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Abstract ·· The goal of this invited tutorial paper is to provide an overview of three 
current research efforts in heterogeneous computing that focus on methods for determining 
a mapping of an application onto a heterogeneous suite of machines. 'Jne first study 
involves a genetic-algorithm approach for mapping the subtasks of an application task 
onto the machines in a distributed heterogeneous system. This is a static compile-time 
approach that must be used off-line (prior to task execution) due to its long run time. The 
second topic is the high-level design of components of an intelligent operating system for 
mapping and dynanúcally remapping automatic target recognition tasks onto a 
heterogeneous parallel platform. The intelligent operating system uses a new technique 
for dynamically selecting new mappings on-line during task execution from among 
choices precomputed off-line. Last, some initial preliminary results from a new research 
project for designing a dynamic mapping heuristic that does not use precomputed 
mappings is described. This dynamic heuristic is fast and is suitable for operation during 
application execution. Future research directions are discussed for ali three projects. 

Keywords: automatic target recognition, distributed computing, genetic algorithms, 
heterogeneous computing, mapping, matching, MSHN, parallel processing, scheduling. 

1. lntroduction 

High-performance computers typically achieve only a fraction of their peak 

capabilities on certain portions of some application tasks. This is because different 

subtasks of an application can have very different computational requirements that result 

in needs for different machine capabilities. A single machine architecture cannot satisfy 

all thc computational requirements in certain applications equally well. Thus, the use of a 

heterogeneous computing environment is more appropriate. 

The research presented in Section 2 was supported by NRaD undcr subcontract numbcr 20-950001-70; the 
research presentcd in Section 3 was supported by lhe Department of Defense, Small Business Innovative 
(SBIR) Prograrn, funded by the Anny Research Laboratory, under contract numbcr DAAL01-96-C-0031; 
and the research presented in Section 4 is supported by lhe DARPA/ITO Quorum Prograrn under NPS 
subcontract number N6227l-97-M-0900. 
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One type of heterogeneous computing (!!Ç) system provides a variety of architectural 

capabilities, orchestrated to perform an application whose subtasks have diverse execution 

requirements [SiA96]. A mixed-machine system is a heterogeneous suite of different 

types of independent machines interconnected by a high-speed network. When the goal is 

to perfonn ao application task, each subtask must be matched to the machine that results in 

the lowest overall task execution time. To exploit HC systems in such situations, a task 

must be decomposed into subtasks, where each subtask is computationally homogeneous, 

and different subtasks may have different machine architectural requirements. These 

subtasks may share initial or generated data, creating the potential for inter-machine data 

transfer overhead. 

Examples of applications that have been implemented on mixed-machine HC systems 

include a simulator for mixing in turbulent convection [KlM93], the interactive rendering 

of multiple earth science data sets on the CASA testbed [Spe90], and the computation of 

the radiation treatment planning for cancer patients on VISTAnet [RoC92]. Typically, 

users must perfonn task decomposition and subtask matching and scheduling. When 

perfonning matchiog and scheduling, the user must consider machine availability, the way 

in which each subtask's computatiooal requiremeots match each machine's capabilities, 

inter-machine shared data transfers, and others factors [SiA96]. One long-tenn pursuit in 

HC is to do decomposition, matching, and scheduling automatically [SiD97]. 

This invited tutorial paper provides an overview of three current research efforts in 

distributed and parallel mixed-machine HC. In particular, this tutorial paper focuses on 

exarnples of methods for detennining a mapping of an application onto a heterogeneous 

suíte of machines (i.e., a matching of application subtasks to machines and a scheduling 

for the execution order and inter-machine communications of these subtasks). A brief 

summary of each project is given, including references for more complete information if 

available. Possible future research directions for each project are also given. A broader 

view of the HC field and related open research problems can be found in [Esh96, FrS93, 

KhP93, SiA96, SiD97]. 

The first study, presented in Section 2, involves a genetic-algorithm approach 

developed at Purdue University for mapping the subtasks of an application task onto the 

machines in a distributed heterogeneous system [WaS98]. This is a static (i.e., compile

time) approach that must be used off-line (prior to task execution) dueto its long ruo time. 

In some situations, the execution characteristics of an application task may not be 

derivable prior to ruo time and changes during ruo time as a function of the input data. 

