ON THE INVESTIGATION OF SUPERCOMPUTER ARCHITECTURES IN
MULTIPROGRAMMING ENVIRONMENTS USING ANALYTIC MODELS

Daniel A.Menasce

Departamento de Informatica

Pontificia Universidade Catolica (PUC-RJ)
22453 Rio de Janeiro, Brazil

Virgilio A.F.Almeida

Departamento de Ciencia da Computagao
Universidade Federal de Minas Gerais (UFMG)
30161 Belo Horizonte, Brazil

RESUMO

Os supercomputadores tem sido usados para aplicagoes que
exlgem uma alta capacidade de desempenho, tais como: previsao at
mosférica, s1mulagao de novas aeronaves e automoveis, modelagem
de reservatorios de petroleo e outras. Dado o seu alto custo, os
supercomputadores executam sistemas operacionais multiprograma-
dos (ex: Cray/UNICOS), que permitem que Seus recursos sejam com-
partilhados por varios usuarios remotos e locais. Portanto, e im
portante avaliar o desempenho de supercomputadores em ambientes
de multiprogramagao. A maioria dos estudos de desempenho existen
tes concentra atengao na avaliagao da velocidade de programas que
executam isoladamente em um supercomputador.

Modelos analiticos, baseados nas redes de filas e redes de
Petri, sao desenvolvidos neste trabalho com duas finalidades. A
primeira delas & avaliar o desempenho de supercomputadores em am
bientes de multlprogramagao com varias classes de usuarios execu
tando simultaneamente. A outra finalidade consiste da avaliagao
de uma proposta aqui apresentada para uma modificagao da arqulte
tura dos supercomputadores vetoriais. Varios exemplos numéricos
sao apresentados para ilustrar os modelos apresentados.

ABSTRACT

Supercomputers are being widely used for applications that
require high speed computing, such as weather forecasting,
spaceship and aircraft design and simulation, and analysis of
geological and seismic data, to name a few. These machines run
multiprogrammed time-sharing operating systems, so that their
facilities can be shared by many local and remote users.Therefore,
it is important to be able to assess the performance of

supercomputers in multiprogrammed environments. Most studies of
supercomputers performance are concerned sith the evaluation of
the effective speed of a program running in isolation on a
particular supercomputer. Analytic models based on Queueing
Networks (QNs) and Stochastic Petri Nets (SPNs) are used in this
paper with two purposes. The first is to evaluate the performance
of supercomputers in multiprogrammed environments, and the
second is to compare performance-wise conventional supercomputer
architectures with a novel architecture proposed here. It is
shown, vith the aid of the amalytic models, that the pronosed
architecture is preferable performance-wise over the existing
conventional supercomputer architectures. A three lev:lworkload
characterization model for supercomputers is presentz=d.Input data
for the numerical examples discussed here are extracted from the
well known Los Alamos Benchmark.

11.B.2.1

1. INTRODUCTION

Vector computers are being widely
used for applications that require
high speed computing, such as weather
forecasting, spaceship and aircraft
design and simulation, and analysis of
geological and seismic data, to name
a few. These machines are also called
supercomputers because they are the
fastest machines of their times.

Supercomputers are very expensive
machines and they run multiprogrammed
time-sharing operating systems, SO
that their facilities can be shared by
many local and remote users.Therefore,
it is important to be able to assess
the performance of supercomputers in
multiprogrammed environments. Most
studies of supercomputer performance
are concerned with the evaluation of
the effective speed of a program
running in isolation on a particular
supercomputer. The effective speed of
the machine running a specific program
results from the combination of
different speeds, such as, the
sequential speed, the vector or
synchronous speed, and the parallel or
asynchronous speed. These three factors
may be combined by a relation which is
an extension of Amdahl's Law (Amdahl
67). The reader is referred to (Bucher
83), (Bucher 85), (Lubeck 85),(Dongarra
87), for studies, based on actual
measurements of benchmarks, which
analyze the effective speed of vector
computers in uniprogramming
environments.

Analytic models based on Queueing
Networks (QNs) and Stochastic Petri
Nets (SPNs) are used in this paper
with two purposes. The first is to
evaluate the performance of supercomputers
in multiprogrammed environmments, and
the second is to compare performance-
wise conventional supercomputer
architectures with a novel architecture
proposed here. It is shown here, with
the aid of the analytic models, that
the proposed architecture is preferable
performance-wise over the conventional
architectures,

Queueing network models having
product form solutions, which are
amenable to efficient and general
solution techniques, cannot represent
directly the performance of vector and
parallel computers (Almeida 86),
(Lazowska 84). The reason stems from
the concurrency that exists between
processors working on the same job. In
order to model this concurrency, a SPN
model (Molloy 81), (Marsan 84) of a
job executing in isolation is used at

the lower level. An upper level model,
i.e., the QN model, is wused to
represent the multiprogramming
environment. The combination of both
modelling techniques leads to a new
supercomputer performance model.

