
Performance Study of a Multithreaded Superscalar Microprocessor

Manu Gulali

NexGen Inc.
1623 Buckeye Drive
Milpilas, CA 95035

Abstract
This paper describes a technique for improving lhe

performance of a superscalor processar lhrough mul­
tilhreoding. The technique e.rp/oits lhe in5lruction­
level paral/elism avoiloble bolh inside eoch individual
streom, ond across streoms. The former is erploited
lhrough oul-of.ordcr ezcculion of instructions tJJÍlhin
a slream, and lhe latter lhrough uecution of in­
structians from different streoms simultoneously. As­
pecls o/ multilhreoded superscolar design, such asfelch
policy, coche perfonnance, instruclion scheduling, and
functional unit utilization are studied. IVe analyze
performance bosed on lhe simulation of a superscalar
architecture and show that it is possible to provide sup·
port for multiple streoms wilh mínima/ utro hardware,
yet achieving significant performance gain {20 • 55%}
across a range of benchmarks.

1 Introduction
In an efforL Lo improve performance, computer de­

signers make use of parallelism at various leveis - from
coarse-grain parallclism, at ll1e program ar applica­
tion levei, Lo very fine-grain parallelism, aL lhe levei
of individual instructions. In mosL cases, exLracLion
of parallclism is thc responsibility of software, either
being spccified explicitly in the programming language
ar discovcrcd by the compiler. Superscalar processars,
on the other hand, accomplish this through hardware
IA!chniques. As compared Lo traditional scalar pro­
cessars, supcrscalars rcquire a wider pipcline. In ar­
der to generatc corrcct results and cxtract as much
parallelism as possible, Lhey may also use sophistic­
atcd tcchniques likc ouL-of-order exccution (8], register
renaming (li] and speculative execution (6]. The hard­
ware in a superscalar processar is responsible for kee)>'
ing track of dependencies, determining when an in­
struction is to be executed, and on which functiooal
unit.

The processar's own finite resources place a limit
on it.~ maximum achievable performance. The parai-

Nader Bagherzadeh

Electrical and Computer Engineering
University of California at Irvine

Irvine, CA 92714

19

lelism present in the program being executed (hence­
forth referred to as workloaá) is an equally important
facLor. With present VLSI IA!chnology, it is possible Lo
provide sufficient hardware to take advantage of short
pcriods of high parallelism. Very oftcn, however, the
processar is unable to execute the maximum number
of instructions, owing to true dependencies on both
short and long latency operations, and mispredicted
contrai transfer opcrations. This paper explores the
effectiveness of multithreading in creating a workload
with greater parallelism. Rather than expend hard­
ware to meeL peak requirement.s, iL is used for support
of multiplc threads, and applications programmed ac­
cordingly.

The methodology of multithreading is also ad­
dressed in this papcr. The processar must bave fetch
and issue mechanisms that allow it Lo execute the dif­
ferenL threads with equal ar different priorities, as de­
sired. Denefits of supcrscalar techniques like speculat­
ive execution and register renaming should be available
Lo ali threads. On-chip resources like registers and the
cache have to be shared by ali threads in an effect­
ive way. Section 3 deals with archiiA!clural support for
multithreading.

Thís paper uses a particular superscalar processar,
callcd SDSP (12], as an example of an architecture
that could benefit from these IA!chniques. SDSP is a
pipclined RISC processar with the ability to fetch and
decode f ou r instructions per cyclc. Thc SDSP has been
designed for integer processing, and therefore does not
possess floatíng point (FP) computation units. The
difference between U1e superscalar model we use and
the SDSP is only that we employ these uoit.s, sincc
our benchmarks contain lloating point computations.
A discussion of the SDSP archiiA!cture follows in Sec­
tion 2. The cmphasis is on techniques used for ex­
ploiting the parallelism available in workloads. Scc­
tion 4 briefly describes the simulation methods and
benchmarks used. Differcnt performance factors and
design issues are dealt with in Section 5. Section 6

-· -·;-·1-·l

~'igure I: Organization o f essential components in
SDSP

draws conclusions and presenls alternatives for fur­
ther improving performance. Throughout this paper,
the tcrms "instruction stream" and "thread" are used
intcrchangeably, and refer to one segmento f a parallel
program.

