related to scalability (e.g., changes in the number of processors), to machine characteristics (e.g., type
of processor on the nodes or type of interconnection among nodes), and even to the application problem itself
(e.g., size of data sets). These issues can be broadly grouped as those regarding the specific architecture of the
machine, and those intrinsically connected to the nature of the application. Aleng all such dimensions, however,
the prediction process follows the same goal: extrapolation of performance results from some basic configuration

to a different, target configuration.

2.1 Architecture Effects

The computational power of 2 multicomputer is primarily dictated by the type of processor used in the processing
nodes. Most machines today employ state-of-the-art commercial microprocessors as their computing engines.
Comparing two machines that use different processors is, however, a nontrivial task, even for uniprocessors.
Several other factors, in addition to the processor type, play an important role in overall performance: cache
organization, compiler quality and I/O bandwidth. The SPEC benchmarks [11] are a recent attempt to address
this problem: performance data are reported for each of the individual benchmarks in the suite. Users then
compare two machines by considering only those benchmarks that most closely resemble their typical application.

In parallel systems, interconnection network differences also affect overall performance. High latency, low
bandwidth or network congestion (due to certain patterns of communication in the application) may cause some
of the nodes to experience extended idle periods.

Any of these factors can change the order or duration of actions during program execution on different
hardware configurations. Intervals with the same duration on one machine might differ on another, and such

variations might be sufficient to create distinct execution paths in one of the processes of the parallel program.

2.2 Application Effects

Tuning an application on a specific parallel machine consists of finding the correct balance between computation
and communication for a given data set. This balance, also known as granularity, must be such that parallelism is
achieved (by dividing the computation among the processing nodes) and the overhead imposed by communication
is minimized. In absolute terms, the granularity depends on the computation and communication speeds of the
underlying hardware and software and on the application input data set. Variations in any of these components
can change an application’s balance.

In some applications, behavior is highly dependent on the input data; multiple executions of a given program
on the same machine, with distinct input data sets, may differ dramatically. Such variability makes the prediction
task extremely difficult. Conversely, applications with a deterministic nature are easier to model, making

performance prediction simpler and more reliable.

62 XIII Congresso da Sociedade Brasileira de Computagdo

2.3 Related Work

Performance prediction and the interaction of hardware, software and application variations have been widely
studied for both sequential and parallel systems. As an example, Saavedra-Barrera and Smith [10] proposed
a model for performance evaluation and prediction on uniprocessors. In this model, they identified standard
operations and constructs in Fortran and characterized application programs by the number and type of these op-
erations that were executed. By combining the program characterization with measures of machine performance
on the standard operations, it was possible to estimate program execution time.

Three major factors prevent the direct extension of this methodology to parallel systems. First, the char-
acterization of a parallel machine is more complex than of a uniprocessor, because of the interactions among
processors. Second, parallel programs have more behavior variability than sequential programs, even across
different executions on the same machine. The third reason is that, in general, there is a bigger semantic gap
between high-level program code and compiled code on parallel systems than in sequential ones.

In another approach, Mak und Lundstrom (7] presented a method for predicting performance of parallel
computations. They modeled a parallel computation as a task system with precedence relationships expressed
as a series-parallel directed acyclic graph and machine resources as service centers in a queueing network model.
On several test cases, they obtained very accurate predictions. However, Adve and Vernon [1] suggested recently
that stochastic models may create unnecessary modeling complexity.

Lyon et al [6] made another claim against stochastic models, by proposing performance analysis at a macro
level, thus ignoring particular details in the systems or in the applications. They inserted synthetic perturbations
in a program, and measured their effect on global performance. The major goal was to find locations in the

original program where optimization efforts should concentrate.

3 Program Behavior and Stability

Analisys of program stability is an essential step before performance prediction. In this section, we approach

this problem by studying performance data captured from program execution under varying conditions.

3.1 Characterization of Program Behavior

We use tracing to characterize program behavior; tracing defines the sequence of activities that occur during
execution. A trace consists of a sequence of event records that contains a timestamp and an event identifier that

uniquely associates the event with an activity in the program.

3.1.1 Program Model

We define a concurrent program as a group of tasks that communicate by exchanging messages. Every processor
executes exactly one of these tasks, and there is no task migration.

