
ON THE JNVESTIGATION OF SUPERCOMPUTER ARCHITECTURES IN
MUL TIPROGRAMMING ENVIRONMENTS USING A NAL YTIC MODELS

Dan iel A.Menasce
Departamento de Informática
Pontifícia Univ ersidade Católica (PUC-RJ)
22 453 Rio de Janeiro, Brazil

Virgílio A.F.Almeida
Departamento de Ciência da Computação
Universidade Federal de Minas Gerais (UFMG)
30161 Belo Horizonte, Brazil

RE SUMO

Os supercomputadores tem s ido usad os para apli caçÕ es que
exigem uma alta c apacidade d e desempenho, tais como : previsão at
mosferica, simulação de novas aeronaves e automóveis , modelagem
de reservatório s de petróleo e outras. Dado o s eu alto custo, os
supercomput adores executam sistemas ope racionais mu ltiprog rama
dos (ex: Cray/UNICOS), que permitem que seus recursos sejam com
partilhados por vários usuarios remotos e locais. Portanto , e im
portante avaliar o desempenho de supercomputadores em ambientes
de mu l t i programação . A ma i o r ia dos estudos de desempenho existen
t es concentra atenção na avaliação da velocidade de programas qüe
executam isoladamente em um supercomputador.

Modelos analí t icos, baseados nas redes de filas e redes de
Petri, são desenvolvidos nes t e trabalho com duas finalidade s . A
primeira delas ê avaliar o desempenho de supercomputadores em am
bientes de multiprogramação com varias classes de usuários execÜ
t ando simultâneamente . A outra finalidade consiste da avaliação
de uma proposta aqui apresentada para uma modificação da arquite
tura dos supercomputadores vetoriais . Varias exemplos numéricos
são apresentados para ilust r a r os modelos apresentados.

ABSTRACT

Supercompute r s are being widely used for applications that
require high speed computing , such as weather forecasting,
spaceship and aircraft design and simulation , and analysis of
geolog i cal and seismic data , t o name a few . These machines run
mu l t i programmed time - sharing operating systems, s o that their
facilities can be shared by many lo c al and rema te users.Therefore,
it is impo r tan t to be able to assess the performance of
supe r compute r s in multiprogrammed e n vironments . Most studies of
supercomputers performan ce are concerned si t h the evaluation of
the effective speed of a program runnin g in isolation on a
particular supercomputer. An alytic models based on Queueing
Networks (QNs) and Stochastic Petri Nets (SPNs) are used in this
pape r with two purposes . The first is to evaluate the performance
of supercomputers i n multiprogrammed environments, and the
seco n d is to compare perfo r mance - wise conventional s uper comp uter
architectures with a novel architecture proposed here. It is
shown, 1·ith the aid of the analytic models, that the pro.,osed
architecture is preferable performance-wise over the existing
conventional supercomputer arch i tectures . A chree lev~lwo rkload
characterization model for supercomputers is present e rl . Input data
for the numerical examples dis c ussed here are extracted from the
well known Los Alamos Benchmark .

11 . 8.2.1

l. INTRODUCTION

Vector comput e r s are being widel y
u sed fo r appli ca ti o n s that r e quire
hi gh speed comput ing, s u c h as weather
for ec a s ting , spaceship a nd ai r c raft
design and simulation, an d analysis of
geological and seismic data, to name
a few. These machi nes ar e a l so called
supercomputers be ca use t hey are th e
fastest rnachine s of t h e ir t i mes .

S up ercomputers are very expensive
machines and t hey run multiprogrammed
time-shari n g operating sys tems, so
that their facilities ca n be s hared by
man y lo c al and rem o t e u se r s .T herefo r e ,
it i s import a nt to be able to a ssess
the performance of supercomputer s in
multiprogrammed environments . Most
studies of supercompu ter performance
are concerned with t he eval uation of
the effective speed o f a program
runnin g in isolation o n a particular
super computer. The effective speed of
th e machine running a specif ic pr ogram
re sul t s from the combination of
different speed s , s uch as, the
sequential speed, the vec tor o r
synchronous sp e e d, and the parallel o r
a sy n c hr onou s speed . These three factors
~ay be combined by a relation which is
an extension of Amdahl's Law (Amdahl
67). The re ade r is refer r ed t o (Bucher
83) , (Bucher 85), (L ube ck 85) , (Dongarra
8 7) , for studies, based on ~ c tual
measurement s of benchmarks, wh ~ ch
analyze the effec tive spe ed of vector
computer s in un iprogr ammin g
environme nt s.

An a l y tic mod els based o n Queueing
Networks (QNs) and S to c ha s ti c Petri
Nets (SPNs) are used in thi s paper
with two purposes. The fi r st is to
evalu ate th e performan c eof s upe rcompute r s
in multipro gr ammed env ir onments, a n d
the second is to comp a r e p e rfo rm a n ce
wi se co n ve nti o n a l s up ercomputer
architectures with a novel a r ch itecture
propos e d her e . I t i s s hown here, with
th e aid of the analytic models , th at
th e proposed architecture i s preferable
performanc e-w i se over th e co n ve ntional
architectures .