2 The SDSP architecture
The Superscalar Digital Signal Processor (SDSP)

is being developed as part of an on-going research
projed, wiUt full considcrations towards VLSI imple­
menlation. Figure I shows thc architectural organiz­
ation of lhe processor. lts key componenls are: lhe
Inslruction Unit (lU), decoders, the Scheduling Unit
(SU) and the Execution Unit (EU). The basic data­
ftow through these units is as follows: lhe lU fetches a
block of four contiguous instruclions (each instruetion
is 32-bils long) from instruction memory. A hardware
branch predictor, wilh a 2-bit prediction algorilhm
(5), allows speculative fetching. For each valid fetched
instruction, lhe decoder decodes opcodes and fetches
operands, if available. ll lhen places lhe decoded in­
slructions into lhe instruction window (IW) parL of
the schcduling unit, where lhey remain until Lhey are
scheduled for execution . Whcn an instruction is free
of dcpendencics and a functional unit is available, it is
execut.ed in Ute execution unit (EU). Upon completion
of execution, results are written back to lhe schedul­
ing unil. This may cause other instructions that were
awailing Lhesc resulls to bccome rcady for execution.
A brief description of the kcy unils follows; a more

thorough explanation can be found in (12,. 13].
2.1 Decoder

The decoder is responsible for lhe following tasks:

• decoding opcodes and fetching operand val­
uesftags,

• assigning new renaming tags to destination re­
gisters, and

• placing decodcd instructions along with ali values
and tags into lhe scheduling unil.

Thc required value or tag for a source operand is
obtained by performing an associative lookup on ali
entries in Ute rcorder buffer (RB) in lhe SU, with its
register number as the key. lf more lhan one entry
matches, value/tag from lhe most recent occurrence
is used. If there is no match in the SU, its value is
obtained from lhe registcr file.

20

2.2 Scheduling unit
The reorder buffer, instruclion window and dy­

namic scheduling logic make up the scheduling unit
of lhe SDSP. An entry is made in lhe SU for each
and every valid instruction decoded . The SU is main­
tained in a FIFO manner, with newly decoded instruc­
Lions being entered at lhe top. Place is made for lhese
by shifting lhe contenls of lhe entire SU down by one
block (four instructions for SDSP), and shifling out
lhe oldest block of instructions from lhe bottom of lhe
SU. Computation resulls from lhe shifted out instruc­
tions are writ.u:n to the register file. This operation is
known as result commit, since it updates lhe in-order
state of lhe machine to a new point of execution. I f
lhe resulls of lhe bottom entries are not yet available,
they cannot be committed, and SU enlries canool be
shifted down. Consequently, no new entries can be
made. This occurrence is known as a scheduling unit
si ali.

The dynamic scheduling algorithm is simply "old­
esl first". For a schcduling unit wilh FIFO ordering,
Utis implies lhat inslructions closer to lhe bottom have
higher priority. The scheduling logic analyzes instruc­
tions from bottom to top, issuing lhe ones that are
ready for execution.

3 Running multiple threads
While multilhrcading migbt provide more parallel­

ism, it comes ala cost. First, there is added hardware
to support multiple threads. This includes extra stor­
age to hold lhe state (e.g. conlenls of registers) of
severa! threads, and the extra complexity in dynam­
ically scheduling ioslructions. Sccond, wasted cycles
result from synchronization and communication delays
between lhreads. These are inherent in lhe parallel
programming model and cannot be avoided. Third,

a context switch penalty (in terms of wasted cycles)
is incurrcd in switching exccution from one thrcad to
anothcr. Fourth, thc total number of instructions ex­
ccutcd incrcas~.s. bccause of the overhead of creating
multiple threads. Finally, there is a loss in the local­
ity of both data and instruction accesses to memory.
Lower locality has a negative effect on performance
owing to the reduced effectiveness of the cache.

In light o f thc abovc obscrvations, it would be inter­
csting to sce the effects o f multilhreading on lhe oper­
ation o f a superscalar processar. The methodology for
multithreading musl address lhe above considerations,
and keep the following two goals in mind [1):

I. To havc a low cost of switching contexts, sincc
this is simply an overhead.

2. To have good single-thread performance, so that
applicalions with low parallelism, and inherently
sequential code like criticai sections can execute
efficiently.