This paper is organized as follows.
Section two presents a brief discussion
on supercomputer architectures. Section
three introduces a workload
characterization model for supercomputers.
Analytic models to analyze and compare
supercomputer architectures are
presented in section four. Numerical
results are then presented and discussed
in section five. Finally, section six
presents some concluding remarks.

2. SUPERCOMPUTER ARCHITECTURES

Vector computer architectures
are characterized by CPUs composed of
three different types of processors:

a. Instruction Processor (IP): it
is the unit that fetches, decodes,
prepares, and executes some special
instructions.

b. Scalar Processor (SP): it is
the unit that executes scalar
instructions.

c. Vector Processor (VP): it is
the unit that executes vector
instructions.

A vector computer may have several
scalar functional units and several
vector functional units capable of
independent parallel operation. The
CRAY X-MP computer is an example of
this tyvpe of architecture (Lubeck 85).
See Figure 1 for a schematic view of
the architecture of a conventional
supercomputer.

SCALAR
PROCESSOR

¢ 1

M
INTRUCTION
" | processon
o]
" I
Y VECTOR
PROCESSOR
Figure 1 - Organization of
a Conventional Supercomputer -

11822

The operation of this type of
architecture may be described as
follows. The IP fetches and decodes
an instruction. If it is a scalar
instruction and if there is a free
scalar functional unit, the scalar
instruction 1is issued to the SP for
execution. If the SP is busy, the IP
stays idle until the SP becomes

available. If the instruction is of the

vector type and there is a vector
functional unit available, the

instruction 1is issued to the VP for
execution. Otherwise, the IP stays
idle until the VP becomes available.

The execution time of a vector
instruction is a function of the
number of elements of the array(vector
length) to be operated by the
instruction, and of the time required
to fill the pipe before starting the
pipelined execution of the vector
instruction.

There are basically two types
of architectures of vector
processing units: those which, like
the CDC Cyber-205, reference memory
directly in their vector instructions,
and those which, like the Cray-1,
require that the array be loaded

piece-wise into vector registers before

the execution of the operation can
start. The first type of architecture
will be referred hereafter as M-M-(for
Memory-to-Memory) computers and the
second type as R-R (for Register-to-
Register) computers. A more detailed
description of the operation of
supercomputers can be found in((Hwang
87), Ercegovac 86) and (Weiss 84)).

A vector operation on a vector
of length 1000 may take roughly 11 us
on a Cyber-205 and 30 *i1s on a Cray-1
computer (Bucher 83). Since these
times are orders of magnitude greater
than those for scalar instruction
execution, it may be advantageous to

modify the architecture described above

in the following manner:

i. if a vector instruction is

decoded, prepared and ready to be issued

to the vector processor and i1f there
is, at least, one functional unit
available in the VP, the instruction
is executed while the issuing task
continues its processing at the CPU;

ii. if a vector instruction is
decoded, prepared and ready to be
issued to thevector processor, and if
there is no vector functional wunit
available on the VP, the following
must occur:

- the vector instruction is placed on
an execution queue of wvector
instructions for the VP;

- the current task execution 1is
suspended and another task 1is
dispatched by the operating system;

iii. when the VP completes the
execution of a vector instruction which
had been started in an independent
way (i.e. which does not belong to the
task in execution), the VP generates
an interrupt to the CPU so that the
operating system may place the task
whose vector instruction has just
completed in the ready queue for the
CPU.

The architecture described above
considers the VP very much like a
peripheral unit of the CPU. The
motivation for it stems from the
potentially large execution times for
vector instructions compared to those
of scalar instructions, and from the
fact that in a multiprogrammed
environment more parallelism may be
achieved if the VP is allowed to
execute vector instructions for a task
other than the one that is in hold of
the CPU. Figure 2 depicts the proposed
architecture.