When this occurs, a single static mapping may not be effective over a Jong time period, 

and dynamic mapping and remapping schemes should be considered, such as the two 
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approaches discussed next. 

The sccond topic, explored jointly by Purdue University and Architecture Technology 

Corporation, is the high-level design of components of an intelligent operating system for 

mapping and dynamically remapping automatic target recognition tasks onto a 

heterogeneous parallel platform [BR97a, BR97b]. The intelligent operating system uses a 

new technique for dynamically selecting new mappings on line during task execution from 

among choices precomputed off !in e. Section 3 provides an overview o f this work. 

Section 4 describes some initial preliminary results from a new Purduc research project 

for designing a dynamic mapping heuristic that does not use precomputed mappings. This 

dynamic heuristic is fast and is suitable for operation during application execution. lt is 

based on a list-scheduling type of algorithm. 

The goal of this invited tutorial paper is to introduce the reader to these three current 

approaches to mapping research in the field of HC. The reader is encouraged to learn more 

about them, and other research topics in HC, from the references cited. Furthermore, the 

reader is encouraged to consider examining the future research problems listed in the 

following sections and in [KhP93, SiA96, SiD97, Sun92]. 

2. A Genetic-Algorithm Approach for Task Mapping 

In general, the problem of perfonning matching and scheduling in an HC environment 

is NP-complete [Fer89], and therefore some heuristic must be employed. As an example 

of current HC research on mapping statically (i.e., at compile time), a genetic-algorithm 

approach from [WaS98] is summarized. An application task is dccomposed into a set of 

subtasks ~ of size 1!1· Let s1 be the i -th subtask. An HC suíte consists of a set o f 

machines M. Let 5_ be the j -th machine. Each machine can be a different type. The 

global data items are data items that need to be transferred between subtasks. 

The following assumptions about the applications and HC environment are made. 

Each application task will be represented by a DAG (directed acyclic graph), whose nodes 

are the subtasks that need to be executed to perform the application and whose ares are the 

the data dependencies between subtasks. (Note that while the subtasks' dependencies are 

representcd as a DAG, subtasks themselves may contain loops.) For each global data item, 

there is a single subtask that produces it (producer) and there are some subtasks that need 

this data item (consumers). Each edge goes from a producer to a consumer and is labeled 

by the global data item that is transferred over it. This task has exclusive use of the HC 

environmcnt, and thc genetic-algorithm-based mappcr controls the HC machine suíte 

(hardware platform). Subtask execution is non-preemptivc. The cstimated expected 
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execution time of each subtask on each machine is known. For each pair of machines in 

the HC suíte, an equation for estimating the time to send data between those machines as a 

function of data set size is known. 

Genetic algoritluns (GAs) provide a promising hcuristic approach to optimization 

problems that are intractable [Dav91, Gol89, Hol75, RiT94, SrP94]. The first step is to 

encode some of the possible solutions as chromosomes, the set of which is referred to as a 

population. In the [WaS98] approach, each chromosome consists of two parts: the 

matching string and the scheduling string. Let mat be the matching string, which is a 

vector of length ISI. If mat(i) = j, then subtask s; is assigned to machine m1. Typically, 

multiple subtasks will be assigned to the same machine, and then executed in a non

preemptive manner based on an ordering that obeys the precedenee constraints (data 

dependencies) specified in the task DAG. The scheduling string is a topological sort of the 

DAG representing the task (i.e., a valid total ordering of the partially ordered DAG). 

Define ~ to be the scheduling string, which is a vector o f length I S 1. I f ss(k) = i , then 

subtask s; is the k -th subtask in the total ordering. Because it is a topological sort, if 

subtask ss(k) is a consumer o f a global data item produced by subtask ss(j ), then j < k. 

The scheduling string gives an ordering of subtasks that is used by the evaluation step. 

Each chromosome is associated with a fitness value, which is the completion time of 

the solution (i.e., mapping) represented by this chromosome (i.e., the expected execution 

time of the application task if the mapping specified by this chromosome were used). 

Overlapping among ali of the computations and communications performed is limited only 

by intcr-subtask data dependencies and thc availability of the machincs and the inter

machine network. 