Each task consists of a sequence of activities, that can be of three types: computation, message sending and

V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 63

message receiving, which we denote by C, S and R, respectively. The n'* occurrence of an event E on processor
i is denoted by E}', where E € {C,S,R}.

Our basic del of unication assumes nonblocking sends and blocking receives. This means that a

task can proceed after sending a message, even if the destination processor has not executed the corresponding
receive. That allows overlaped computation and communication.! When the program executes a receive, however,

it remains blocked until the required message arrives.

3.1.2 Execution Graphs and Partial Orders

We represent a parallel program by a directed graph where each trace event corresponds to a graph node.
Directed edges define the event order. Every edge can also be associated with a numeric value, corresponding
to some function of its initial and terminal vertices (e.g., the time between the events). We refer to this graph
as the program ezecution graph.

A particular execution of the program, represented by the program execution graph, defines a relation on the
set of events in the execution. This is Lamport’s happens before relation [4], denoted by <. It has the following

properties:
1. If E[" and E7 are events that occur on the same task i, and E[* occurs before E}', then E < E}.

2. If S is an event corresponding to the end of a message send on task i and R} is an event related to the

end of the corresponding message receive on task j, then 57" < R}.

3. For any events E,F,G (in any tasks), if E < F and F < G, then E < G. Events E and F are said to be
concurrentif E F and F £ E.

Thus, < is an irreflexive partial order on the set of all events of the execution.

3.2 Program Stability

As we observed earlier, if the same program is executed on two different machines, it is possible that two different
execution graphs will result. As an example, consider Figure 1, which shows a program with three tasks, The
second and third tasks compute (represented by modules A and B, respectively, in Figure 1), and then send a
message to the first task. This first task receives messages in whatever order they arrive. If the received message
is from module A, some additional processing is required at the first task.

Assuming two given machines M; and M; with different processors, the observed behavior might vary
depending on the nature of the computation: the first machine could be able to compute module A faster than
module B, while the second machine could compute B faster than A. Under this assumption, Figure 2 shows
the corresponding execution graphs. The set of events is the same, but there are different partial orderings.

Specifically, we have the following relationships on each machine:

L Qur definition of nonblocking send differs from some dors’ 1 for le, by our definition, Intel’s esend is &

nonblocking call, because the sender task can proceed as soon as the message buffer is free, independent of the receiver task’ status,

64 XIII Congresso da Sociedade Brasileira de Computagio

Figure 1: A parallel program fragment

e Machine M,: S} < R} ,S! <R}, C|< R;" ; R} and S} concurrent
e Machine Ma: S} < R}, S} < R}, R} <C} ; R! and S} concurrent

We can detect such changes in the partial event order by analyzing the corresponding execution graphs: the
graphs are equivalent (or, in graph theoretic terms, isomorphic) if and only if the partially ordered sets of events
are identical.

If we simply assumed that the execution graph of a given program remained the same for every possible
machine, our predictions could potentially fail, depending on the program and on the machines. The execution
graphs of some programs present the same partial order of events across machines; we call these programs stable.
Other programs may have different execution graphs even for two executions on the same machine and data set.
We call these programs unstable. Predicting performance for this last class of programs is much more difﬂcult,
and is beyond the scope of this study.

Hence, the first step in performance prediction is evaluating program trace stability.

3.2.1 Message Receives and Stability

Based on the model of §3.1.1, repeated executions of the same program with the same input data can have
different event orders only if messages are received and processed in a different order. Our implicit assumption
is that multiple messages sent by the same processor are delivered to the receiver in the same order as they are
sent by the originating processor.

In turn, the potential instability depends on the semantics and generality of the receive call. The most
flexible form allows the task to receive any message, from any sender; further processing is required to identify

the sender and the characteristics of the message. At another extreme, the receiving task might specify which

V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 65

Figure 2: Execution graphs of the same program on two different machines

type of message, and from which sender, it is willing to receive; in this case, arriving messages that do not
conform to the specifications are temporarily buffered. The receiving task is kept blocked until the specified
message arrives. An intermediate approach specifies some of the parameters for a required message; the receiver
may obtain a message from several senders, as long as that message satisfies the specified constraints.
Generality is not without price. As we saw in the example of Figure 2, the use of an unspecified receive
operation makes the program unstable. Consider, for example, a program slightly different from the one in
Figure 1. The only difference is that, now, a certain type of message is specified for every receive operation.
With this constraint, the partial event order is the same for both graphs. The event order of this new program
is not sensitive to speed differences between the two machines. Predicting the program’s performance on a new
system requires only the computation and communication characteristics of the new system; the event sequence

is unchanged.