R =1
1 |
! SCALAR 1
-
" : PROCESSOR i o
| 1
. 1 |
E [!
! INTRUCTION 15,
——————————— | MTRUETON e
PROCESSOR [3
M ! ! 1
| S | !
0 i
QUEUE OF |
R VECTOR INSTRUCTIONS =
[}
1
1
Y VECTOR 4
——— ——————————
PROCESSOR
Figure 2 - Proposed Architecture
for Supercomputers,

From this point on we will refer to the
conventional architecture and to the

proposed architecture as C-Architecture
and P-Architecture respectively.

3. WORKLOAD CHARACTERIZATION MODEL OF
SUPERCOMPUTERS

An interesting report on workload
characterization for vector computers
was carried out by Martin et al.(Martin
83) at the Los Alamos National
Laboratory. This study used a
benchmark for supercomputers, known
as the Los Alamos Benchmark, which is

11.8.2.3

a set of scientific programs that run
at that Laboratory.

In this section we will take a
slightly different approach towards
workload characterization of
supercomputers, since we are interested
in using measured data as input for
analytic models. Our approach for
workload characterization considers
three levels of parameters: application,
operating system, and architecture
level as indicated be Figure 3. The
parameters at these three levels will
then be mapped into the analytic model
parameters as will be discussed 1in
section four.

APPLICATION OPERATING ARCHITECTURE
LEVEL SYSTEM LEVEL LEVEL
PARAMETERS PARAMETERS PARAMETERS
AMNALYTIC
MODEL
PARAMETERS
PERFORMANCE
MEASURES
Figure 3 - Workload Characterization
Approach

3.1. Application Level Parameters

Consider the following parameters
at this level:

Pg ' percentage of scalar code, i.e.
fraction of the total executed
instructions which are executed
at the SP.

P : percentage of vector code, i.e.
fraction of the total executed
instructions which are executed
at the VP .

Fyp ¢ percentage of code which 1is
executed exclusively by the IP
(e.g. jumps, address computations,
register transfers).

An obvious relationship between the
above parameters is
P + P + P = T (1)
s Vv I .
The remaining parameters at this level

are:

(1) A vector instruction is counted here as
one instruction, independently of the number
of operations performed by it. In order to
obtain the number of elements that have been
operated in vector mode, one should mul tiply
the vector instruction count by the average
vector length.

v : average vector length

ic : instruction count, i.e.number of
executed instructions.

A question that arises is whether these
data may be easily obtained in
practice. The answer is affirmative as
can be deduced from (Martin 83),(Bucher
85) which show tables containing the
above parameters directly or other data
from which the necessary parameters may
be easily derived. For instance, the
average vector length, v, for each code
in the Los Alamos Benchmark is given in
(Martin 83), (Bucher 83) and (Lubeck
85). Also, Table III of (Martin 83)
contains the instruction count, ic, for
each benchmark code of the same benchmark.
Besides the total instruction count,the
same table displays the instruction
count per instruction class. These
figures allow us to easily derive the
percentage of scalar and vector code,
Pg and py .respectively. ?inally, P

may be derived from equation (l)above.

3.2, Operating System Parameters

The relevant parameters at this
level are:

R : number of different types of
classes of workloads.
Different workload classes may
differ in the type of demand they
place on the several resources of
the computer system.

N _: maximum multiprogramming level for
class r (1 <e<R).

sw : time necessary to switch the
context between two tasks.

This parameter is a function of the
number of load and store instructions
necessary to save the context of the
suspended task and to install the
context of a new task. Some computers
are capable of switching the context
with a single instruction, making this
process much faster.

3.3. Architecture Level Parameters

Consider the following parameters:

Cip ¢ Instruction Processor cycle time
(considered the same for the
Scalar Processor).

nCs : average number of cycles per
P scalar instruction.

nCjp: average number of cycles per
instruction executed at the IP.

ncpip:average number of cycles to
prepare an instruction.

nf g : average number of scalar
functional units in use.

11.B.2.4

nf : average number of vector
functional units in use.

OT(V): function that determines the
average execution time of a
vector instruction on vector
of average length v for
architectures of type T (T =
M-M or R-R).

So, according to (Bucher 83),

PM-M(v) = Tstar+v*Telem (2)
where

Tstart: startup time for the
vector operation

Telem : time per result element

oR—R(v)=Tstart+v=(Tstartstrip/v;nax+Telem) (3)

where Tstart and Telem are as defined
above and

Vmax: number of elements of the
vector register

Tstartstrip: time to load the
vector register.

For instance, (Bucher 83) shows that
for the Cyber-205 supercomputer (which
is of the M-M type), the following
relationship holds

Beyber-205(v) = 1000+10%y (4)

where the constants in the the above
equation are given in nanoseconds(ns).