In the initial population generation step, a predefined number of distinct chromosomes 

are randomly created. The solution from a non-cvolutionary heuristic is also included in 

the initial population. After the initial population is determined, the genetic algorithm 

iterates unlil a predefined stopping criterion is mel Each iteration consists of the selection, 

crossovcr, mutation, and evaluation steps. 

In the selection step, some members of the population are rcmoved and others are 

duplicated. First, ali of the chromosomes in the population are ordcred (ranked) by their 

fitness values. Then a rank-based roulette wheel selection scheme is used to implement 

proportionate selection [Hol75]. The population size is kept constant and a chromosome 

representing a better solution has a higher probability of having one or more copies in the 

next generation population. This GA approach also incorporates elitism, i.e., the best 

solution found so far is always maintained in the population [Rud94]. 

The selection step is followed by the crossover step, where some chrornosornes are 
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paired and corresponding components of the paired chromosomes are exchanged. The 

crossover operator for the scheduling strings randomly chooses some pairs of the 

scheduling strings in lhe current population. For each pair, it randomly generates a cutoff 

point, and divides thc scheduling strings of lhe pair into top and bottom parts. Then, lhe 

subtasks in each bottom part are reordered. The new ordering of lhe subtasks in lhe 

bottom part of one string is lhe relative positions of lhese subtasks in lhe other original 

scheduling string, lhus guaranteeing lhat the newly generated scheduling strings are valid 

schedules. The crossover operator for lhe matching strings randomly chooses some pairs 

of the matching strings in lhe current population. For each pair, it randomly generates a 

cutoff point, and divides bolh matching strings of lhe pair into two parts. Then lhe 

machine assignments of lhe bottom parts are exchanged. 

The next step is mutation. The scheduling string mutation operator randomly chooses 

some scheduling strings in lhe current population. Then for each chosen scheduling string, 

it randomly selects a victim subtask. The valid range of lhe victim subtask is lhe set of lhe 

positions in lhe scheduling string at which this victim subtask can be placed and still have 

a valid topological sort of the DAG. The victim subtask is movcd randomly to anolher 

position in lhe scheduling 'string within its valid range. The matching string mutation 

operator randomly chooses some matching strings in lhe current population. For each 

chosen matching string, it randomly selects a subtask entry. Then lhe machine assignment 

for lhe selccted entry is changed randomly to anolher machine. 

The last step of an evolution iteration is lhe evaluation step to detennine lhe fitness 

value of each chromosome in lhe current population. A communication subsystem lhat is 

modeled after a HiPPI LAN wilh a central crossbar switch [ToR93] was assumed for lhe 

tests that were conducted. As stated earlier, the above steps of selection, crossover, 

mutation, and evaluation are repeated until one of the stopping criteria are met: (1) the 

number of iterations reaches some limit (e.g., 1000), (2) the population converged (all the 

chromosomes had the same fitness value), or (3) lhe best solution found was not improved 

after some number of iterations (e.g., 150). 

In lhe tests of this GA approach in [WaS98], simulated program behaviors were used. 

Small-scale tests were conducted wilh up to ten subtasks, three machines, and population 

sizc 50. For each test, lhe GA approach found a solution (mapping) lhat had lhe same 

expected completion time for lhe task as that of lhe optimal solution found by exhaustive 

search. Larger tests wilh up to 100 subtasks, 20 machines, and population sizc 200 were 

conducted. This GA approach produced solutions (mappings) lhat averaged from 150% to 

200% better lhan lhose produced by lhe non-evolutionary levelizcd min-timc (LMT) 

hcuristic proposed in [Iv095]. The heuristic in [Iv095] was selected for comparison 
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because it used a similar model of HC. The GA approach took much more time to 

generate the mappings than did the LMT approach; however, if the mappings are being 

done at compile time for production tasks that will be executed repeatedly, the generation 

time is worthwhile. 