Queuein g network model s having
produ c t fo rm so luti on s , which are
amenable to efficient a n d gener al
s olution techniques, cannot represe nt
directly th e performance of ve c tor and
parallel compu ters (Alme ida 86) ,
(Lazow s ka 84). The reason stems from
th e conc urrency that ex i s t s between
proces so r s worki n g on th e same j ob . In
o r de r to mode l thi s conc u rren cy , a SPN
mode l (Molloy 81), (Mar s an 84) of a
job executing in isolation i s used at

the lower level. An u pper level model ,
i.e . , the QN mode l , is used to
repre se nt t he multi programming
enviro nment. The combination of bo t h
modelling t echn iques l e ad s t o a new
supercomputer performance model.

This paper i s organized as follows.
Section two presen t s a brie f di s cussion
on s up e r computer a r c hitecture s . Section
thr ee in tro du ces a workload
charac terizati on model for supercomput er s.
Analy tic models t o analyze and compare
s up ercomputer architectures a r e
pre se nted in sec tion four. Nume r ical
resul t s are th en presen t ed and discus sed
in sec ti on five . Finally, section s ix
present s some conc lud i n g remarks .

2. SUPERCOMPUTER ARCHITECTURES

Ve c to r comp ut er archite c t ures
are characte riz ed b y CPUs composed of
three different types of pr ocessors:

a . Instr uction Processar (IP): it
is th e un i t th at fe t ches, de c odes ,
prepar es , and execu t es some special
inst ru c tions .

b . Scala r Processa r (S P): it is
sca l ar th e un it tha t exec ute s

i n s tru c tions .

c . Vec t o r Processa r (VP): it is
th e un it that ~xecutes vector
inst ru ction s .

A vector comput er may ha ve several
sca lar fu nction al un it s and several
vector fu n c tional uni ts cap able o f
i nd epe ndent parallel opera tion. Th e
CRAY X-MP computer is an example of
thi s t y pe of architecture (Lube c k 85)
See Fi g ur e 1 for a s chematí c view of
t he arc hít ec ture of a conven tional
s uper co mput e r .

~

SCAl.AA

M ,ROCESSOA

E i
M

INTAUCTION

PROCESSOR
o

R l
y VECTOR

PROCEISOR

'---

Figure l - Orga n iza ti on of
a Co nven tional Sup ercomp ut er

11. 8.2.2

The operation of thi s type of
architecture may be described as
follows. The IP fetches and decodes
an instruction. If it is a scalar
instruction and if there is a free
scalar fun c tional unit, the scala r
instruction is issued to the SP for
execution. If the SP i s busy, the IP
stays idle until th e SP becomes
available. If the instruction is of the
vector type and there is a vector
functional unit available, the
instruction is issued to the VP for
execution. Otherwise, the IP stays
idle until the VP becomes available.

The execution time of a vector
instruction is a function of the
number of elements of the array(vector
length) to be operated by the
instruction, and of the time required
to fill the pipe before starting the
pipelined execution of the vector
instruction.

There are basically two types
of architectures of vector
processing unit s: those which, like
the CDC Cyber-205, reference memory
directly in their vector instructions ,
and those whi ch , like the Cray-1,
require that the array be loaded
piece-wise into vecto r registers before
the execution of the operation can
start. The first type of architecture
will be referred hereafter as M-M-(for
Memory-to-Memory) computers and the
second type as R- R (for Register-to
Register) computers. A more detailed
description of the operation of
s upercomputer s can be found in((Hwang
87), Ercegovac 86) and (Weiss 84)).

A vector operation on a vector
of leng th 1000 ma y tak e rou ghly 11 ~s
on a Cyber-205 and 30 'IS on a Cray-1
computer (Bucher 83) . Since these
times are orders of magnitude greater
than thos e for scalar instruction
execution, it may be advantageous to
modify the architecture described above
in the following manner:

i. if a vector instruction is
decoded, prepared and ready to be issued
to th e vec tor processar and if there
is, at least, one functional unit
available in the VP, the instruction
is executed while the issuing task
co ntinues its processing at the CPU;

ii. if a vector instruction is
decoded, prepared and ready to be
issued to thevector processar, and if
there is no vector functi onal unit
available on the VP, the following
must occur:

the vector instruction is placed on
an execution queue of vector
instructions for the VP;

the current
suspended and
dispatched by

task execution is
another task is
the ope ratin g system;

iii. when the VP completes the
execution of a vector instruction which
had been sta rted in an independent
way (i.e . which does not belong to the
task in execution) , the VP generates
an interrupt to the CPU so that the
operating system may place the task
wh os é vector instruction has just
completed in the ready queue for the
CPU.

The architecture described above
considers the VP very much like a
peripheral unit of the CPU. The
motivation for it s tems f rom the
potentially large execu tion times fo r
vector instructions compared to those
of scala r instructions, and from the
fact that in a multiprogrammed
environment more parallelism may be
achieved if the VP is allowed to
execute vector instructions for a task
other than the one that is in hold of
the CPU. Figure 2 depicts theproposed
architecture .

