
Mapping Tasks onto Heterogeneous Computing Systems

Howard Jay Siegel and Muthucumaru Maheswaran
{hj@purdue.edu, maheswar@ecn.purdue.edu}

Parallel Processing Laboratory
School o f Electrical and Computer Engineering

Purdue University
WestLafayette, IN 47907-1285, USA

Abstract ·· The goal of this invited tutorial paper is to provide an overview of three
current research efforts in heterogeneous computing that focus on methods for determining
a mapping of an application onto a heterogeneous suite of machines. 'Jne first study
involves a genetic-algorithm approach for mapping the subtasks of an application task
onto the machines in a distributed heterogeneous system. This is a static compile-time
approach that must be used off-line (prior to task execution) due to its long run time. The
second topic is the high-level design of components of an intelligent operating system for
mapping and dynanúcally remapping automatic target recognition tasks onto a
heterogeneous parallel platform. The intelligent operating system uses a new technique
for dynamically selecting new mappings on-line during task execution from among
choices precomputed off-line. Last, some initial preliminary results from a new research
project for designing a dynamic mapping heuristic that does not use precomputed
mappings is described. This dynamic heuristic is fast and is suitable for operation during
application execution. Future research directions are discussed for ali three projects.

Keywords: automatic target recognition, distributed computing, genetic algorithms,
heterogeneous computing, mapping, matching, MSHN, parallel processing, scheduling.

1. lntroduction

High-performance computers typically achieve only a fraction of their peak

capabilities on certain portions of some application tasks. This is because different

subtasks of an application can have very different computational requirements that result

in needs for different machine capabilities. A single machine architecture cannot satisfy

all thc computational requirements in certain applications equally well. Thus, the use of a

heterogeneous computing environment is more appropriate.

The research presented in Section 2 was supported by NRaD undcr subcontract numbcr 20-950001-70; the
research presentcd in Section 3 was supported by lhe Department of Defense, Small Business Innovative
(SBIR) Prograrn, funded by the Anny Research Laboratory, under contract numbcr DAAL01-96-C-0031;
and the research presented in Section 4 is supported by lhe DARPA/ITO Quorum Prograrn under NPS
subcontract number N6227l-97-M-0900.

3

One type of heterogeneous computing (!!Ç) system provides a variety of architectural

capabilities, orchestrated to perform an application whose subtasks have diverse execution

requirements [SiA96]. A mixed-machine system is a heterogeneous suite of different

types of independent machines interconnected by a high-speed network. When the goal is

to perfonn ao application task, each subtask must be matched to the machine that results in

the lowest overall task execution time. To exploit HC systems in such situations, a task

must be decomposed into subtasks, where each subtask is computationally homogeneous,

and different subtasks may have different machine architectural requirements. These

subtasks may share initial or generated data, creating the potential for inter-machine data

transfer overhead.

Examples of applications that have been implemented on mixed-machine HC systems

include a simulator for mixing in turbulent convection [KlM93], the interactive rendering

of multiple earth science data sets on the CASA testbed [Spe90], and the computation of

the radiation treatment planning for cancer patients on VISTAnet [RoC92]. Typically,

users must perfonn task decomposition and subtask matching and scheduling. When

perfonning matchiog and scheduling, the user must consider machine availability, the way

in which each subtask's computatiooal requiremeots match each machine's capabilities,

inter-machine shared data transfers, and others factors [SiA96]. One long-tenn pursuit in

HC is to do decomposition, matching, and scheduling automatically [SiD97].

This invited tutorial paper provides an overview of three current research efforts in

distributed and parallel mixed-machine HC. In particular, this tutorial paper focuses on

exarnples of methods for detennining a mapping of an application onto a heterogeneous

suíte of machines (i.e., a matching of application subtasks to machines and a scheduling

for the execution order and inter-machine communications of these subtasks). A brief

summary of each project is given, including references for more complete information if

available. Possible future research directions for each project are also given. A broader

view of the HC field and related open research problems can be found in [Esh96, FrS93,

KhP93, SiA96, SiD97].

The first study, presented in Section 2, involves a genetic-algorithm approach

developed at Purdue University for mapping the subtasks of an application task onto the

machines in a distributed heterogeneous system [WaS98]. This is a static (i.e., compile

time) approach that must be used off-line (prior to task execution) dueto its long ruo time.

In some situations, the execution characteristics of an application task may not be

derivable prior to ruo time and changes during ruo time as a function of the input data.

When this occurs, a single static mapping may not be effective over a Jong time period,

and dynamic mapping and remapping schemes should be considered, such as the two

4

approaches discussed next.