3.2.2 Time Perturbation

Different features on two machines may change the execution graph of a given program. Our problem consists
of predicting the program behavior on a target machine, based on its behavior on a base machine and the
architectural features of both machines. If the execution graph does not change significantly across machines,
we can confidently use the event order on the first machine as a basis for prediction.

One possible way to assess program stability relies on time perturbation analysis [6]. The idea is to perturb
the original program and verify the effect of such perturbation. Several instrumented versions of the program are
executed, each with a specific set of time delays inserted in the code. By comparing the execution graph obtained
in each experiment with the original execution graph, the sensitivity of program behavior to perturbations can
be assessed.

The design of the required experiments includes the selection of code locations where delays will be inserted;

each such location constitutes a factor. For each experiment, factors are set at one of their possible levels (e.g.,

66 XTII Congresso da Sociedade Brasileira de Computagio

delay or no-delay). In a full factorial design [3], with p locations selected, we must conduct 2P experiments to
determine the influence of each of the p perturbations. However, in practice, a much smaller number is needed,
because interactions between distinct perturbations are not always significant.

Consider a program with two factors, and denote the locations of the factors by [y and D;. Implementing

a full factorial design requires executing and analyzing the behavior of four versions of the program:
1. Dy = D; = No-delay (regular program)
2. Dy = No-delay, D; = delay
3. Dy = delay, D; = No-delay

4. .D1 = Dg = dch_v

3.2.3 Graph Analysis

We can detect variations in the program execution graph, exposed using time perturbations, by testing for
isomorphism of the corresponding execution graphs. Although it is not known whether graph isomorphism is
an NP-complete problem, no polynomial time algorithm is known [8].

In our case, testing for isomorphism is insufficient — two execution graphs might be similar, but not iso-
morphic. We need to determine how “similar” they are. In other words, we need a metric to compare graphs.
Under this metric, isomorphism means complete similarity. Graphs with high degrees of similarity represent
nearly stable behavior.

The metric we propose is based on subgraph isomorphism. Let Gy and G; be two graphs with n vertices.
We define the similarity s between Gy and G; as the degree of the largest isomorphic graphs Hy and Hj, where
H, is an induced subgraph of Gy and H; is an induced subgraph of G;. We also define the distance d between
graphs Gy and Gy byd =n — s.

Under these definitions, the following two statements are equivalent for any graphs G; and G; with n

vertices [12]:

1. There exist isomorphic graphs H, and Hj, each with at least n — d vertices, such that H; is an induced
subgraph of G, and Hj; is an induced subgraph of G,.

2. There exists a graph G with at most n 4 d vertices having two induced subgraphs G} and G such that

G is isomorphic to Gy and G} is isomorphic to G;.

This means that, having G, we need to add at least d more vertices with appropriate edges to obtain graph
G, which will also contain G as a subgraph. Use the notation d(Gj, Gj) to represent the distance between
graphs G; and G; and the symbol = to represent graph isomorphism; the following properties hold for any
graphs G;, G; and G, of degree n [12]:

e G; =G & d(G;,Gy)=0

V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 67

e d(G;, Gj) = d(Gj, Gy)

e d(Gi,Gs) < d(Gi, Gj) + d(Gj,Gx)

¢ 0<d(G;,Gy)<n~1

Thus, d is a metric in the set of graphs of degree n. It can be used to compare graphs Gy and G;, and
provides a quantitative measure of similarity. Algorithms for direct computation of d are known [5]. However,
the time complexity of these algorithms is O(n!) for an n node graph. The large number of nodes expected in
most execution graphs makes the cost of exact isomorphism tests prohibitive.
3.2.4 Alternatives for Graph Comparison

Because computing the exact distance between two execution graphs is intractable with current algorithms,
we seek approximations that exploit specific features of execution graphs. In particular, they consist of p

interconnected linear chains, one for each task.