M

E

M

o

R

y

r------------,
I I
I I

1+-----------4+ I
I CPU
I
I
I
I
I

: +---------- --,
I I I
I I I L----- -----~ l

YECTOR

PROCESSO R

I

I
YECTOR INSTRUCTIONS I

I
I
I
I

-----------'

Figure 2 - Proposed Architecture
for Supercomputers ,

From this point on we will refer to the
conventional architecture and to the
proposed architecture as C-Architecture
and P-Architecture respectively.

3 . WORKLOAD CHARACTERIZATION MODEL OF
SUPE RCOMPUTERS

An interesting report on workload
characterization for vector computers
was carried out by Martin et al. (Martin
83) at the Los Alamos Natio nal
Laboratory. Thi s study used a
benchmark for supercomputers , known
as the Los Alamos Benchmark, which is

11.8.2.3

a set of scientific programs
at that Laboratory .

that run

I n this section we will
slightly different approach
work l oad characterization

take a
towards

o f
supercomputers , since we a r e interested
in using meas u red data as input for
analytic model s. Our approach for
workload characterization considers
three levels o f parameters: application,
operati n g system, and architecture
level as indicated be Figure 3. The
pa r ameters at these three levels will
then be mapped into the analytic model
parameters as will be discussed in
section four.

APPLIC ATtO N

LEVE L

I'AIIAMETEU

O'EIIATING

!YS TEN L E:WL

PARAM!TEIIS

ANALYTtC

MOOEL

, AIIAMETEII S

' EII,OIIMAIICE

MUI UIIEI

Fi g ure 3 - Workload Characterization
Approach

3 .1 . Appl i cat i on L e vel Parame t e r s

Consider the following parameters
at this level :

P s percentage of scalar code, i.e .
fraction of the total executed
instruct i ons which are executed
at the SP.

percentage of vector code , i. e .
fraction of the total executed
instructions which a r e executed
at the VP

percentage of code
executed exclusively
(e . g . jumps, address
reg i s ter transfers).

which is
by the IP
compu ta tions,

An obvious relationship between the
above parameters is

p +
s

1 (1)

The remaining parameters at this level
are:

(1) A vector instruction is counted here as
one ins truc tion, independently of the number
of operations performed by it. In order to
obtain the number of elements that have been
operated in vector mode, one should multiply
the vector instruction count by the average
vec to r 1 eng th.

v average vector length

ic instruction count, i . e . number of
executed instructions .

A question that arises is whether these
data may be easily obtained in
practice . The answer is affirmative as
can be deduced from (Martin 83),(Bucher
85) which show tables containing the
above parameters directly o r othe r data
from which the necessary parameters may
be easily derived. For instance, the
average vector length , v, for each code
in the Los Alamos Benchmark is given 1n
(Mart i n 83), (Bucher 83) and (Lubeck
85). Also, Table III of (Martin 83)
co ntains the instruction count, ic, for
each benchmark code of the same benchmarl<.
Besides the total instruction co unt,the
same table displays the instruction
count per instruc tion class. These
figures allow us to easily derive the
percentage of scalar and vector code,
p S and p v respec tiv ely . Fina lly, p

1
may be der ived from equation (l)above .

3.2 . Op e ra t i ng System P arame t ers

The relevant parameters at this
level are:

R

N
r

sw

number of different types of
c lasses of workloads.
Different workload classes may
differ in the type of demand they
place o n the several resour ces of
the computer system.

maximum multiprogramming level for
class r (1 ~e ~ R) .

time necessary to switch the
context between two tasks.

This paramet er is a function of the
number of load and store instructions
necessary to save the co nt ext of the
suspended task and to install the
context of a new ta sk . Some comput e rs
are capab le of switching the con t ext
with a single instruction, making this
process much faster.

3.3. Arch i t ec ture Level P a r a me ter s

nC
sp

nC ip:

Consider the following parameters:

Instruction Processor cycle time
(considered the same for the
Scalar Processo r) .

average number of cycles
scalar instruction .

per

average number of cycles per
instruction executed at the IP .

ncpip : average number of cycles to
prepare an instruction .

nf 5 : average numb e r of scalar
fu nctio na l units in use.

11.8.2.4

nf
v

average number of vecto r
functional units in us e .

function th a t d e t e rmines the
average execution time of a
vector instructi o n on vector
of averag e 1eng th v for
architecture s of type T (T =
M-M or R-R).

So, according to (Bucher 83),

~M-M(v) = Tstar+v*Te1 e m (2)

where

Tstart: startup time for the
vector oper a ti o n

~elem : time per result element

where Tstart and Tel e m are as defined
above a nd

Vmax: number of elements of the
vector register

Tstartstrip: tim e to 1oad the
vector register.