The sccond topic, explored jointly by Purdue University and Architecture Technology

Corporation, is the high-level design of components of an intelligent operating system for

mapping and dynamically remapping automatic target recognition tasks onto a

heterogeneous parallel platform [BR97a, BR97b]. The intelligent operating system uses a

new technique for dynamically selecting new mappings on line during task execution from

among choices precomputed off !in e. Section 3 provides an overview o f this work.

Section 4 describes some initial preliminary results from a new Purduc research project

for designing a dynamic mapping heuristic that does not use precomputed mappings. This

dynamic heuristic is fast and is suitable for operation during application execution. lt is

based on a list-scheduling type of algorithm.

The goal of this invited tutorial paper is to introduce the reader to these three current

approaches to mapping research in the field of HC. The reader is encouraged to learn more

about them, and other research topics in HC, from the references cited. Furthermore, the

reader is encouraged to consider examining the future research problems listed in the

following sections and in [KhP93, SiA96, SiD97, Sun92].

2. A Genetic-Algorithm Approach for Task Mapping

In general, the problem of perfonning matching and scheduling in an HC environment

is NP-complete [Fer89], and therefore some heuristic must be employed. As an example

of current HC research on mapping statically (i.e., at compile time), a genetic-algorithm

approach from [WaS98] is summarized. An application task is dccomposed into a set of

subtasks ~ of size 1!1· Let s1 be the i -th subtask. An HC suíte consists of a set o f

machines M. Let 5_ be the j -th machine. Each machine can be a different type. The

global data items are data items that need to be transferred between subtasks.

The following assumptions about the applications and HC environment are made.

Each application task will be represented by a DAG (directed acyclic graph), whose nodes

are the subtasks that need to be executed to perform the application and whose ares are the

the data dependencies between subtasks. (Note that while the subtasks' dependencies are

representcd as a DAG, subtasks themselves may contain loops.) For each global data item,

there is a single subtask that produces it (producer) and there are some subtasks that need

this data item (consumers). Each edge goes from a producer to a consumer and is labeled

by the global data item that is transferred over it. This task has exclusive use of the HC

environmcnt, and thc genetic-algorithm-based mappcr controls the HC machine suíte

(hardware platform). Subtask execution is non-preemptivc. The cstimated expected

5

execution time of each subtask on each machine is known. For each pair of machines in

the HC suíte, an equation for estimating the time to send data between those machines as a

function of data set size is known.

Genetic algoritluns (GAs) provide a promising hcuristic approach to optimization

problems that are intractable [Dav91, Gol89, Hol75, RiT94, SrP94]. The first step is to

encode some of the possible solutions as chromosomes, the set of which is referred to as a

population. In the [WaS98] approach, each chromosome consists of two parts: the

matching string and the scheduling string. Let mat be the matching string, which is a

vector of length ISI. If mat(i) = j, then subtask s; is assigned to machine m1. Typically,

multiple subtasks will be assigned to the same machine, and then executed in a non

preemptive manner based on an ordering that obeys the precedenee constraints (data

dependencies) specified in the task DAG. The scheduling string is a topological sort of the

DAG representing the task (i.e., a valid total ordering of the partially ordered DAG).

Define ~ to be the scheduling string, which is a vector o f length I S 1. I f ss(k) = i , then

subtask s; is the k -th subtask in the total ordering. Because it is a topological sort, if

subtask ss(k) is a consumer o f a global data item produced by subtask ss(j), then j < k.

The scheduling string gives an ordering of subtasks that is used by the evaluation step.

Each chromosome is associated with a fitness value, which is the completion time of

the solution (i.e., mapping) represented by this chromosome (i.e., the expected execution

time of the application task if the mapping specified by this chromosome were used).

Overlapping among ali of the computations and communications performed is limited only

by intcr-subtask data dependencies and thc availability of the machincs and the inter

machine network.

In the initial population generation step, a predefined number of distinct chromosomes

are randomly created. The solution from a non-cvolutionary heuristic is also included in

the initial population. After the initial population is determined, the genetic algorithm

iterates unlil a predefined stopping criterion is mel Each iteration consists of the selection,

crossovcr, mutation, and evaluation steps.

In the selection step, some members of the population are rcmoved and others are

duplicated. First, ali of the chromosomes in the population are ordcred (ranked) by their

fitness values. Then a rank-based roulette wheel selection scheme is used to implement

proportionate selection [Hol75]. The population size is kept constant and a chromosome

representing a better solution has a higher probability of having one or more copies in the

next generation population. This GA approach also incorporates elitism, i.e., the best

solution found so far is always maintained in the population [Rud94].