We are currently investigating the effecti of two approaches to the graph comparison problem. The first
approach compares two graphs by pairwise comparison of individual task execution traces, one trace from each
graph. We look for the maximum possible mapping between vertices of the same type in the two traces, such
that the original event order in each trace is preserved. Under our previous assumption that graph vertices can
be of types C, 5, R, each task trace is a linear string E', E?, ..., E* with E' € {C, 5, R}. Finding the maximum
match between the executions of each task corresponds to finding the longest common substring between the
strings representing each task trace. We approximate the similarity s by the total number of matches from the
comparison of all pairs of corresponding task traces.

We can prove that the number of matches found by this trace comparison procedure is always greater than
or equal to the number of matches that would be obtained by the exact procedure. If this were not the case, in
one of the task traces the number of matches would be strictly smaller than in the exact procedure; this violates
the assumption that the procedure finds a longest common substring, and thus it can not be true. Hence, the
approximated distance is less than or equal to the real distance d.

A second approach to comparing two execution graphs divides both graphs into execution regions. The
motivation is that many scientific programs exhibit iterative behavior, which produces patterns in their execution
graphs. By detecting and comparing such patterns in the two graphs, we reduce the problem to a series of much
smaller graph isomorphism problems. This might allow us to use exact algorithms for calculation of graph

distances.

4 A Model for Performance Prediction

After determining that a given program has stable behavior, performance prediction can begin. The goal of

building a model is to establish guidelines for the prediction process. The prediction consists of analrzing

68 XIII Congresso da Sociedade Brasileira de Computagio

(a) IPSC/2 — CSEND (b) IPSC/860 - CSEND
e n 108
FT T T T o

T fwsec) 1067
e T i -

T

000
um
00
2000 .
e
oo
[

5558 5§ EEEEE R

e e __-_-],-_m_,s 1 s I It s 16
om 3000 4000 4000 aoo 000 000 0o

Figure 3: Time to execute a send on the Intel iPSC/2 and iPSC/860

program traces on one machine and, by applying the model, generating corresponding traces for the new system.

We implicitly assume that the number of tasks is the same on both systems.

4.1 Architectural Parameters

Performance predictio'n support is based on transformations of each trace event. Event timestamps from the
original trace are adjusted to refiect the predicted duration of the corresponding activity on the new system.

For computation activities, the major transformation adjusts the ratio of processor speeds. By assumption
this ratio can be a constant or dependent on some aspect of the code. The simplest approximation assumes a
single ratio that could be derived either from published performance data for the two processors (e.g., SPEC
ratio). or by executing a sequential version of the program on the two systems and computing the ratio of the
total execution times.

A better alternative uses a variable ratio. Event records usually contain some information about the type of
computation (e.g., procedure or loop identification). If some information about the effectiveness of the processors
on different code fragments is known, one can derive a more realistic transformation.

In regard to communication, we take a simplified approach and make no assumptions about the underlying
interconnection nelwork or the message passing software — all elements of communication cost are extracted
from traces of communication benchmarks. From the benchmark data one can build a model of the time to send
or receive messages of a given length.

As an example, consider the Intel iPSC/2 and iPSC/860. Although their interconnection networks are the
same, they use different processors, and their software message-passing latencies are different. Figure 3 shows
the lime to execute a send operation, as a function of message length, on the two systems. Given this data and

the size of a message, one can transform the times of send events observed in application traces.

V Simpésio Brasileiro de Arqui de C dores - P nto de Alto Desempenho 69

Original Transformed Original Transformed
Trace Trace Trace Trace
[. - 0 -]
z ™ 7 compute = i 1. compute
compute R S Event1® -§.2 A compute 2.3 Bvent1® -}.2 A
A L B ™ T compute A E. ™ 5L compue B
[N Event2' ¢ B 4 Event2” |- ¢ 7 compuie
______ 5 | _Bventl 4—‘[5—-—;';&7. I Event | 5 ;> o
[T TR 6.l T S S
compute T Event 3 5 compute i Event 3 T,
B B
T EBwem2 i 1 Buem2 &
e T—— 2l - el PUep—— ,_w... = - 9 K(A)ﬂ.s
p 0.4 — 410 'c‘ :ltl i .10 K(B)=0.25
. 5 dn e e || _Bveatd 1n K(C)=1
121 412 12 .4 412
]
time time time time
(a) Constant ratio (b) Variable ratio

Figure 4: Transformation of computation traces

4.2 Prediction Model

Our prediction model specifies transforms for computation, message transmission and message receipt events.
The transform is applied on an event-by-event basis. We read event records from the original trace, adjust their

timestamps, and generate predicted event records for the new machine.