For instance, (Bucher 83) shows that
for the Cyber-205 super c omputer(which
is of tht> M-M typ e). the foll0wing
relati o nship h o ld s

~l:Y b e r - 2 O 5 (v) : 1 O O O + 1 O •v (4)

where the constants in the the above
equation are given in nanoseconds(ns)

4 . ANALYTIC MODEL OF SUPERCOMPU TERS

In order to evalua~and compare
the C- Architecture and the P-Architec
ture we are going to us e a two-level
modelling approach (Mena s ce 1981)
indi c ated by Fi g ure 4 .

A~PI.ICATIOH

LEVEI.

P AIIAIOETEIIS

ARCI<ITECTUR(

LEVE L

~AIIAIOET!RS

ON MOOEL

I
Figur e 4 - Two- level Hodell ing

Approach

OP'[ftATIHG

SlST(IO

I. EVH
PARA IO ETEIII

11 . B.2 .5

A Queueing Network (QN) model is
used to obtain the desired performance
measures, namel y average response time
and throughput in a multiprogrammed
environment. QN models require as
input parameters the set of average
s e rvice demands for each server and
each class (Lazowska 84). So, let

D. : average service demand of class
1 •r r tasks at server i .

In other words, Di r is the average
total time spent by a class . r task at
device i while being served at the
device.

Notice that the queueing time is
not considered in Di,r but is computed
when the QN model is solved, using
the standard Mean Value Analysis
Technique (see Appendix A).

A continuous-time Stochasti c Petri
Net (SPN) model is used to derive ~he
service demand at the CPU. An SPN model
is necessary here in order to reflect
the parallelism between the various
processors (IP, SP and VP) at the CPU.
The following sec tions discuss the
analytic model used to evaluate bo th
ar c hi t ec tures .

4.1 . Analytic Model f o r tbe C
Architecture

Consider the SPN shown in Figure
5 which represents the CPU composed of
the IP, SP and VP.

VP
EXECUTl ...

v~

AVAILA8L[

Figure 5 - SPN for the C- Architecture

The following meanings are
a s s oc iated with the various places of
th e a bo v e SPN when there is a token in
th e pla c e:

P1ace * Meaning when there is one token in it

1 IP is preparing an instruction
2 SP i s avai1abl e
3 VP is available
4 SP i s busy executing instructions

in a ll its functional units.
IP is execu t ing an instruction 5

6 VP is busy executing instruc tion in
all its functional units.

The firi n g tim e of transitions T1
T2 a nd T3 represent the time need to
fetch, decode and prepare an instruction,
rega rdl ess of its typ e . The expected
firing time of T1 , T 2 and T 3 is equal
t o

Fp= cip= nc p i p (S)

Th e firing time of transitions T4,
Ts and T6 represent the exec ution
tim e of a scalar instru ct ion, of an
IP instruction and of a vector
instructi o n, r espective1y . Their
expected firing times are given by ,

FT4 c. ... nc I nf
5 ~p sp

FTS c ip * nc.
~p

FT0 ~(v) I nf v

(6)

(7)

(8)

The scl uti on of an SPN is the set
of s t eady s tat e probabiliti es of al l
possible markings of its reachability
se t (Peterson 19 8 1) . These probabilities
may be o btained by so1v ing the Markov
Chain equiva1ent to the SPN.Appendix
B presents the Markov Chain fo r the
SPN of F i gure S . The so luti on to it
for each se t of parameters ma y be
obtained numerica l1 y using the Gauss
e lim i nation meth od .

Given the solution of the SPN,one
is able t o co mput e . the serv i ce demand
of a t ask a t th e CPU. This procedure
will now be explained with the aid of
Figur e 6 which i llustra t es three time
axis, one for each of the three
pro cesso r s (I P , S P a nd V P) . C o n si d e r
the following sequence of instructi o ns

S l ' S 2 ' V 1 ' V 2 ' S 3 ' I l ' V 3• S 4 ' I 2 ' I 3

wh ere SI , de notes the i -th scalar
ins tructio n of a task, VI the i-th
v ector i nstr u ction of a task, and I 1
th e i-th IP i n struction. As it can oe
seen, the IP tim e axis shows seq u ences
of int e r va l s of the following types:

i. preparation of sca1ar instructions
ii . preparation of vector instructions
iii. preparation of IP i nstructions
i v . ~~~cutio~ Qf IP instructions
v. ~dl e per~ods of type A
vi . idl e periods of type B.

IP

SP

An IP idle period of t y p e A occu r s
when a sca1ar instruc ti on is ready
to be issued but the SP is busy.
Simi1arly, a type B id1e period occur s
when a vec t o r instruc tion is ready to
b e i ss ued but the VP is busy .

51 51 A V, V2 B
p • p I

~ 10 11 V3 54 I z I z • I , ~----- _____________________________ _. __ ._ ________ _.

s, s,

v, Vz v,
w --+

Figure 6 - Execution Sequence at th
IP , SP and VP

Therefore, the service demand at
the CPU, Depu is give n by the sum of
the lengths of the following intervals :
total time to prepare all scalar
ins tru c tions, total time to prepare al l
vector instructions , tot éJ.. ti!lle to
prepare and execute all P inat.r ,-:t i ons ,
total duration of a11 typ e A i te1 •al s ,
and to t al duration of a11 typt B
intervals.