The selection step is followed by the crossover step, where some chrornosornes are

6

paired and corresponding components of the paired chromosomes are exchanged. The

crossover operator for the scheduling strings randomly chooses some pairs of the

scheduling strings in lhe current population. For each pair, it randomly generates a cutoff

point, and divides thc scheduling strings of lhe pair into top and bottom parts. Then, lhe

subtasks in each bottom part are reordered. The new ordering of lhe subtasks in lhe

bottom part of one string is lhe relative positions of lhese subtasks in lhe other original

scheduling string, lhus guaranteeing lhat the newly generated scheduling strings are valid

schedules. The crossover operator for lhe matching strings randomly chooses some pairs

of the matching strings in lhe current population. For each pair, it randomly generates a

cutoff point, and divides bolh matching strings of lhe pair into two parts. Then lhe

machine assignments of lhe bottom parts are exchanged.

The next step is mutation. The scheduling string mutation operator randomly chooses

some scheduling strings in lhe current population. Then for each chosen scheduling string,

it randomly selects a victim subtask. The valid range of lhe victim subtask is lhe set of lhe

positions in lhe scheduling string at which this victim subtask can be placed and still have

a valid topological sort of the DAG. The victim subtask is movcd randomly to anolher

position in lhe scheduling 'string within its valid range. The matching string mutation

operator randomly chooses some matching strings in lhe current population. For each

chosen matching string, it randomly selects a subtask entry. Then lhe machine assignment

for lhe selccted entry is changed randomly to anolher machine.

The last step of an evolution iteration is lhe evaluation step to detennine lhe fitness

value of each chromosome in lhe current population. A communication subsystem lhat is

modeled after a HiPPI LAN wilh a central crossbar switch [ToR93] was assumed for lhe

tests that were conducted. As stated earlier, the above steps of selection, crossover,

mutation, and evaluation are repeated until one of the stopping criteria are met: (1) the

number of iterations reaches some limit (e.g., 1000), (2) the population converged (all the

chromosomes had the same fitness value), or (3) lhe best solution found was not improved

after some number of iterations (e.g., 150).

In lhe tests of this GA approach in [WaS98], simulated program behaviors were used.

Small-scale tests were conducted wilh up to ten subtasks, three machines, and population

sizc 50. For each test, lhe GA approach found a solution (mapping) lhat had lhe same

expected completion time for lhe task as that of lhe optimal solution found by exhaustive

search. Larger tests wilh up to 100 subtasks, 20 machines, and population sizc 200 were

conducted. This GA approach produced solutions (mappings) lhat averaged from 150% to

200% better lhan lhose produced by lhe non-evolutionary levelizcd min-timc (LMT)

hcuristic proposed in [Iv095]. The heuristic in [Iv095] was selected for comparison

7

because it used a similar model of HC. The GA approach took much more time to

generate the mappings than did the LMT approach; however, if the mappings are being

done at compile time for production tasks that will be executed repeatedly, the generation

time is worthwhile.

There are number of ways this GA approach for HC task mapping may be built upon

for future research. These include extending this approach to allow multiple producers for

each of the global data items, parallelizing the GA approacb, developing evaluation

procedures for other communication subsystems, and considering loop and data

conditional constructs that involve multiple subtasks. This last extension will be

particularly difficult to handle at compile time if the loop bounds and data-conditional

constructs are input-data dependent

3. Dynamic Use of Statically-Derived Mappings

This section, which provides a simplified summary of [BR97a], focuses on a particular

application domain (iterative automatic target recognition (ATR) tasks) and an associated

specific class of dedicated HC hardware platforms. The contribution of [BR97a] is that,

for the computational environment considered, it presents a methodology for on-line (i.e.,

execution-time) input-data dependent remapping of the application subtasks to lhe

processors in the HC hardware platform using one of a set of prcviously stored off-line

(i.e., statically) determined mappings. That is, the operating system will be able to decide

during the execution of the application whether or not to perform a remapping based on

information generated by the application from its input data. If the decision is to remap,

the operating system will be able to select a previously derived and stored mapping that is

appropriate for lhe given state of the application (e.g., the number of objects it is currently

tracking).