There are number of ways this GA approach for HC task mapping may be built upon 

for future research. These include extending this approach to allow multiple producers for 

each of the global data items, parallelizing the GA approacb, developing evaluation 

procedures for other communication subsystems, and considering loop and data

conditional constructs that involve multiple subtasks. This last extension will be 

particularly difficult to handle at compile time if the loop bounds and data-conditional 

constructs are input-data dependent 

3. Dynamic Use of Statically-Derived Mappings 

This section, which provides a simplified summary of [BR97a], focuses on a particular 

application domain (iterative automatic target recognition (ATR) tasks) and an associated 

specific class of dedicated HC hardware platforms. The contribution of [BR97a] is that, 

for the computational environment considered, it presents a methodology for on-line (i.e., 

execution-time) input-data dependent remapping of the application subtasks to lhe 

processors in the HC hardware platform using one of a set of prcviously stored off-line 

(i.e., statically) determined mappings. That is, the operating system will be able to decide 

during the execution of the application whether or not to perform a remapping based on 

information generated by the application from its input data. If the decision is to remap, 

the operating system will be able to select a previously derived and stored mapping that is 

appropriate for lhe given state of the application (e.g., the number of objects it is currently 

tracking). 

This higb-level operating system approach for enabling lhe on-line use of off-line 

mappings is called the lOS (lntelligent Operating System). The A TR Kemel component 

makes decisions on how a given A TR application task should be performed, including 

determining the partia! ordering of subtasks and which algorithrns should be used to 

accomplish each subtask [BR97b] . The HC Kemel component decides how the partially 

ordered algorithmic suggestions should be implemented and mapped onto the 

heterogeneous parallel platform. Also, lhe HC Kemel interacts with the Basic Kemel 

component (i.e., the low level operating system) to execute the application and monitor its 

cxccution. Thus, the ATR Kemel deals with application issues, while the HC Kemel deals 

with implementation issues. Information from the Algorithrn Database and the Knowledge 
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Base is used to support the A TR and HC Kemels. 

The lOS has not been implemented; such an implementation is a major undertaking 

and outside the scope of [BR97a], which is the design concepts for the HC Kemel. The 

lOS design has its roots in the high-level model presented in [ChD89] for automatic 

dynamic processar allocation in a partitionable parallel machine with homogeneous 

processors. The lOS differs from other real-time HC mapping techniques in that it allows 

on-line execution-time use of off-line precomputed mappings. This is significant because 

off-line heuristics can produce better mappings as a result of much longer execution times 

to search for a good solution than what is practical for an on-line heuristic. Thus, the 

mapping quality of a time-consuming off-line heuristic can be approached at real-time 

speeds. 

This work is bcing developed for a class of ATR applications each of which can be 

modeled as an iterative execution of a set of partially ordered subtasks, i.e., applieations 

that will iteratively execute a DAG such as described in Section 2. The expected number 

of subtasks is ten to 50. It is assumed that each ATR application in the class under 

consideration is a production job that is executed repeatedly. Thus, it is worthwhile to 

invest off-line time in preparing an effective mapping of the application onto the hardware 

platform used to execute it. The ATA (automatic target acquisition) system described in 

[DaB90] is an example of such an iterative ATR application. 

The type of target hardware platforms considered for this study are driven by the 

expected needs of the kinds of ATR applications that are of interest to the U.S. Army 

Research Laboratory (e.g., [DaE94]). For the intended application environment, it is 

assumed that there wilJ be up to four different types of processors (e.g., SHARC, 

PowerPC), and up to a total of 64 processors (of ali types combined). These processors 

will comprise the heterogeneous parallel architecture onto which application tasks will be 

mapped. The lOS approach is appropriate for larger HC platforms as well. 

For the initial iteration through the set of subtasks, the lOS will employ user-provided 

information about the processing environment in its selection of algoritluns for the 

subtasks, and their associated implementations. As part of this, the lOS wilJ choose a 

precomputed mapping to decide how to assign one or more processors to each subtask. 

Dynamic parameters are characteristics of the given application that may change 

during run time and can be computed by the application as it executes, as a function of the 

input data. The values of dynamic pararneters may in"uence the decision of how to map a 

task onto the HC platform, and even initiate the use of a different algorithm for a given 

subtask. Examples of dynarnic pararneters include: (1) amount of clutter found in the 

current image of a sequence and (2) number of objects currently located that need to be 
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identified. The application developcr is expected to define a small set of dynamic 

parameters that will have lhe most impact on lhe exccution time of lhe subtasks in lhe 

application. 