4. ANALYTIC MODEL OF SUPERCOMPUTERS

In order to evaluatgeand compare
the C-Architecture and the P-Architec-
ture we are going to use a two-level
modelling approach (Menasce 1981)
indicated by Figure 4.

APPLICATION ARCHITECTURE OPERATING
SYSTEM
LEVEL LEVEL CevEL
PARANETERS PARAMETERS PARAMETERS
SPN
MODEL
r
QN MODEL

|

Figure 4 - Two-level Modelling
Approach

11:8.2.5

A Queueing Network (QN) model is
used to obtain the desired performance
measures, namely average response time
and throughput in a multiprogrammed
environment. QN models require as
input parameters the set of average
service demands for each server and
each class (Lazowska 84). So, let

D, : average service demand of class
I .
r tasks at server 1i.

In other words, Dj , is the average
total time spent by a class.r task at
device i while being served at the
device.

Notice that the queueing time is
not considered in Dj , but is computed
when the QN model is solved, using
the standard Mean Value Analysis
Technique (see Appendix A).

A continuous—-time Stochastic Petri
Net (SPN) model is used to derive ‘the
service demand at the CPU. An SPN model
is necessary here in order to reflect
the parallelism between the various
processors (IP, SP and VP) at the CPU.
The following sections discuss the
analytic model used to evaluate both
architectures.

4.1. Analytic Model for the C-
Architecture

Consider the SPN shown in Figure
5 which represents the CPU composed of
the IP, SP and VP.

P
PREPARING
INSTRUCTION

VP
AVAILABLE

“\\

sp
AVAILABLE

se vP
EXECUTING EXECUTING

Ta Te

)

Figure 5 - SPN for the C-Architecture

The following meanings are
associated with the various places of
the above SPN when there is a token in
the place:

Place # Meaning when there is one tokenin it

IP is
SP is
VP is
SP is

in

preparing an instruction

available

available

busy executing instructions

all its functional units.

IP is executing an instruction

VP is busy executing instruction in
all its functional units.

Lo

[¥,]

The firing time of transitions T,
Ty and T3 represent the time need to
fetch, decode and prepare an instruction,
regardless of its type. The expected
firing time of T; , T, and T4 is equal
to

F, = C

5 (5)

ip nepjp
The firing time of transitions Ty

T5 and Tg represent the execution

time of a scalar instruction, of an

IP instruction and of a vector

instruction, respectively. Their

expected firing times are given by,

= %
Fru Cip ncsp/ nfS (6)
FT5= Cip* Cip (7)
Freg = @0(v) [/ nfv (8)

The sclution of an SPN is the set
of steady state probabilities of all
possible markings of its reachability
set (Peterson 1981). These probabilities
may be obtained by solving the Markov
Chain equivalent to the SPN.Appendix
B presents the Markov Chain for the
SPN of Figure 5. The solution to it
for each set of parameters may be
obtained numerically using the Gauss
elimination method.

Given the solution of the SPN,one
is able to compute. the service demand
of a task at the CPU. This procedure
will now be explained with the aid of
Figure 6 which illustrates three time
axis, one for each of the three
processors (IP, SP and VP). Consider
the following sequence of instructions

S1, 82, V1, Vg, S35, I, V3,54,12, 13
where S1, denotes the i-th scalar
instruction of a task, V;y the i-th

vector instruction of a task, and I
the i-th IP instruction. As it can %e
seen, the IP time axis shows sequences
of intervals of the following types:

i. preparation of scalar instructions
ii. preparation of vector instructions
iii. preparation of IP instructions

iv. cutio IP instryctions
v. eﬁfe pergo s of type X

T idle periods of type B.

IP

SP

An IP idle period of type A occurs
when a scalar instruction is ready

to be issued but the SP is busy.
Similarly, a type B idle period occurs
when a vector instruction is ready to
be issued but the VP is busy.

[P @
S, S; A VWV, B Sy lg L V3 Selp 2 Iy s

-

5, Sz Sy

v, Vs A

Figure 6 — Execution Sequence at th
IP, SP and VP

Therefore, the service demand at
the CPU, Dgpy is given by the sum of
the lengths of the following intervals:
total time to prepare all scalar
instructions, total time to prepare all
vector instructions, totzi time to
prepare and execute all P instr.-tions,
total duration of all type A i teyrals,
and total duration of all type B
intervals.