This higb-level operating system approach for enabling lhe on-line use of off-line

mappings is called the lOS (lntelligent Operating System). The A TR Kemel component

makes decisions on how a given A TR application task should be performed, including

determining the partia! ordering of subtasks and which algorithrns should be used to

accomplish each subtask [BR97b] . The HC Kemel component decides how the partially

ordered algorithmic suggestions should be implemented and mapped onto the

heterogeneous parallel platform. Also, lhe HC Kemel interacts with the Basic Kemel

component (i.e., the low level operating system) to execute the application and monitor its

cxccution. Thus, the ATR Kemel deals with application issues, while the HC Kemel deals

with implementation issues. Information from the Algorithrn Database and the Knowledge

8

Base is used to support the A TR and HC Kemels.

The lOS has not been implemented; such an implementation is a major undertaking

and outside the scope of [BR97a], which is the design concepts for the HC Kemel. The

lOS design has its roots in the high-level model presented in [ChD89] for automatic

dynamic processar allocation in a partitionable parallel machine with homogeneous

processors. The lOS differs from other real-time HC mapping techniques in that it allows

on-line execution-time use of off-line precomputed mappings. This is significant because

off-line heuristics can produce better mappings as a result of much longer execution times

to search for a good solution than what is practical for an on-line heuristic. Thus, the

mapping quality of a time-consuming off-line heuristic can be approached at real-time

speeds.

This work is bcing developed for a class of ATR applications each of which can be

modeled as an iterative execution of a set of partially ordered subtasks, i.e., applieations

that will iteratively execute a DAG such as described in Section 2. The expected number

of subtasks is ten to 50. It is assumed that each ATR application in the class under

consideration is a production job that is executed repeatedly. Thus, it is worthwhile to

invest off-line time in preparing an effective mapping of the application onto the hardware

platform used to execute it. The ATA (automatic target acquisition) system described in

[DaB90] is an example of such an iterative ATR application.

The type of target hardware platforms considered for this study are driven by the

expected needs of the kinds of ATR applications that are of interest to the U.S. Army

Research Laboratory (e.g., [DaE94]). For the intended application environment, it is

assumed that there wilJ be up to four different types of processors (e.g., SHARC,

PowerPC), and up to a total of 64 processors (of ali types combined). These processors

will comprise the heterogeneous parallel architecture onto which application tasks will be

mapped. The lOS approach is appropriate for larger HC platforms as well.

For the initial iteration through the set of subtasks, the lOS will employ user-provided

information about the processing environment in its selection of algoritluns for the

subtasks, and their associated implementations. As part of this, the lOS wilJ choose a

precomputed mapping to decide how to assign one or more processors to each subtask.

Dynamic parameters are characteristics of the given application that may change

during run time and can be computed by the application as it executes, as a function of the

input data. The values of dynamic pararneters may in"uence the decision of how to map a

task onto the HC platform, and even initiate the use of a different algorithm for a given

subtask. Examples of dynarnic pararneters include: (1) amount of clutter found in the

current image of a sequence and (2) number of objects currently located that need to be

9

identified. The application developcr is expected to define a small set of dynamic

parameters that will have lhe most impact on lhe exccution time of lhe subtasks in lhe

application.

After each exccution iteration through lhe set of subtasks, lhe values of certain

dynamic parameters of lhe application may change, such as lhe number of objects detected

in lhe current frame of a real-time image stream being processed. It is expected that lhe

values of these parameters will change slowly. After all subtasks have completed

execution for a given iteration, and before lhe next iteration begins, lhe latest values of

these dynamic parameters will be reported to lhe on-line HC Kemel. The HC Kemel will

use lhe most recent values of such dynamic parameters to estimate if it is worthwhHe to

reconfigure lhe assignment of processing resources to subtasks to reduce lhe execution

time of lhe next iteration. lf it is desirable, the HC Kemel will select a new assignment to

use for lhe next exccution iteration through lhe subtasks. If not, lhe same assignment will

continue to be used.

To provide lhe HC kemel with lhe decision capability and off-line mappings it will

need, lhe lOS has a Scenario Generator, which is lhe component of the lOS that uses

information provided by lhe application developcr to derive representative values for these

dynamic parameters. Assume Q dynamic parameters are selected for a given application.

Let lhe number o f representative choices for the i -Ih dynamic parameter be C1, O~ i < D.

Each set of D values for these D dynamic parameters, one per parameter, is called a

scenario. The number of different scenarios that can be generated is

Q = C 0 x C 1 x ... x C0 _1• lt is important to pick an effective set of dynamic parameters

and associated representative choices for parameter values, and to keep lol at a reasonable

size. For each scenario, an off-line heuristic, such as a version of lhe GA described in

Section 2, is used to generate a mapping that is stored in a D -dimensional array in lhe

Knowledge Base and indexed by lhe dynamic parameter values for that scenario. The

expected execution time of lhe task for that given scenario and mapping is also stored.