Depu =

ic *

(9)

where PA is the probability th at a
type A idle period occurs when a
scalar instruction is to be i ssued .
T~is is simply the s um of the
probabilities (Pr) of two markings (see
Appendix A) in the SPN as indi ca ted
below

p A = Pr (1 , O , 1 , 1 , O , O) +
Pr(l, O, O, l , O, 1) (10)

Similarly, PB is th e probability that
a type B idle period occ ur s wh e n a
v e c tor instruction is to b e u ss ued.
Thus,

p B = Pr (l , l , O , O , O , 1) +
Pr (l , O , O, 1 , O, 1) (11)

The queuei n g network that repr esen ts
the C-Arch itec ture is s hown in Figu re
7. Server 1 represents the CPU who se
service demand for c lass r D CPU is
obtained from expression (9). The se t
of Application Level parameters may be
different for each workload class r ,
while the Architecture Level parameters
are the same for a ll c la sses .

11. B .2 .6

\.

Figure 7 - QN mo del for the
C-Archi tec tu r e

Numerical results obtained with this
model are g iven in section S.

4.2. Analytic Model for the P
Arcbitecture

The SPN model for ~his
architecture is identical to that of
figure S. The equivalence of the SPN
model for both architectures stems
from the fac t tha t the C-archi tec ture
and the P-architecture have the same
behavior when the multiprogramming
level is equal to one. The difference
between the architectures is
represented by the queueing network
model, which models the multiprogram
ming effects.

Before we indicate how to obtain
the service demand at the CPU it is
important to explain how the CPU is
going to be modelled in this type of
architecture. The QN model for the P
Architecture is shown in Figure 8.
Server 1 accounts for the time spent
by a task at the CPU while using the
IP, SP or using the VP in an
overlapped fashio n with the o th er two
processors. Also, the service demand
of server 1 includes the additional
time (CS) spent by a task in context
switching due to VP unavailability.
The service demand of server 1 is
given by the expression (12) below .

o 1P =D
1

+CS

where 01 and CS are given by
expressions (12.a) and (1.'3)
respec tively .

01= i c * (c . * nc . + p I *
~p ~p

nci p + Ps * P A F T 4

where p A is defined in (10).

CS = ic * Pv * p B * sw

(12)

(12a)

(13)

1/0 SUBSYSTUI

011

Figure 8 - QN Model for the P
Architecture

Expression (12) is derived using
an argument similar to the o ne used
for the previous case, taking into
account the fact that in this case the
IP never becomes idle due to the
unavailability of the VP, since tas k
executio n is interrupted in that
event. Recall that if the VP is
available when a vector instruction
has to be issued, the task in execution
is not interrupted. Notice that in
this case, type B intervals will not
occur and therefore expression (12)
correctly represents the time spent
at the CPU since this expression is a
particular case of expression (9)with
PB set . to zero.

Finally, the t o tal time spent by
a task executing vector instructions
in a non-overlapped manner with the
execution of other (scalar or IP)
ins truc tions o f the same task is •
represented by server 2 . Th e service
demand 0 2 at this serve r i's

O 2 = i c * p V * p * B
(14)

Notice that the service demand at
the CPU for the C-architecture given
by expression (9) is the sum o f O 1
and 02 , given by expretsion (12 . a)
a nd (14)

5. NUMERAL RESULTS

The Input/Output portion of the
computer system was disregarded in
the numerical studies cenducted for
this paper, since both architectures
differ only in their CPU organization.
However, the inclusion of I/O devices,
if desired, may be easily considered
in the manner usually done in QN
models of co nventional computer
ar c h i te c tu r es.

In order to render our co nclusions
more realistic we used at the
Application Level, parameters derived
from published measurements of the Los
Alamos Benchmark ((Ma r tin 83), (Bucher
83) and (Lub~ck 8S)). For our numerical
example, we use parameters from the
Cray architecture. '

11.B.2.7

Table I below indi c a t cs the
values c onsidered for th t! a r c hitecture
level paramet er s in th e c ase of R-R
type architectures.

Parameter Parame ter V alue

c. 9 .5 ns lp
n sp 9

ncpip 1

nc. lp 1

Tstart 798 ns

Tstartstrip 358 ns

Telem 9.5 ns

Vmax 64

Table I - Architecture Level Parameters(R-R)

The Application Level Parameters
are indicated in Table II below . The
id e nt if i c ation of the workloads is the
one used in the Los Alamos Benchmark .
The meaning of the rightmost column
will be discussed shortly.

wor-
pv Ps

i c
R v kload (in mi11ions) v

BMKl 0.013 0 . 177 1235.39 61 .81
BMK4A 0 .1905 0.189 143.89 7 .88
BMK11A 0.011 0.702 292.28 64 .50
BMK11B o .021 0.774 199 .12 64 .63
BMK11C 0.108 0.343 100.42 64 .95
BMK14 0 .052 0.291 52 .46 49 .90
BMK21A 0 .0092 0.576 136.04 35 . 36
BMK24A 0.0459 0.349 66.53 31 .75
BMK24B 0 .033 0 . 362 246. 24 63 .84
BMK24C 0.039 0.357 555.84 47 .84