After each exccution iteration through lhe set of subtasks, lhe values of certain 

dynamic parameters of lhe application may change, such as lhe number of objects detected 

in lhe current frame of a real-time image stream being processed. It is expected that lhe 

values of these parameters will change slowly. After all subtasks have completed 

execution for a given iteration, and before lhe next iteration begins, lhe latest values of 

these dynamic parameters will be reported to lhe on-line HC Kemel. The HC Kemel will 

use lhe most recent values of such dynamic parameters to estimate if it is worthwhHe to 

reconfigure lhe assignment of processing resources to subtasks to reduce lhe execution 

time of lhe next iteration. lf it is desirable, the HC Kemel will select a new assignment to 

use for lhe next exccution iteration through lhe subtasks. If not, lhe same assignment will 

continue to be used. 

To provide lhe HC kemel with lhe decision capability and off-line mappings it will 

need, lhe lOS has a Scenario Generator, which is lhe component of the lOS that uses 

information provided by lhe application developcr to derive representative values for these 

dynamic parameters. Assume Q dynamic parameters are selected for a given application. 

Let lhe number o f representative choices for the i -Ih dynamic parameter be C1, O~ i < D. 

Each set of D values for these D dynamic parameters, one per parameter, is called a 

scenario. The number of different scenarios that can be generated is 

Q = C 0 x C 1 x ... x C0 _1• lt is important to pick an effective set of dynamic parameters 

and associated representative choices for parameter values, and to keep lol at a reasonable 

size. For each scenario, an off-line heuristic, such as a version of lhe GA described in 

Section 2, is used to generate a mapping that is stored in a D -dimensional array in lhe 

Knowledge Base and indexed by lhe dynamic parameter values for that scenario. The 

expected execution time of lhe task for that given scenario and mapping is also stored. 

As lhe application is executing, lhe HC Kemel monitors lhe run-time values of lhe 

dynamic parameters at lhe end of each iteration through lhe underlying DAG to decide 

whether to continue with lhe current mapping, or to selcct and implement a new mapping 

(for lhe next iteration) from among lhe off-line generated mappings. It does this by finding 

lhe scenario whose associated dynamic parameter values are closest to lhe actual dynamic 

parameter values at the end of the iteration. It th~n compares lhe previously stored 

execution time for lhe new mapping associated with that scenario to perform an iteration 

of lhe DAG versus lhe actual time for lhe last iteration plus an estimated rcconfiguration 

time. Thus, thc off-line processing provides a set of predetermined mappings that lhe on-
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line processiog can index in real time. 

The lOS ideas can also be used for other application domaios and classes of hardware 

platfonns whose characteristics are similar to those of lhe iterative ATR. applications and 

platfonns considered here. Examples of other such application domains include seosor

based robotics, intelligent vehicle highway systems, air traffic control, nuclear facility 

maintenance, weather prediction, intruder detection, and manufacturing inspectioo. 

Future work based on this lOS involves actual implementation of the components 

discussed and a graphical user interface. The Algorithm Database and Knowledge Base 

must be populated with the information needed for the lOS to be a functioniog ATR. 

system for some set of applications. lmplementation of the lOS will require the study of 

various research problems, such as: how to select the number of sceoarios to use in a given 

environment; how to facilitate the selection of dynarnic pararneters and their representative 

values; how to effectively merge multiple ATR tasks to execute simultaneously on the 

same HC platfonn and be dynarnically remapped as required by the lOS (even when the 

iteration times for the tasks are different); and how to reasonably estimate the remapping 

reconfiguration overhead time as a function of the application and platfonn. Another arca 

for investigation is how to use this technique in broader environments where the dynarnic 

pararneters correspood to general computational properties rather than being a function of 

the application. 

4. Dynamically-Derived Mappings 

Preliminary results from a new research project on a dynarnic remapping heuristic for 

HC systems is summarized in this section. The heuristic described here uses current 

system information (e.g., machine loading at ruo time) to improve a an initial static 

mapping by periodic dynarnic remapping. As in Sections 2 and 3, it is assumed that the 

subtasks of the application(s) are represented by a DAG and the dynarnic-heuristic-based 

mappcr controls the HC machine suite. The dynamic mapper executes on a dedicated 

workstation that is tightly coupled with the HC machine suíte. The scheduler allows 

multiple applications to execute concurrently oo the HC machine suite, i.e., at any given 

time the subtasks executing on the system can be from different applications. 