As lhe application is executing, lhe HC Kemel monitors lhe run-time values of lhe

dynamic parameters at lhe end of each iteration through lhe underlying DAG to decide

whether to continue with lhe current mapping, or to selcct and implement a new mapping

(for lhe next iteration) from among lhe off-line generated mappings. It does this by finding

lhe scenario whose associated dynamic parameter values are closest to lhe actual dynamic

parameter values at the end of the iteration. It th~n compares lhe previously stored

execution time for lhe new mapping associated with that scenario to perform an iteration

of lhe DAG versus lhe actual time for lhe last iteration plus an estimated rcconfiguration

time. Thus, thc off-line processing provides a set of predetermined mappings that lhe on-

lO

line processiog can index in real time.

The lOS ideas can also be used for other application domaios and classes of hardware

platfonns whose characteristics are similar to those of lhe iterative ATR. applications and

platfonns considered here. Examples of other such application domains include seosor

based robotics, intelligent vehicle highway systems, air traffic control, nuclear facility

maintenance, weather prediction, intruder detection, and manufacturing inspectioo.

Future work based on this lOS involves actual implementation of the components

discussed and a graphical user interface. The Algorithm Database and Knowledge Base

must be populated with the information needed for the lOS to be a functioniog ATR.

system for some set of applications. lmplementation of the lOS will require the study of

various research problems, such as: how to select the number of sceoarios to use in a given

environment; how to facilitate the selection of dynarnic pararneters and their representative

values; how to effectively merge multiple ATR tasks to execute simultaneously on the

same HC platfonn and be dynarnically remapped as required by the lOS (even when the

iteration times for the tasks are different); and how to reasonably estimate the remapping

reconfiguration overhead time as a function of the application and platfonn. Another arca

for investigation is how to use this technique in broader environments where the dynarnic

pararneters correspood to general computational properties rather than being a function of

the application.

4. Dynamically-Derived Mappings

Preliminary results from a new research project on a dynarnic remapping heuristic for

HC systems is summarized in this section. The heuristic described here uses current

system information (e.g., machine loading at ruo time) to improve a an initial static

mapping by periodic dynarnic remapping. As in Sections 2 and 3, it is assumed that the

subtasks of the application(s) are represented by a DAG and the dynarnic-heuristic-based

mappcr controls the HC machine suite. The dynamic mapper executes on a dedicated

workstation that is tightly coupled with the HC machine suíte. The scheduler allows

multiple applications to execute concurrently oo the HC machine suite, i.e., at any given

time the subtasks executing on the system can be from different applications.

The dynarnic heuristic executes in two phases. In the first phase, a priority is

computed for each subtask from the static mappiog that is provided to the algorithm (i.e.,

any static mapping can be used). During this phase, which is executed at compile time, the

DAG is levei sorted in to m levei sets, numbered consecutively from O to m -1. The levei

sorting clusters the subtasks into levei sets such that the subtasks within a levei set are

li

independent (i.e., there are no direct data dependencies arnong the subtasks within a levei).

Furtherrnore, for the j -th subtask at levei k, ~· there exists at least one incident edge

(data dependency) such that the source subtask is at levei k-1 , i.e., an incident edge from

some s;,k-t· The levei set at levei m-1 includes only those subtasks without any

descendents and at levei O includes only those subtasks without any predecessors.

The second phase executes in real time with the execution of the subtasks. In this

phase, dynamic remappings are perfonned ü such remappings are expected to yield a

performance benefit. The dynanúc remappings are non-preemptive and they invoive

updating the mapping for the next levei before the execution of that levei begins.

The priority assignment begins with the levei set at levei m -1 and assigns a priority to

each subtask within the levei set. The priority of each subtask in the (m-1)-th levei set is

its expected computation time on the machine it was assigned by the static matching. Now

consider the k-th levei, O~ k < m-1. Let e; be the expected computation time of the

subtask s1.k for the given static matching, ':!1_ be the communication time for a descendent

s1 ,q o f s; .k to get ali the reievant data items from s1,A: (where q ~ k+ 1), priority(s1.k) be the

priority of the subtask s; .k, and set of desccndents of s1.k be the set of subtasks in level(s)

q ~ k+ 1 such that each subtask is dependent on a data item generated by subtask s; .k.