One way of executing severa) threads on a processo r
isto load lhe state of a particular thread from memory,
execute that lhread, and switch contexts by storing
back its ncw state to memory beforc loading that of an­
other one. This is lhe technique used by many multitll­
readed processors [1, 3, 2). The "state" of a thread in a
superscalar processor consists of lhe following: its set
o f rcgisters, program counler, reorder buffer, instruc­
tion window, and store buffer. Saving and restoring ali
this information at every context switch constitutes an
enormous overhead. Therefore, a different approach to
multithreading is taken. Ali threads stay resident on
lhe processor aL ali times, and insLrucLions from differ­
enl thrcads are cxecuted simultaneously. Ali resources
on the chip, viz. lhe rcgister file, reorder buffer, in­
struction window,store buffer, and renaminghardware
are shared by the threads. The manner in which the
register file is shared is detcrmined by the compiler.
Register allocation is thus static, and in the results
presented in this paper, allthreads are allotted equal
numbers of registers. Different static disLribulions con
be made by lhe compiler, if it is capable of determining
an appropriale distribuLion. The reason for selecting
an equal distribution is its simplicity in the compiler
as well as Lhe hardware. Sharing of the remaining re­
sources among different threads changes dynamically
and is dircctly dependent on Lhe fetch policy used by
the processo r.

The remainder of this scction describes how ex­
actly multiple threads are supported on the SDSP. Two
goals are kcpt in mind: to keep hardware complexity
ata minimum, and not to increasc lhe cycle time o f tbe
machine by an amount that would undo any benefits

21

of the modifications. Unless statcd otherwise, the let­
ter N refers to the number of simultaneously executing
threads.
3.1 Instruction unit

The lU of the SDSP has to be enhanced to manage
lhe control llow for ali executing thrcads. There are
N program counters, inslead of one. A block of four
contiguous instructions is fetched in one cycle, as be­
fore. lnstructions fetched in one cycle ali belong to lhe
same thread, but fetching in different cycles is done
from different streams. Branch predidion with mul­
tiple threads is addressed in the next section.
3.2 Decoder and scheduling unit

The scheduling unit has an extra field that holds
the thread ID (TID) of the decoded instruction. The
remaining fields stay the same. In addition to the tasks
mentioned earlier, the decoder performs the following:

• assigns the correct TID value in lhe extra field in
the SU,

• modifies the associative lookup for fetching op­
erand valucsftags to succecd only if lhe thread
number and the register number match those of
the instruction being decoded.

The dccoder still assigns a unique tag to each and
every valid instruction decoded, irrespective of the
thread. It also places the decoded block at the top
of the SU, as before. The tag issued to a particular
instruction is different not only from ali others issued
to instructions of the same thread, but from ali other
tags in use, irrespective of thread number. That is,
lhe renaming hardware continues to allocate tags as if
ali instructions belongcd to lhe same thread, and does
not reuse one until its previous occurrence is no longcr
in use.
3.3 lnstruction scheduling

Thc improvcmenl in performance that a superscalar
can achieve depends on its ability to issue instructions
out.-of-order [6). Preliminary results on the VLSI im­
plcmcntation of the SDSP processar indicate that SU
design is criticai in meeting timing constraints of thc
processar [13). It is therefore important that multith·
reading noL add to lhe cxisting complcxity of lhe SU.

Once instructions are dccodcd and placcd into the
SU, the schcduling Jogicdoes not have to concern itself
with the thread thal an instruction belongs to. This is
because ali dependencies have been exprcssed in terms
of matching tag values between the instructions. Once
source operand values are known, and functional units
available, the instruction can execute. This approach
to multithrcading has some distinct advantages. First,
the issue logic need not be changed from its original
design. Second, ali independcnt instructions, whether

IEOIUA 8\JTDI -----.
!AFO

NGISru
Block 3-.,

lU I

Block 2---.
I
I

Block 1- -, i

~
I !