Decpy =
ic * (cjp * ncpjp + Py * cjip * oy
Ps * pa Fpg + Py * Pp ?Tel
(9)
where p, is the probability that a

occurs when a

is to be issued.

sum of the

of two markings (see

type A idle period
scalar instruction
This is simply the
probabilities (Pr)

Appendix A) in the SPN as indicated
below
pa=Pr(1l, 0,1, 1,0, 0).+

Pr(1, 0, 0, 1, 0, 1) (10)

Similarly, pg 1is the probability that
a type B idle perlod occurs when a
vector instruction is to be ussued.
Thus,

pB=Pr(1,1,0,0,0 173 %

Pr(1; O, Oy 1 1} (11)
The queueing network that represents
the C-Architecture is shown in Figure
7. Server 1 represents the CPU whose
service demand for class r Dgp is
obtained from expression (9). The set

of Application Level parameters may be
different for each workload class r,
while the Architecture Level parameters
are the same for all classes.

11.B.2.6

/0
SUBSYSTEM
oN

L)—

SERVER |

Figure 7 - QN model for the
C-Architecture

Numerical results obtained with this
model are given in section 5.

4.2, Analytic Model for the P-
Architectare

The SPN model for this
architecture is identical to that of
figure 5. The equivalence of the SPN
model for both architectures stems
from the fact that the C-architecture
and the P-architecture have the same
behavior when the multiprogramming
level is equal to one. The difference
between the architectures is
represented by the queueing network
model, which models the mul tiprogram-
ming effects.

Before we indicate how to obtain
the service demand at the CPU it is
important to explain how the CPU is
going to be modelled in this type of
architecture. The QN model for the P-
Architecture is shown in Figure 8.
Server 1 accounts for the time spent
by a task at the CPU while using the
IP, SP or using the VP in an
overlapped fashion with the other two
processors. Also, the service demand
of server 1 includes the additional
time (CS) spent by a task in context
switching due to VP unavailability.
The service demand of server 1 is
given by the expression (12) below.

D;P =D, + CS (12)

1

where D; and CS are given by
expressions (12.a) and (13)
respectively.

D1= ic * (Cip* ncip +p1* éip*
meip TP T Py Tk (12a)
where p A is defined in (10).

CS = ic * p; * pg* sw (13)

1/0 SUBSYSTEM
aN

Figure 8 - QN Model for the P-
Architecture

Expression (12) is derived using
an argument similar to the cne used
for the previous case, taking into
account the fact that in this case the
IP never becomes idle due to the
unavailability of the VP, since task
execution is interrupted in that
event. Recall that if the VP is
available when a vector instruction
has to be issued, the task in execution
is not interrupted. Notice that in
this case, type B intervals will not
occur and therefore expression (12)
correctly represents the time spent
at the CPU since this expression is a
particular case of expression (9)with
Pg set to zero.

Finally, the total time spent by
a task executing vector instructions
in a non-overlapped manner with the
execution of other (scalar or IP)
instructions of the same task is °
represented by server 2. The service
demand D, at this server is

B = e T pg® Pp* Py (143

Notice that the service demand at
the CPU for the C-architecture given
by expression (9) is the sum of D
and Dy , given by expression (12.a)
and (14)

5. NUMERAL RESULTS

The Input/Output pertion of the
computer system was disregarded in
the numerical studies cenducted for
this paper, since both architectures
differ only in their CPU organization.
However, the inclusion of I/0 devices,
if desired, may be easily considered
in the manner usually done in QN
models of conventional computer
architectures.

In order to render our conclusions
more realistic we wused at the
Application Level, parameters derived
from published measurements of the Los
Alamos Benchmark ((Martin 83), (Bucher
83) and (Lubeck 85)). For our numerical
example, we use parameters from the
Cray architecture.

11.B.2.7

Table I below indicates the
values considered for the architecture
level parameters in the case of R-R-
type architectures.

Parameter Parameter Value
s 9.5 ns
ip
n 9
sp
nepiy 1
ncip 1.
Tstart 798 ns
Tstartstrip 358 ns
Telem 85 ns
Vmax 64

Table I - Architecture Level Parameters(R-R)

The Application Level Parameters
are indicated in Table II below. The

Table II1 one can see that codes
BMK11C, BMK14, BMK4A, BMK24B, BMK25C,
BMK1l, and BMK24A are vector bound
applications,codes BMK1lA and BMKI11B
are balanced and code BMK21A 1is
scalar bound. The switch time, sw,
used in all examples is 50 nus.