With the above definitions, the priority of a subtask s; .k is given by:

priority(s1.k) =e; + maxs1,.es~t of dec~tuknts (c i} + priority(s1 ,q)).

The priorities of the subtasks in other levei sets can be computed using a similar recursion.

The priority of a subtask can be interpreted as the length of the criticai path from the point

the given subtask is iocated on the DAG to the end of the execution of ali its descendents.

The dynarnic remapping heuristic is based on the idea that by executing the subtasks with

higher priorities as fast as possible it is possible to expect a shorter completion time for the

application.

The execution of the subtasks of an application proceeds from levei O to levei m-1.

Consider the situation where the dynanúc heuristic is trying to remap the subtasks at the

i -th levei while the subtasks at the (i -1)-th levei are being executed. The dynamic

heuristic starts remapping the i -th levei subtasks when the first (i -1)-th levei subtask

begins its execution. When levei i is being scheduled, it is highly likely that actual

execution time infonnation can be used for most subtasks from leveis O to i -2. There may

be some iong-running subtasks from leveis O to i -2 that could be still executing when

subtasks from levei i are being considered for remapping. For such subtasks expected

execution times are used. The dynanúc heuristic examines the subtasks in the i -th levei

set in descending order based on their precomputed static priorities. The subtask is

assigned to the machine that gives the shortest partia! completion time for the subtasks that

12

have been scheduled (including this subtask).

A simulator was implemented to evaluate the performance of the remapping heuristic

versus a static mapper called the baseline heuristic [WaS98]. The baseline heuristic

initially uses levei sorting to levelize the subtasks. Then ali subtasks are ordered such that

a subtask at levei i comes before one at levei j, i < j. The subtasks in the same levei are

arranged in descending order based on the number of descendents of each subtask (ties

broken arbitrarily). The subtasks are considered ~or assignment in this order. The subtask
is assigned to the machine that gives the shortest partial completion time for the subtasks
that have been scheduled (including this subtask).

The inputs to the simulator are the randomly generated DAG, the static mapping, the

percentage deviation in the parameters (subtask execution times or communication times),

and the machine and network information. The percentage deviation is defined as the

percentage by which the simulated expected time differs from the simulated actual time.

lf ~ is the percentage deviation and !! a random number that is uniformly distributed in

[0,1], then the simulated actual value of a parameter x can be modeled as

x (1 Oü-a+ 2au)11 00. The simulator evaluates the execution o f the static mapping by

computing the completion times of the subtasks using the simulated actual parameter
values and the static mapping. The remapped execution is simulated by computing the

completion times for the simulated actual parameter values and the dynamically remapped

mapping.
The simulation results are shown in Figure 1 for ten machines and 100 subtasks. Each

data point is an average of ten simulation runs. The average simulation time for each run

of this experiment was 0.62 seconds and the average time for executing the remapping

heuristic per levei of the task graph was 0.0041 seconds, with a minimum of 0.00312
seconds and a maximum of 0.00764 seconds. As the percentage deviation of the

parameters from their static estimates increases, the difference between the task

completion time using the " static mapping only" versus the task completion time using

the "dynamic remapping" increases. Thus, dynamic remapping can improve the

performance of an initial static mapping. However, the time taken by the dynamic
heuristic to remap the i -th levei of the task graph must be less than the time difference

between the time a (i -1)-th levei subtask started execution and the time the machine and
data necessary to start the execution of an i -th levei subtask becomes available; otherwise,

the dynamic heuristic may delay the execution of an i -th levei subtask.
Other groups have also studied dynamic mapping heuristics for HC systems (e.g.,

[FrC97, HaL95, LeP95]). Methods presented in these papers are different from the work

presented here. Future work involves implementing their algorithms in the simulator

13

discussed here to compare the perfonnance of the dynamic heuristic presented here with

those presented in the above papers.

120
(/)

Cl> 118
~
c 116
o
5 114
o
CD 112 X
Cl>
~ 110 (/)
tU - 108 -g
(;j 106
:;
E 104
'iii

102
o

static mapping only -
dynamic remapping ---

\
\
\
\
\ '---' _______ ,,

' '

1 o 20 30 40 50 60 70 80 90
percentage deviation

Figure 1: Simulation results for the dynamic heuristic for ten machines and 100 subtasks.