4.2.1 Computation Events

We transform computation events using the processor speed ratio. Timestamps for the new machine are com-

puted by adjusting the durations of the corresponding intervals. Figure 4a illustrates the transformation of a

trace with a computation speed ratio of 0.5. In this case, the transformation consists of puting timestamps
for events 1', 2’ and 3', based on the timestamps of events 1, 2 and 3.

In general, intervals with computation activity are transformed as follows:
C;=K C,

where Cy is the activity duration in the original machine, C; is the predicted duration in the new machine,
and K is the computation speed ratio of machines. In the more general case, K is a function of the kind of
computation in the interval. As an example, Figure 4b shows a variable ratio K, which assumes a different value

for each computation module.

4.2.2 Communication Events

Usually, traces contain two events for each message transmission: send begin and send end. Send begin events
delimit the end of a computation interval and the beginning of a message transmission. Their times of occurrence

are transformed using the computation speed ratio of the previous computation interval.

70 XIII Congresso da Sociedade Brasileira de Computagdo

Original Traces Transformed Traces
Task Task Task Task
1 2 1 2
0 0 o o
comp. 14— 1 .I 1 1 comp.
A 24 2 °°;"' A 2 &
K(Ay0S 34 3 ELUEE N e
ol R . s .
SEND | ¢ - B} L L
Bl —e 74 7 RECEIVE =7 7 RECEIVE
: ol . -4 s s
comp. *-1- -— B, ey e W
B ol -
K(B)=1 104 1 p 10 10
Bl—is ALl 1 1n u
d . 12 K(Om0A 12 11
SEND ., | 13 —— B] 13 13
Bl —w 1} ieppcEvE 14 14
1] T~adis o B! it 15
time time time tine

Figure 5: Transformation of message-related events

For send end events, like event Ef in Figure 5, the original interval is transformed by a function derived from
the message length and the communication characteristics of both machines. Assuming that both messages in

Figure 5 have length b, the rule for transformation is

s,:% 5

where S; is the duration of the send interval on the original system, S is the predicted duration for the new
system, and fi(b) and fi(b) are the times to send a message of length b on the original and new systems,
respectively, obtained from their communication characterizations.

Events related to receiving a message can also be of two types: receive begin events and receive end events.

Events of type receive begin are transformed exactly like send begin events.

To transform receive end events, we assume that communication characterizati are also available for the

message receive operation. The basic rule for transformation in this case is:
Rz = ga(b)

where ga2(b) is the time to execute a receive for a message of length b on the new system; this value can be
obtained with a benchmark similar to Figure 3, for the corresponding receive operation. Assuming in the
example of Figure 5 a value of 1 for g2(b) on both messages, the interval between events E} and EJ is reduced
in the transformed trace to half of its original value.

For the case of event E{ in Figure 5, direct use of our basic rule for receive end events would lead to a causality
violation: in the predicted trace, the message would be received before the end of the underlying send operation.
In situations like this, we must follow the behavior of a real system, by respecting causality dependences. A
receive end event should not occur before the send end event of the same message. Thus, we must delay the
predicted time of event E} until the send operation completes, in this case at instant 8. We can now complete

our general rule for transformation of receive end events, by considering causality effects:

V Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 71

f‘i"‘ B mu(‘f';“"' +R;, f‘;“‘)

where R: is the predicted duration for the new receive operation, computed by our basic rule; ’f':,""' is the
predicted instant for the beginning of the receive operation, and f‘;"' is the predicted instant for the end of the

corresponding send operation.

5 Trace Transformation Example

To illustrate the trace transformation method presented in the previous section, consider a trivial PDE solver,
which iteratively computes the heat propagation on a bidimensional metal plate, under fixed boundary temper-
atures. The problem is discretized into N rows and N columns, and at each time step, N? new grid values are
computed, based on the grid values from the previous time step. This process repeats until a steady state is
reached.