From the input parameters given
in tables I and II above one may
solve the SPN and calculate the
service demands D; and Dy for the
p-Architecture according to expressions
(12), (13) and (l4). Recall that
the service demand for the G-
Architecture is the D1 plus Dy as
indicated in expression (9). Table III
shows the values of Dy and D3 , in
seconds, obtained by solving the SPN.
These values are compatible with those
obtained in the Los Alamos Benchmark
(Los Alamos 83), which validates our
model in a uniprogramming environment.

identification of the workloads is the Work- D €s D P.A.R.T.I.
one used in the Los Alamos Benchmark. load (sec) (sec) (sec) (%)
The meaning of the rightmost column
will be digcussed sho§t1$? ° R 4.1 0530 Yookl 2 1.4
BMK4A 2.633 0.784 5.465 48.0
BMK11A 8.61 Qedi22 1.368 1:5.:8
wor- ic 2 REITC 1477 0.3 3997 39.0
. = . v v
elieuc) ® (in millions) BMK14 1.078 0.078 0.789 73.0
BMK1 0.013 0.177 1235.39 61 .81 BMK21A 3.538 0.0425 0.384 10.8
BMK4A 0.1905 0.189 143.89 7 .88 BMK 24A 1.42 0.09 0.788 55.4
BMK11A 0.011 0,702 292.28 64 .50 BMK24B 5.34 0.24 247 50.5
BMK11B 0.021 0.774 199.12 64 .63 BMK 24C 12.0 0.647 6.41 53.4
BMK11C 0.108 0.343 100.42 64 .95
BMK14 0.052 0.291 52.46 49 .90 Table III - Resource Demands and P.A.R.T.I.
BMK21A 0.0092 0.576 136,04 35 .36 for the Los Alamos Benchmark
BMK24A 0.0459 0.349 66.53 31 75
BMK24B 0.033 0.362 246.24 63 .84 Experimentation with an event-
BMK24C 0,039 0.357 555.84 47 .84 driven simulation program has provided
validation of our analytic models in
_ . . multiprogramming environments. In the
Table II - Application Level Parameters Table below we present a small sample
Pha ditfersnt sades oF rha Dos of the results of our simulations and

Alamos Benchmark can be classified
according to the ratio, R_, of
arithmetic operations executed 1in
vector mode to the total number of
arithmetic operations executed by the
program. An estimate for this ratio is
given by the expression below:
RV* ('Pv* v) / (Ps+pv*v) (15)
Codes for which this ratio is
close to one are called vector bound
applications; those for which this
ratio is close to zero are called
scalar bound applications, and those
for which this ratio is close to 0.5
are called balanced applications. From

the corresponding results obtained
with the analytic models. Several
independent runs of the simulator
were made to produce 937 confidence
intervals. The close correspondence
between the two throughputs validates
our results.

Ana- Simu—
R lytic lation Gl Feper
4 6.35 6.74 6.36:7.11 5,7
5 7.69 8.34 7.69:8.95 7.4
10 15.31 16.10 16.0:16.3 4.9

Table IV: Throughput of the p-Architecture

11.B.2.8

The values of the Percentage
Asymptotic Response Time Improvement
for some codes of the Los Alamos
Benchmark are given in Table III. As
it can be observed, in some cases
the improvement is quite remarkable,
as is the case with code BMK1l4. The
smallest observed improvement was
10.8 % while the largest one was 737%.
The response time improvement as a
function of the multiprogramming level
is depicted graphically for workloads

BMK14, BMK4a and BMKllc in Figure 10.

(%! of improvemert over the conv arch
60 -
40 -

—— Wkl Bmk14 —— Wk! Bmk4a
20
—*— Wkl Bmklic
0 * 1 1 = =
(o] 1C 20 3C

Muitiprogramming Leve

Figure 9 - Response Time Impro-
vement for Workloads BMKls4,
BMK4a, and BMKllc.

Figure 10 shows the throughput
as a function of the multiprogramming
level for the same workload. Notice
that in this case, the proposed
architecture exhibits an asymptotic
throughput 487% higher than the
conventional architecture.

Oanoughput (Jobs / Second]

0.16

0'10 S—
— New Arch —— Conventiona' Arch.
005+
0oc - : '
0 10 2C ac

Multiprogramming Leve'

Figure 10 - Throughput for Workload
BMK4a.