Table II- Appl ica tion Level Parameters

The different codes of the Los
Alamos Benchmark can be classified
according to the ratio, R , of
arithmetic operations exe~uted in
vector mode to the total number of
arithmetic operations executed by the
program . An estimate for this ratio is
given by the expression below:

R v* (p v* v) I (p s + Pv * v) (15)

Codes for which this ratio is
close to one are called vector bound
applications; those for which this
ratio is close to zero are called
scalar bound applications, and those
for which this ratio is close to 0.5
are called balanced applications. From

Table II one can se e that c odes
BMKllC, BMK14, BMK4A, BMK24B, BMK25C,
BMKl, and BMK24A are vector b ound
applications,codes BMKllA and BMKllB
are balanced and code BMK 21A is
scalar bound. The switc h time, sw,
used in all examples is 50 ns.

From the input parameters given
in tables I and II above one may
solve the SPN and calculate the
service demands O 1 and O 2 for the
p-Ar c h i te c tu r e a eco rd i ng to expressions
(1 2) , (13) a nd (14) . R e c a 11 t h a t
the service demand for the c
Architecture is the O 1 plus 02 as
indicated in expression (9) . Table III
shows the values of 01 and 0 2 , in
seconds, obtained by solving the SPN.
These values are compatible with those
obtained in the Los Alamos Benchmark
(Los Alamos 83), which validates our
model in a uniprogràmming environment.

Work- 01 cs 02 P.A.R.T.I.
load (sec) (sec) (sec) (7.)

BMKl 24.1 0 . 40 4 .472 18.5
BMK4A 2.633 o. 784 5.465 48 .0
BMKllA 8.61 0.122 1 . 368 15.8
BMKllB 6.372 0.17 1.9 29.8
BMK11C 1.477 0.336 3.797 39.0
BMK14 1.078 0.078 0 . 789 73.0
BMK21A 3.538 o .04 25 0.384 10.8
BMK24A 1.42 0 .09 0 .788 55 .4
BMK24B 5.34 o. 24 2. 7 50 . 5
BMK24C 12.0 0.647 6. 41 53.4

Table III- Resource Oemands and P.A.R.T.I .
for the Los Alamos Benchmark

Experimentation with an event
driven simulation program has provided
validation of our analytic models in
mul tiprogramming environments. In the
Table below we present a small sample
of the results of our simulations and
the corresponding results obtained
with the analytic models. Several
independent runs of the simulator
were made to produce 937. confidence
intervals. The close correspondence
between the two throughputs validates
our results.

N
Ana- Simu- C.I. Error
lytic la tion

4 6 . 35 6 . 74 6.36:7.11 5.7
5 7.69 8.34 7.69 :8 . 95 7.4
10 15.31 16.10 16.0:16.3 4.9

Table IV: Throughput of the p- Architecture

11.B.2.8

The values of the Pe r centage
Asymptoti c Respons e Time Improvement
for some c odes of the Lo s Alamos
Benc~mark are given in Tabl e I I I. As
it c an be observed, i n some c ases
the improvement is quite remarkabl e ,
as is the case with c ode BMK14. The
smallest observed impr ovement was
10.8 7. while the largest one was 737..
The response tim e improveme nt as a
fun c tion of the multipro gramming l eve l
i s depi c t ed graphi cal l y r o r wurkl oads
BMK1 4, BMK4a a nd BMK l l c in Figur ~ 10.

(~! o! i'"'""""0\19'7'191"' 1 ()19~ th6 conv arcr, eo.-------------------------------------

60

W ki. Bmk14 -+- WkL Bmk48

20
-- Wkl 9mk11C

o~----------~------------~----------~-

0 1C 20 3::

Muit;programmtng Leve·

Figur e 9 - Res ponse Ti me lmpro
vement for Work loa ds BMKl~,
BMK4a, and BMK11 c.

Figure 10 shows th e throu g hput
as a function of the multiprogramming
1evel for the same workload. Notice
that in this case, th e proposed
architec ture exhibits an asymptotic
th r oughput 487. high er th an the
co nventi o na l ar c hit ectur~.

Throughp;t (Joos I Second)
0.20 ,..----=----------------------

~·· LC,,,,,,,, , ,, ,,,p,,,,p,,,,,,
0.10

o os ,
I

I
o.ocL-----------L-----------~----------~

o 10 2:::
Mui ~tprogremmt ng L.e·.te'

Figure 10 - Throughpu t fo r Work1oad
BMK4a.