The dynarnic heuristic executes in two phases. In the first phase, a priority is 

computed for each subtask from the static mappiog that is provided to the algorithm (i.e., 

any static mapping can be used). During this phase, which is executed at compile time, the 

DAG is levei sorted in to m levei sets, numbered consecutively from O to m -1. The levei 

sorting clusters the subtasks into levei sets such that the subtasks within a levei set are 
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independent (i.e., there are no direct data dependencies arnong the subtasks within a levei). 

Furtherrnore, for the j -th subtask at levei k, ~· there exists at least one incident edge 

(data dependency) such that the source subtask is at levei k-1 , i.e., an incident edge from 

some s;,k-t· The levei set at levei m-1 includes only those subtasks without any 

descendents and at levei O includes only those subtasks without any predecessors. 

The second phase executes in real time with the execution of the subtasks. In this 

phase, dynamic remappings are perfonned ü such remappings are expected to yield a 

performance benefit. The dynanúc remappings are non-preemptive and they invoive 

updating the mapping for the next levei before the execution of that levei begins. 

The priority assignment begins with the levei set at levei m -1 and assigns a priority to 

each subtask within the levei set. The priority of each subtask in the (m-1)-th levei set is 

its expected computation time on the machine it was assigned by the static matching. Now 

consider the k-th levei, O~ k < m-1. Let e; be the expected computation time of the 

subtask s1.k for the given static matching, ':!1_ be the communication time for a descendent 

s1 ,q o f s; .k to get ali the reievant data items from s1,A: (where q ~ k+ 1), priority(s1.k) be the 

priority of the subtask s; .k, and set of desccndents of s1.k be the set of subtasks in level(s) 

q ~ k+ 1 such that each subtask is dependent on a data item generated by subtask s; .k. 

With the above definitions, the priority of a subtask s; .k is given by: 

priority(s1.k) =e; + maxs1,.es~t of dec~tuknts (c i} + priority(s1 ,q )). 

The priorities of the subtasks in other levei sets can be computed using a similar recursion. 

The priority of a subtask can be interpreted as the length of the criticai path from the point 

the given subtask is iocated on the DAG to the end of the execution of ali its descendents. 

The dynarnic remapping heuristic is based on the idea that by executing the subtasks with 

higher priorities as fast as possible it is possible to expect a shorter completion time for the 

application. 

The execution of the subtasks of an application proceeds from levei O to levei m-1. 

Consider the situation where the dynanúc heuristic is trying to remap the subtasks at the 

i -th levei while the subtasks at the (i -1 )-th levei are being executed. The dynamic 

heuristic starts remapping the i -th levei subtasks when the first (i -1 )-th levei subtask 

begins its execution. When levei i is being scheduled, it is highly likely that actual 

execution time infonnation can be used for most subtasks from leveis O to i -2. There may 

be some iong-running subtasks from leveis O to i -2 that could be still executing when 

subtasks from levei i are being considered for remapping. For such subtasks expected 

execution times are used. The dynanúc heuristic examines the subtasks in the i -th levei 

set in descending order based on their precomputed static priorities. The subtask is 

assigned to the machine that gives the shortest partia! completion time for the subtasks that 
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have been scheduled (including this subtask). 

A simulator was implemented to evaluate the performance of the remapping heuristic 

versus a static mapper called the baseline heuristic [WaS98]. The baseline heuristic 

initially uses levei sorting to levelize the subtasks. Then ali subtasks are ordered such that 

a subtask at levei i comes before one at levei j, i < j. The subtasks in the same levei are 

arranged in descending order based on the number of descendents of each subtask (ties 

broken arbitrarily). The subtasks are considered ~or assignment in this order. The subtask 
is assigned to the machine that gives the shortest partial completion time for the subtasks 
that have been scheduled (including this subtask). 