We show now, in Figure 11 a situation
in which two classes of workloads are
considered simultaneously. Class 1 is
composed of jobs of workload type
BMK4A and class 2 is composed of jobs
of class BMK11B. The multiprogramming
level of class 1 is considered fixed
and equal to 15 jobs while the

mul tiprogramming level of class 2 is
varied. The throughput for both
architectures and for each class is
shown in the figure. As expected, the
throughput of class 1 decreases as

the throughput of class 2 increases
with the increase in the multiprogramming
level of class 2. The total throughput
of the p-Architecture is considerably
than that of the C-Architecture.
throughput (jobs/second}

larger

Class 1 MPL = 15

—— Qass 1 PA —+ Claass 2 P.A

—4— Cisas 1 CA —5 Qass 2 CA

b

B—) :

o

o] £ 10

Figure 11 - Throughput of a two-

class model.

Several other performance studies
could be easily carried out with the
help of the workload characterization
methodology and performance evaluation
models presented here. The curves
displayed above are to be considered
just an example of the sort of results
one can obtain from the model.

35 CONCLUDING REMARKS

The work reported in this paper
is, to the authors'knowledge, the
first attempt to develop a predictive
model of performance of supercomputers
in a more general environment, where
several programs are simultaneously in
execution, i.e., in multiprogramming
environments. So far, prediction of
supercomputer performance has been
basically limited to the calculation
of the rate of execution in floating
point operations (MFLOPS) or to the
estimation, through Amdahl's LAw or

11.B.2.9

extensions to it, of the potential
vector speedup of isolated programs
running in a certain machine. Neither
approach considers the concurrency
among several jobs at the various
devices of a supercomputer nor the
internal concurrency of operations
within the CPU.

The model developed here defines
a minimum set of parameters at the
application, architecture, and
operating system levels, that is
necessary to capture the essence of
the behavior of a set of applications
running simultaneously on a given
supercomputer architecture. Those
parameters may be easily obtained in
practice, as demonstrated by the fact
that our numerical results were based
on measurements taken during the
execution of the Los Alamos benchmark.

As stated by Martin and Muller-
Wichards (Martin 87), in order to
advance the science of supercomputer
performance evaluation, measurements
must be made in the context of defined
models of architecture and applications.
Thus, the analytic model presented
here is an appropriate framework for
measurements and workload characteri-
zation, besides being an important
tool for performance prediction and
capacity planning of supercomputers.
The concurrency of operations inside
the CPU was modeled by a Stochastic
Petri Net. The results obtained at
this level were then used to derive
the needed service demand at the CPU,
for a higher level Queueing Network
Model, which was used to represent the
concurrency of jobs at the various
devices in a multiprogramming
environment. Although not considered
in this paper, it is a trivial matter
to take into account at the QNM level
other aspects, such as modeling of
memory contention and modeling of
complex I/0 architectures, using well
known techniques (Jacobson 82, Almeida
87, Buzen 87).

Last, but not least, this paper
proposes a novel architecture of
supercomputers, which was shown,
through our analytic model, to be
always superior performance-wise to
conventional supercomputer architectu-
res. For the Los Alamos benchmark, the
range of improvement goes from 10,87
to 73%:

REFERENCES

(1)

(2)

(3)

(&)

D)

(6)

(7)

(8)

(9)

(10)

11.B.2.10

Almeida 86, "Performance Analysis
of a Scheme for Concurrency/
Synchronization Using Queueing
Network Models", V.Almeida and L.
Dowdy, International Journal of
Parallel Programming, Vol.l5, No.
6, 1986.

Almeida 87, "Aproximate Solution
Techniques for Queueing Network
Models of Concurrent Processing
and others Non-Product Form
Problems'", Ph.D.Dissertation,
Vanderbilt University, August
1987.

Amdahl 67, "The Validity of the
Single Processor Approach to
Achieving Large Scale Computing
Capabilities," AFIPS Conf .Proc.,
Vol.30, 1967.

Bucher 83, "The Computational
Speed of Supercomputers,'" Ingrid
Y.Bucher, Proceedings of the ACM
Sigmetrics Conference, 1983.

Bucher 85, "Performance Assessment
of Supercomputers,'" Bucher, Ingrid
Y.and Margaret L.Simmons, in
Vector and Parallel Processor:
Architecture, Applications, and
Performance Evaluation, et.Myron
Ginsberg, North Holland, 1985.

Buzen 87, "A Unified Operational
Treatment of RPS Reconnect
Delays", J.Buzen and A.Shum,
Proceedings of ACM Sigmetrics,
1987.

Dongarra 87, "Computer Benchmarking:
Paths and Pitfalles", J.Dongarra,
J.Martin, and J.Worlton, IEEE
Spectrum, July 1987.