3 -·-

We show now , in Figur e ll a situation
in which two classes of work1oads are
co nsi dered simultaneously. Class 1 is
co mp osed of jobs of work1oad type
BMK4A and c la ss 2 is composed of jobs
of class BMKllB. The mu 1 tipr og r amming
1eve1 of class 1 i s co nsidered fixed
and equa 1 to 15 jobs wh i le the
mu1t ip r og r amming 1evel of c la s s 2 is
var i ed. The throughput fo r both
architectur es and for each class is
shown i n t he figure . As e xpe c ted , the
throu g hpu t of c lass 1 dec r eases as
th e through put of c1ass 2 i n c reases
wi th the increase i n the m11ltiprogramming
l evel of class 2. The to tal t hroughput
of the p- Ar c hi tecture is co nsiderably
larger than that of t he C- Architectu re .

C> 20 I"'OUOhPJ1 ('""' teecordl

0 .16 ~------~--------
Class 1 MPL • 15

1 ~
~ 0M6 1 P .A -+- Ou& 2 P .A

Oau 2 C.A

o.ocfi::=.:__ ________ _J_ ________________________ ...__

c E 10 16

F igur e ll - Through put of a two
class model.

Several other performance studies
could be easi l y carried out with the
he lp of the wo r k load cha racteriza ti on
meth odology and performance evaluation
models presen t ed he r e . The curves
displayed above are to be consider ed
ju s t an example o f the sort of results
o ne ca n obtain f r om the model.

3. CONCLUDING REHARKS

The wo rk r eported in this pape r
i s , to the auth o r s ' knowle d ge , the
f ir st attempt to develop a predi c tive
model of perfo r mance o f s uper computers
in a more gene r al env ir o nment, where
severa l programs ar e simult a n eo u sly in
executio n, i . e. , i n multip r og ramming
e nvironments . So fa r, pr ediction of
supercomputer performance has been
basically limit ed to the ca l c ulation
of t he rate of e xecution in floating
poin t opera ti ons (MFLOPS) or to the
estimation, through Amdahl ' s LAw or

11.8.2.9

extensions to it, of the potential
vector speedup of isolated programs
running in a certai n machine. Neither
approach considers the concurrency
among seve r al jobs at the various
devices of a supercomputer nor the
interna! concurrency of operations
within the CPU.

The model developed here defines
a minimum set of parameters at the
application, ar c hitecture, and
operating system levels, that is
necessary to capture the essence of
the behavior of a set of applications
running simultaneously on a given
supercomputer architecture. Those
parameters may be easily obtained in
practice, as demonstrated by the fact
that our numerical results were based
on measurements taken during the
execution of the Los Alamos benchmark.

As stated by Martin and Muller
Wichards (Martin 87), in order to
advance the science of supercomputer
performance evaluation, measurements
must be made in the context of defined
models of architecture and applications.
Thus, the analytic model presented
here is an appropriate framework for
measurements and workload characteri
zation, besides being an _important
tool for performance prediction and
capacity planning of supercomputers.
The concurrency of operations ins ide
the CPU was modeled by a Stochastic
Petri Net. The results obtained at
this level were then used to derive
the needed service demand at the CPU,
fo r a higher level Queueing Network
Model, which was used to represent the
co ncurrency of jobs at the various
devices in a multiprogramming
environment . Although not considered
in this paper, it is a trivial matter
to take into account at the QNM level
other aspects, such as modeling of
memory contention and modeling of
complex I/O architectures, using well
known techniques (Jacobson 82, Almeida
87, Buzen87).

Last, but not least, this paper
proposes a novel architecture of
supercomputers, which was shown ,
through our analytic model, to be
always superior perf o rmance-wise to
conventional supercomputer architectu
res. For the Los Alamos benchmark, the
range of improvement goes from 10,87.
to 7 3 7. .

REFERENCES

(1) Almeida 86, "Performance Ana1ysis
of a Scheme for Concurrency/
Sync hronizatio n Using Queueing
Network Mode1s", V . Almeida and L.
Dowdy, International Journa1 of
Paralle1 Programming, Vol.l5, No.
6, 1986.

(2) Almeida 87 , "Aproximate So1ution
Techniques for Queueing Network
Mod e ls of Concurrent Processing
and oth e rs Non- Product Form
Problems ", Ph.D.Dissertation,
Vanderbi 1 t University, August
1987.

(3) Amdah1 67, "The Va1idity of the
Sing1e Proc e ssor Approach to
Ac hieving La rge Scale Computing
Capabilities," AFIPS Conf.Proc .,
Vol.30, 1967.

(4) Bu c her 83 , "The Computational
Speed of Supercomputers, " Ingrid
Y.Bucher, Proceedings of the ACM
S i gmetrics Conference , 1983.

(5) Bucher 85, "Per f ormanc e As sessment
o f Supercomputers," Bucher, Ingrid
Y.and Margaret L.Simmons , in
Vector and Paralle1 Pro c essor:
Ar c hitec ture, Appli c ations, and
Performanc e Evaluation , et.Myron
Gin s ber g , North Holland, 1985 .

(6) Buz e n 87, " A Unifi ed Operational
Treatment of RPS Re c onnect
Dela ys", J.Buzen and A.Shum,
Proceedings of ACM Sigmetrics,
1987.

(7) Dongarra 8 7 , "Co mputer Benchmarking:
Paths and Pitfal1es ", J.Dongarra;
J.Martin, and J.Worlton, IEEE
Spectrum, July 1987.