The inputs to the simulator are the randomly generated DAG, the static mapping, the 

percentage deviation in the parameters (subtask execution times or communication times), 

and the machine and network information. The percentage deviation is defined as the 

percentage by which the simulated expected time differs from the simulated actual time. 

lf ~ is the percentage deviation and !! a random number that is uniformly distributed in 

[0,1], then the simulated actual value of a parameter x can be modeled as 

x ( 1 Oü-a+ 2au )11 00. The simulator evaluates the execution o f the static mapping by 

computing the completion times of the subtasks using the simulated actual parameter 
values and the static mapping. The remapped execution is simulated by computing the 

completion times for the simulated actual parameter values and the dynamically remapped 

mapping. 
The simulation results are shown in Figure 1 for ten machines and 100 subtasks. Each 

data point is an average of ten simulation runs. The average simulation time for each run 

of this experiment was 0.62 seconds and the average time for executing the remapping 

heuristic per levei of the task graph was 0.0041 seconds, with a minimum of 0.00312 
seconds and a maximum of 0.00764 seconds. As the percentage deviation of the 

parameters from their static estimates increases, the difference between the task 

completion time using the " static mapping only" versus the task completion time using 

the "dynamic remapping" increases. Thus, dynamic remapping can improve the 

performance of an initial static mapping. However, the time taken by the dynamic 
heuristic to remap the i -th levei of the task graph must be less than the time difference 

between the time a (i -1)-th levei subtask started execution and the time the machine and 
data necessary to start the execution of an i -th levei subtask becomes available; otherwise, 

the dynamic heuristic may delay the execution of an i -th levei subtask. 
Other groups have also studied dynamic mapping heuristics for HC systems (e.g., 

[FrC97, HaL95, LeP95]). Methods presented in these papers are different from the work 

presented here. Future work involves implementing their algorithms in the simulator 
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discussed here to compare the perfonnance of the dynamic heuristic presented here with 

those presented in the above papers. 
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Figure 1: Simulation results for the dynamic heuristic for ten machines and 100 subtasks. 

The following are some areas for future research for the dynamic heuristic. More 

simulation data should be collected, e.g., 100 test runs per data point compared to the ten 

runs used for the initial study. Simulation studies should be conducted to compare the 

perfonnance of a dynamic remapper with a static GA-based mapper (such as described in 

Section 2) under varying parameter values. In particular, because the GA-based mapper 

has been shown to provide mappings superior to the much faster baseline heuristic when 

lhe expected execution times are used as actual times [WaS98], it will be interesting to 

examine at what percentage variation the dynamic remapping makes a significant 

improvement over lhe GA (this can be done using the baseline or the GA as lhe initial 

static mapper). Other areas include investigating the use of altemate levei set definitions 

and priority computation schemes, and exploring ways of improving the dy~amic heuristic 

to support multiple data-copies (a situation where a subtask can have multiple sources 

(machines) for a needed data item) [TaS97]. 

S. Conclusions 

A novel genetic-algorithm approach for task matching and scheduling in HC 

environments was presented in Section 2 [WaS98]. It is applicable to lhe static scheduling 

of production jobs and can be readily used for scheduling multiple independent tasks (and 

lheir subtasks) collectively. For small-scale tests, the proposed approach found optimal 
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solutions. For larger tests, it outperformed a published non-evolutionary heuristic. 

In Section 3, for the computational environment considered, an HC Kemel was 

described for making real-time on-line input-data-dependent remappings of the application 

subtasks to the processors in the HC hardware platform using previously stored off-line 

statically determined mappings (e.g., using a GA) [BR97a]. The lOS ideas can also be 

used for other application domains and other HC hardware platforms whose characteristics 

are similar to those considered there. 

A different approach to dynamic remapping was discussed in Section 4. Here the 

actual mapping for one set of subtasks is computed concurrently with the execution of an 

carlier set of subtasks. When a subtask is mapped, any available ruo-time information 

about the system state is used by the mapping heuristic. This research is just beginning, 

and the initial results are very promising. 

Some of the future research outlined at the ends of Sections 2 to 4 may be pursued as 

part of a DARPA/ITO Quorum Program project called MSHN (Management System for 

Heterogeneous Networks). MSHN is a collaborative research effort that includes NPS 
(Naval Postgraduate School}, NRaD (a Naval Laboratory), Purdue, and USC (University 

of Southem Califomia). It builds on SmartNet, an operational scheduling framework and 

system for managing resources in a heterogeneous environment developed at NRaD 

[FrK96]. The technical objective of the MSHN project is to design, prototype, and refine a 

distributed resource management system that leverages the heterogeneity of resources and 

tasks to detiver the requested qualities of service. 

HC is an exciting research field with practical uses. The reader in encouraged to 

investigate the research problems listed at the ends of Sections 2 to 4 and to explore this 

field further using the referenccs cited. 
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