The following are some areas for future research for the dynamic heuristic. More

simulation data should be collected, e.g., 100 test runs per data point compared to the ten

runs used for the initial study. Simulation studies should be conducted to compare the

perfonnance of a dynamic remapper with a static GA-based mapper (such as described in

Section 2) under varying parameter values. In particular, because the GA-based mapper

has been shown to provide mappings superior to the much faster baseline heuristic when

lhe expected execution times are used as actual times [WaS98], it will be interesting to

examine at what percentage variation the dynamic remapping makes a significant

improvement over lhe GA (this can be done using the baseline or the GA as lhe initial

static mapper). Other areas include investigating the use of altemate levei set definitions

and priority computation schemes, and exploring ways of improving the dy~amic heuristic

to support multiple data-copies (a situation where a subtask can have multiple sources

(machines) for a needed data item) [TaS97].

S. Conclusions

A novel genetic-algorithm approach for task matching and scheduling in HC

environments was presented in Section 2 [WaS98]. It is applicable to lhe static scheduling

of production jobs and can be readily used for scheduling multiple independent tasks (and

lheir subtasks) collectively. For small-scale tests, the proposed approach found optimal

14

solutions. For larger tests, it outperformed a published non-evolutionary heuristic.

In Section 3, for the computational environment considered, an HC Kemel was

described for making real-time on-line input-data-dependent remappings of the application

subtasks to the processors in the HC hardware platform using previously stored off-line

statically determined mappings (e.g., using a GA) [BR97a]. The lOS ideas can also be

used for other application domains and other HC hardware platforms whose characteristics

are similar to those considered there.

A different approach to dynamic remapping was discussed in Section 4. Here the

actual mapping for one set of subtasks is computed concurrently with the execution of an

carlier set of subtasks. When a subtask is mapped, any available ruo-time information

about the system state is used by the mapping heuristic. This research is just beginning,

and the initial results are very promising.

Some of the future research outlined at the ends of Sections 2 to 4 may be pursued as

part of a DARPA/ITO Quorum Program project called MSHN (Management System for

Heterogeneous Networks). MSHN is a collaborative research effort that includes NPS
(Naval Postgraduate School}, NRaD (a Naval Laboratory), Purdue, and USC (University

of Southem Califomia). It builds on SmartNet, an operational scheduling framework and

system for managing resources in a heterogeneous environment developed at NRaD

[FrK96]. The technical objective of the MSHN project is to design, prototype, and refine a

distributed resource management system that leverages the heterogeneity of resources and

tasks to detiver the requested qualities of service.

HC is an exciting research field with practical uses. The reader in encouraged to

investigate the research problems listed at the ends of Sections 2 to 4 and to explore this

field further using the referenccs cited.

Acknowledgments •• The authors thank Janet M. Siegel for her comments on this paper.

A version of some of this material also appeared in an invited keynote paper for the 1997

Parallel and Distributed Processing Techniques and Applications Conference.

References

(BR97a] J. R. Budcnske, R. S. Ramanujan, and H. J. Siegel, "On-line use of off-line
derived mappings for iterative automatic target recognition tasks and a
particular class of hardware platforms," 6th Heterogeneous Computing
Workshop (HCW '97), Apr. 1997, pp. 96-110.

(BR97b] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, "Modeling ATR
applications for intelligent execution upon a heterogeneous computing
platform," 1997 IEEE Int'l Conf. Systems, Man, and Cybemetics (SMC '97),

15

Oct. 1997, to appear.
[ChD89] C. H. Chu, E. J. Delp, L. H. Jamieson, H. J. Siegel, F. J. Weil, and A. B.

Whinston, "A model for an intelligent operating system for executing image
understanding tasks on a reconfigurable parallcl architccturc," J. of Para/lei and
Distributed Computing, Vol. 6, No. 3, June 1989, pp. 598-622.

[DaB90] P. David, S. Balakirsky, and D. Hillis, "A real-time automatic target acquisition
system," Conf. on Unmanned Vehicle Systems, July 1990, pp. 183-198.

[DaE94) P. David, P. Emmerman, and S. Ho, "A scalable architecture system for
automatic target recognition,'' 13th AIAAIIEEE Digital Avionics Systems Conf.,
Oct. 1994, pp. 414-420.

[Dav91) L. Davis, cd., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New
York,NY, 1991.

[Esh96) M. M. Eshaghian, ed., Heterogeneous Computing, Artech House, Norwood,
MA, 1996.

[Fer89) D. Femandez-Baca, "Allocating modules to processors in a distributcd
system," JEEE Trans. on Software Engineering, Vol. SE-15, No. 11, Nov.
1989,pp. 1427-1436.