This algorithm has two phases that repeat over time: calculation of new grid values, and convergence checking.
One possible parallel implementation of the algorithm assigns a set of contiguous grid rows to each processor;
each processor computes the new grid values as well as a local convergence check, and a global convergence check
occurs at the end of each time step.

Figure 6 shows the lifetimes of each phase from an instrumented version of this algorithm running on two
processors of an iPSC/2. The vertical axis of each graph represents the execution time of each phase, and the
horizontal axis represents the iteration. The lifetimes for the grid calculation are quite stable, as the time to
compute the N? new grid values is relatively independent of the magnitudes of the values. However, the lifetimes
for the convergence test have a significant variation across iterations. As execution proceeds, the grid becomes
more uniform, and more points reach the steady state. The convergence checking algorithm must examine more
points at each iteration to verify that convergence has not been reached. Figure 7 illustrates the execution graph
for an iteration of this program with four processors.

The precise values of the procedure lifetimes on a given processor depend, among other factors, on the grid
size, on the relative position of the processor in the grid, and also on the specific type of processor being used.
‘We conducted the following prediction experiment: based on the traces obtained from execution of the PDE
program, instrumented with the Pablo tracing library [9), on four nodes of an iPSC/2 and with a 64x64 grid,
we applied our transformation model to compute the predicted traces for an iPSC/860.

The first step in the prediction was to execute the communication benchmarks on both the iPSC/2 and
iPSC/860, to characterize their communication performance. Then we executed a smaller version of the PDE
program (32x32 grid size) on reduced configurations of both machines (two processors each). We measured the
amount of time spent by the processors on each procedure for this reduced problem, and used these values to
derive the computation speed ratios between the machines, shown in Table 1.

After transforming the original iPSC/2 traces, we executed the same program on an iPSC /860, and compared

the results with our predicti For each iteration, we computed the ratio between the predicted and observed

lifetimes of each procedure and message-passing function; the average values of such ratios are in Table 2. The

72 XIII Congresso da Sociedade Brasileira de Computagio

IPSC/2 - PDE 32x32, 2 PE's , node-0 IPSC/2 - PDE 32231, 2 PE's , node-0
Dmsin fwsec) v 107 Dowentios (et} & 167
T — R | = TIENATR TR e e T—— T

1500 - + L) - <‘

laoo 730 |- :

neot- * 110 - .

wml fae P - s

oo - g bl b
3350

1m0~ R -

.00 - -1 A -

o Lad - -4
400} -

100
A%0 - -

&) 200 - L 4

" s |- - 4

am 100} -

1m0 i) R

1 e e e mewie s temet

(R
1 ase}
oo - - om - g
L - | e © e s 107 b e et
am 100 000 oy 100
(a) New Grid Calculation (b) Convergence Checking

Figure 6: Iterative PDE solver lifetime traces from parallel execution on two nodes of an iPSC/2

Procedure || node-0 | node-1

IterEdge 14.2 14.4
Converged 8.5 7.8
Iterate 21.3 20.9

Table 1: Computation speed ratins between iPSC/2 and iPSC/860 for reduced PDE problem

total execution times were 21.19 sec (observed) and 17.80 sec (predicted), with a prediction error of 16%.

The largest errors found in Table 2 were for the isend operation on nodes 0 and 1. A close analysis of the
observed traces showed that network contention caused a deviation from regular behavior: in this program, both
nodes execute the isend operation nearly at the same time (see again the execution graph in Figure 7), and thus
one of them succeeeds, while the other must wait for their common network channel to become available. Also,

the real behavior under such conditions for the iPSC/860 is different from the iPSC/2.

6 Conclusion and Planned Work

In this paper, we have reported preliminary steps of our research in performance prediction and extrapola-
tion, namely the modeling of performance under architecture variations. We are currently complementing this
preliminary study with models for scalability of both machine and problem sizes.