Ercegovac 86, "Vector Processing",
Ercegovac, Milos and Thomas Lang,
in Supercomputers, Class VI
Systems, Hardware and Software,
ed. S.Fernbach, Elsevier Sciense
Publishers (North-Holland), 1986.

Hwang 87, "Computer Architecture
and Parallel Processing," Kai
Hwang and Faye' A.Briggs, McGraw-
Hill International Editioms, 3rd
Printing, 1987.

Jacobson 83, "Analyzing Queueing
Network with Simultaneous Resource
Possession", P.Jacobson and E.
Lazowska, CACM, Vol.25, No.2,
February 1982.

(11) Lazowska 84, "Quantitative System (21) Weiss 84,
Performance: Computer System Logic in Pipelined Computers,"”
Analysis Using Queueing Network S.Weiss Shlomo and James E.Smith,

Models," Lazowska, E.D., J. IEEE TC Vol.C-33, No 1l1,November
Zahor jan, G.S.Graham, and K. €. 1984 .
Sevcik, Prentice Hall,Englewood

Cliffs, N.Jis 1984,

"Instruction Issue

APPENDIX A: Markov Chain Equivalent
to the SPN for the C-
Architecture

(12) Los Alamos 83, "Los Alamos Natio-
nal Laboratory Computer Benchmar-
king 1983"' J.Griffin and M.

Simmons, LA-10151-MS, 1983. Basically, a Petri Net PN (P, T,

. . A, Mg) is a graphical model composed
(13) Lubeck 85, "A Benchmark Comparison of places (P), transitioms (T), arcs

of Three Supercomputers: Fujitsu (A), and an initial marking (M,). 1In
VP-200, Hitachi $810/20, and Cray addition to its static properties, a
X-MP/2", Lubecj Olaf, James Moore, PN has dynamic properties that

and Raul Mendez, IEEE Computer, result from its execution. The execution

December 1985. of a Petri Net is controlled bv the
position and movements of tokens (*) in
(14) Marsan 84, "A Class of Generalized the Petri Net. A PN executes by firing
Stochastic Petri Nets for the transitions. A transition is enabled
Performance Evaluation of to fire when all of its input places
Multiprocessors", A.Marsan, M. contain a token. A continuous
Balbo, and G.Conti, ACM, Vol.2, stochastic Petri Net SPN (P, T, A;
No.2, 1984. M , L) is formed by associating a
firing rateL with each transition.Once
(15) Martin 83, "Workload Characteriza transition T is enabled, its mean
tion for Vector Computers: Tools firing time duration is F, =1 / L;,
and Techniques," Martin. Joanne exponentially distributed. It 1is
L., Ingrid Y. Bucher, and Tony T. known (Molloy 81) that any finite pla-
Warnock, Los Alamos National ce, finite transition, marked
Laboratory Research Report LA-UR- stochastic PN is isomorphic to a
83-305, Los Alamos, New Mexico, Markov process. In a SPN, with a
USA, 1983. given initial marking M,, the
reachability set is defined as the set
(16) Martin 87, "Supercomputer Perfor- of all markings that can be reached
mance Evaluation: Status and from My by means of a sequence of
Directions", J.Martin and D. transition firing. For our specific
Mueller-Wichards, The Journal of SPN (figure 5), the reachability set
Supercomputing, Vol.l, No.l, May and the corresponding Markov chain are
1987. shown belox.
(17) Menasce 81, "Optimistic versus Petri Net Reachability Set
Pessimistic Concurrency Control
Mechanisms in Data Base Management Marking Pl B2 P'3 P4 P5 P6
Systems”", Information Systems, M1 1 1 1 o 0 0
Pergamon Press, Vol.7, No.l, 1981. M2 1 0 1 1 0 0
(18) Menasce 82, "Operational Analysis :2 g ? i é % g
of Multiclass Systems with
. - 5 M5 1 1 0 0 0 1
Variable Degree Multiprogramming M6 0 1 0 0 1 1
and Memory Queueing", D.Menasce 7 . 0 0 1 0 "
and V.Almeida, Computer Performan %8 0 0 0 1 : 1

ce, Vol.3, No.3, September 1982.

(19) Molloy (81), "On the Integration
of Delay and Throughput Measures

in Distributed Processing System",
Ph.D.Thesis, UCLA 1981.

(20) Peterson 81, Petri Net Theory and
the Modeling of Systems, Prentice
Hall, 1981.

11.8.2.11