(8) Ercegovac 86, "Vector Processing",
Ercegovac , Milos and Thomas Lang,
in Supercomputers , C1ass VI
Systems, Hardware and Software,
ed . S.Fernbach, E1sevier Sciense
Publishers (North-Hol1and), 1986.

(9) Hwang 87, "Computer Architecture
and Para11e1 Processing ," Kai
Hwang and Faye' A.Briggs, McGraw
Hill International Editions , 3rd
Printing, 1987.

(10) Jacobson 8 3 , "Analyzing Queueing
Network with Simultaneous Resource
Possession", P.Jacob s on and E.
Lazowska, CACM, Vol.25, No.2,
Fe bruar y 19 8 2.

11.8.2 . 10

I

(11) Lazowska 84, "Quantitati.ve Sys tem
Performance: Computer System
Analysis Using Queueing Network
Mode1s," Lazowska, E.D., J.
Zahorjan, G.S.Graham, and K. C .
Sevcik, Prentice Hall,Eng1ewood
Cliffs, N.J., 1984.

(1 2)

(13)

(14)

(15)

(16)

Los Alamos 83, "Los Alamos Natio
nal Laboratory Comput e r Benchmar
king 1983" ' J . Griffin and M.
Simmons, LA-10151-~15, 1983.

Lubeck 85, "A Benchmark Comparison
of Three Sup erco mput ers : Fujitsu
VP-200, Hitachi 5810 /2 0, and Cray
X-MP/2", Lubecj 01af, James Moere,
and Raul Mendez, IEEE Computer,
December 198 5 .

Marsan 84, "A Class of Generalized
Stochastic Petri Nets for the
Performance Evaluation of
Multiprocessors", A.Marsan, M.
Balbo, and G.Conti, ACM, Vol . 2,
No.2, 1984.

Martin 83, " Workload Characteriza
tion for Vector Computers: Tools
and Techniques," Martin. Joanne
L., Ingrid Y. Bucher, and Tony T.
Warnock, Los Alamos Natio nal
Laboratory Research Report LA-UR-
83-305, Los Alamos, New Mexico,
USA, 1983.

Martin 87, "Supercomputer Perfor
mance Evaluation: Status and
Di r e c ti o n s" , J . Ma r ti n a nd D .
Mueller-Wichards, The Journal of
Supercomputing, Vol.l, No.l, May
198 7.

(17) Menasce 81, "Optimistic versus
Pessimisti c Concurrency Central
Mechanisms in Data Base Management
Systems", Information Systems,
Pergamon Press, Vol.7, No.l, 1981.

(18) Menasce 82, "Operational Analysis
of Multiclass Systems with
Variable Degree Multiprogramming
and Memory Queueing", D.Menasce
and V.Almeida, Computer Performa~
ce, Vo1.3, No . 3, September 1982.

(19) Molloy (81), "On the Integration
of Delay and Throughput Measure s
in Distributed Processing System",
Ph.D.Thesis, UC LA 1981.

(20) Peterson 81, Petri Net Theor y and
the Mode1ing of Systems, Prentice
Hall, 1981.

(21) Weiss 84, "lnstruc tion Issue
Logic in Pipelined Computers, "
S.Weiss Sh1omo and James E.Smith,
IEEE TC Vol.C - 33 , ~o 1 l,November
1984.

APPENDIX A: Markov Chai n Equiva1ent
to the SPN for the C
Architecture

Basica11y, a Petri Net PN (P, T,
A, M0) is a graphi c a1 mode1 composed
of p1aces (P), transitions (T), a res
(A), a nd an ini tia1 ma rking (M 0) . In
a ddition to its static properti es, a
PN has dynamic properties that
resu1t from its exec ution. The executio n
of a Petri Net i s contro11ed bv th e
position and movements of tokens (*) in
the Petri Net. A PN executes by firing
transitions. A transition is enabled
to fire when all of its input places
contain a token. A continuous
stochastic Petri Net SPN (P, T, A,
M , L) is formed by associating a
firing rateL with each transition.Once
transition Ti is enab1ed , i~s mean
firing time duration is Fi = 1 I Li,
exponentia11y distributed. It is
known (Mo11oy 81) that any finite pla-
c e, finite transition, marked
stochastic PN is isomorph ic to a
Markov process. In a SPN, with a
given initia1 ma rking M0 , the
rea c habi1ity set is defined as the set
of a ll markings that can be rea c hed
from M0 by means of a sequence of
transition firing. For our specifi c
SPN (figu re 5) , the reachability set
and the co rresponding Markov cha in are
shown belox .

Pe tr i Net Reachabi1it;t Set

Marking Pl P2 P3 P4 P 5 P6

Ml 1 1 1 o o o
M2 1 o 1 1 o o
M3 o o 1 1 1 o
M4 o 1 l o 1 o
MS l 1 o o o 1
M6 o 1 o o 1 1
M7 1 o o 1 o 1
~18 o o o 1 I 1

11.B.2 . 11