Our next step is to implement the required tools to extract the execution graphs from traces, and analyze
their structure in terms of similarity as indicated in §3. We will use these tools to study the behavior of time

perturbed versions of programs, in which delays are inserted in systematic patterns. In addition to the PDE

V Simpésio Brasileiro de Arquitetura de Computadores - Pr de Alto Desempenho 73

Receivs local convergence
Check global convergence

Sad global comvargona [3
(cmnd)

Send global convergence
(cand)

Figure 7: Execution graph for an iteration of the PDE program with four processors

program, we will be using message-passing codes from the HPF/Fortran D Benchmark Suite [2], a ray-tracing
program, which has a more dynamic behavior and thus becomes a potential candidate to instability, and a
variety of other parallel codes. For the programs which present stable behavior, we will perform all the three
types of extrapolations mentioned before: cross-machine prediction, extrapolation to more processors and to a
larger problem.

We will run these experiments on available Intel’s (iPSC/2, iPSC/860 and Paragon XP/S) and Thinking Ma-
chines’s (CM-5) multicomputers. With such machines, we can run cross-machine tests where only the processor

is changed (iPSC/2 and iPSC/860), the interconnection network is changed (iPSC/860 and Paragon), or both

L Function node-0 | node-1 | node-2 l node-3 l

IterEdge 1.19 1.11 1.19 1.10
Converged 1.30 0.99 1.02 0.97

Iterate 1.01 0.99 0.86 0.73
isend 0.29 0.48 0.82 0.57
csend 0.57 0.78 0.85 0.78
crecv 0.75 1.22 1.00 1.22

Table 2: Average ratios between predicted and observed lifetimes across iterations of the PDE program

74 XIII Congresso da Sociedade Brasileira de Computagio

processor and network vary (iPSC/2 and Paragon, or Paragon and CM-5). For the scalability tests, we will be
using the faster machines (Paragon or CM-5), which also comprise a higher number of processors.

After running the experiments, and quantitatively comparing the predictions with actual results, we will
perform a critical evaluation of our models. The goal in this phase is to quantify the accuracy of the models
across a range of application codes. We will be looking for possible weaknesses in the models, or unforeseen
sources of anomalies in the extrapolation process. If appropriate, the models will be refined, and new experiments

conducted.

References

[1] Apve, V. S., AND VERNON, M. K. The influence of random delays on parallel execution times. In

Sigmetrics Proceedings (San Diego, May 1993).

[2] A.G.MonAMED, G.C.Fox, voN LAszEwWsKI, G., M.PARASHAR, T.HaveTt, K.MiLLs, Y.Lu, N.LIN, AND
N.YEH. Application benchmark set for Fortran-D and High Performance Fortran. Tech. Rep. SCCS-327,
Northeast Parallel Architectures Center, 1992.

[3] JaIN, R. The Art of Computer Systems Performance Analysis. John Wiley & Sons, New York, 1991.

[4] LamporT, L. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM 21, 7 (July 1978), 558-565.

[6) LEVI, G. A note on the derivation of maximal common subgraphs of two directed or undirected graphs.
Calcolo 9 (1972), 341-352.

[6) Lyon, G., SNELICK, R., AND KACKER, R. Synthetic-perturbation tuning of MIMD programs. Tech. Rep.
NISTIR 5131, National Institute of Standards and Technology, February 1993.

[7] Mak, V. W., AND LUNDSTROM, S. F. Predicting performance of parallel computations. IEEE Transactions
on Parallel and Distributed Systems 1, 3 (July 1990), 257-270.

[8] Reap, R. C., AND CorNEIL, D. G. The graph isomorphism disease. Journal of Graph Theory 1 (1977),
339-363.

[9] Reep, D. A., AypT, R. A., MapuvasTtHA, T. M., Nog, R. J., SHieLps, K. A., AND SCHWARTZ,

B. W. The Pablo Performance Analysis Environment. University of Illinois at Urbana-Champaign, 1992.

[10] SaavEDRA-BARRERA, R. H., SmiTH, A. J., AND Miva, E. Performance prediction by benchmark and

machine characterization. IEEE Transactions on Computers 38, 12 (December 1989), 1659-1679.
[11] SPEC. SPEC benchmark suite release 1.0. SPEC Newsletter 2, 2 (1990), 3-4,

[12) ZeLuixa, B. On a certain distance between isomorphism classes of graphs. Casopis pro péstovdni matem-
atiky 100 (1975), 371-373.