[FrC97] R. F. Freund, B. R. Carter, D. Watson, E. Keith, F. Mirabile, and H. J. Siegel,
"Generational scheduling for heterogeneous computing systems," lnformation
Science Joumal, Special Issue on Parallel and Distributcd Processing
Techniques and Applications, accepted and schedulcd to appear in 1997.

[FrK96] R. F. Freund, T. Kidd, D. Hensgen, and L. Moore, "SmartNet: A scheduling
framework for meta-<:omputing,'' 2nd /nt'l Symp. Parallel Architectures,
Algorithms, and Networks (JSPAN '96), June 1996, pp. 514-521.

[FrS93] R. F. Freund and H. J. Siegel, "Heterogeneous processing,'' IEEE Computer,
Special Issue on Heterogeneous Processing, Vol. 26, No. 6, June 1993, pp. 13-
17.

[Gol89] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Leaming, Addison-Wesley, Reading, MA, 1989.

[HaL95] B. Hamidzadeh, D. J. Lilja, and Y. Atif, "Dynamic schcduling techniques for
heterogeneous computing systems," Concurrency: Practice and Experience,
V oi. 7, No. 7, Oct. 1995, pp. 633-652.

[Ho175] J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, MI, 1975.

[lv095) M. A. Iverson, F. Ozguner, and G. J. Follen, "Parallelizing existing applications
in a distributed heterogeneous environment,' ' 4th Heterogeneous Computing
Workshop (HCW '95), Apr. 1995, pp. 93-100.

[KhP93] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang, " Heterogeneous
computing: Challenges and opportunities,'' IEEE Computer, Vol. 26, No. 6,
June 1993, pp. 18-27.

[KIM93] A. E. Klietz, A. V. Malevsky, and K. Chin-Purcell, "A case study in
metacomputing: Distributcd simulations o f mixing in turbulent convection,"
2nd Workslwp on Heterogeneous Processing (WHP '93), Apr. 1993, pp. 101-
106.

16

[LeP95] C. Leangsuksun, J. Potter, and S. Scott, "Dynanúc task mapping algorithms for
a distributed heterogeneous computing environment," 4th Heterogeneous
Computing Workshop (HCW '95), Apr. 1995, pp. 30-34.

[RiT94] J. L. Ribeiro Filho and P. C. Treleaven, "Genetic-algorithm programming
environments," IEEE Computer, Vol. 27, No. 6, June 1994, pp. 28-43.

[RoC92] J. Rosenman and T. Cullip, "High-performance computing in radiation cancer
treatment," CRC Criticai Reviews in Biomedical Engineering, Vol. 20, 1992,
pp. 391-402.

[Rud94] G. Rudolph, "Convergence analysis of canonical genetic algorithms," IEEE
Trans. Neural Networks, Vol. 5, No. 1, Jan. 1994, pp. 96-101.

[SiA96] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li,
"Heterogeneous computing," in Parallel and Distributed Computing
Handbook, A. Y. Zomaya, ed., McGraw-Hill, New York, NY, 1996, pp. 725-
761.

[SiD97] H. J. Siegel, H. G. Dietz, and J. K. Antonio, "Software support for
heterogeneous computing," in The Computer Science and Engineering
Handbook, A. B. Tucker, Jr., ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-
1909.

[Spe90] "Special report: Gigabit network testbeds," IEEE Computer, Vol. 23, No. 9,
Sep. 1990, pp. 77-80.

[SrP94] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey," IEEE
Computer, Vol. 27, No. 6, June 1994, pp. 17-26.

[Sun92] V. S. Sunderam, "Design issues in hetcrogeneous network computing,"
Workshop on Heterogeneous Processing (WHP '92), revised edition, Mar. 1992,
pp. 101-112.

[TaS97] M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li, "Minimizing the application
execution time through scheduling of subtasks and communication traffic in a
heterogeneous computing system," IEEE Trans. on Para/lei and Distributed
Systems, accepted and scheduled to appear in 1997.

[ToR93] D. Tolmie and J. Renwick, "HiPPI: Simplicity yields success," IEEE Network,
Vol. 7, No. 1, Jan. 1993, pp. 28-32.

[WaS98] L. Wang, H. J. Siegel, V. P. Roychowdhury, andA. A. Maciejewski. "Task
matching and scheduling in heterogeneous computing environments using a
genetic-algorithm-based approach," J. of Para/lei and Distributed Computing,
Special Issue on Parallel Evolutionary Computing, accepted and scheduled to
appear in 1998. (A preliminary version appeared in the 5th Heterogeneous
Computing Workshop (HCW '96), Apr. 1996, pp. 72-85.)

17