Block o, I I !
' !
LU I

\. ""' -·-
Figure 2: Reorder buffer with the ability to com mit
results from one of four bottom slots.

they belong to lhe same thread or different threads, are
identified, lhereby cxploiting as much ILP as possible.
This approach also allows ali threads to be scheduled
with lhe samc priorily. lf differenl priorities are to
be allollcd, the fetch policy of the processor can be
adaplcd to favor or discriminalc against the particular
thread(s).

3.4 Instruction execution
Othcr lhan U1e case of conlrol-lransfer (CT) opera­

lions, inslrudion execution and Functional Unil {FU)
design is thc same wilh multithrcading as in a single­
lhreaded processor. In lhe SDSP, the delcction of a
misprediclcd CT operation resulls in ali entries above
il in lhe SU being discardcd. With mullithrcading, lhe
discarding is done seleclivcly; only inslructions belong­
ing to lhe some lhread as lhe mispredicted inslruction
are discarded. Thus, ali cntries abovc lhe misprediclcd
one, and wilh a matching lhread ID are discarded.

3.5 Write back and result commit
When a funclional unil completes a compulalion,

the resull is written back to lhe SU. The entry with
the same lag number as that of the rcsull gets updalcd.
Uniqueness of lags guaranlees thal matching tag num­
bers will produce correct results, and the TIO can be
ignored. The Wrilc Dack stage of lhe pipeline is lhus
exactly thc same as for single-lhrcaded execution.

In a processar U1at utilizes a reorder buffer, only
inslruclions in U1e lower-mosl block (of size 4 instruc­
lions in lhe SDSP) may wrilc resluts into lhe rcgislcr
file, providcd thcre are no exceplions associalcd with
them. This is necessary for exceplion recovery when
speculalive execution is done.

For a multithrcaded processor, lhe situation is quite
different. Figure 2 shows a pidure of what the reorder

buffer and instrudion window might look like at some
point in execution. Assume tbat block #Ois not ready
to commit its results at this stage but block #I is. !f
the instructions in block #I belong to a thread dif­
ferent from the ones in block #0, then lhe former are
allowed to wrilc their results to thc rcgislcr file . lf
thcy do belong to the same thread, result commit is
not permitlcd for block #I. !f block #I is unable to
commit its results, block #2 is examined. Block #2
will eommit its results only i f they are ready and lhe in­
slructions belong to a thread lhal is differenl from both
block #O and block #1. In this way, any number of
blocks can be cxamined, limilcd by: (a) the complex­
ity the designer is willing to bear to have this fealure,
and (b) timing conslraints of lhe result commil slage,
since lhe process of making a decision causes a delay.
The abilily to commil results from some block olher
than lhe lower-most one will bc refcrred to as Flexible
Resull Commit. The reorder buffcr used in ou r simu­
lations allows us lhe flexibilily to examine four blocks
of inslructions for result commit.

Though the techniques described are specific to
SDSP's style of instruction scheduling, they can easily
be extended to other schemes lhat achieve out-of-order
execution. lf the proccssor used a mechanism like lhe
CDC 6600 scorcboard or Tomasulo's algorithm [11),
for inslancc, the only change needed would be thal the
TIO would no longer be ignored, but used along with
the rcgislcr number for lracking dependencies belween
instructions. The Lcchniques described here are also
justas applicable if reservations stations wcre uscd in­
slead of an inslruction window.

4 Simulation methods

22

A total of elcven bcnchmarks, ali writlcn in C, have
been simulated. Each one is compiled, assembled and
linked in to a single object module, using software tools
for lhe SDSP processor. The object module is then
loaded into an instruction-level simulator, which simu­
lalcs lhe bencbmark as accuralcly as possible by main­
taining lhe values of lhe regisler set {including PC),
reorder buffer, instruction window and store buffer on
a cycle-by-cycle basis.

The simulator is scalable and reconfigurablc in
terms of the hardware configuralion it represents.
There are a total of 128 rcgislcrs, which are sharcd
by the threads. Allocalion of regislcrs is static, bcing
donc al compile-time. In our case, lhe 128 regislcrs are
dislribulcd equally among ali lhreads. This allocation
is easy to implement, and is also consislcnt with our
model of parallel prograrnming, in which ali lhreads
execute lhe same piece of code on differenl items of
data. This melhod of programming, known as homo-

Typeol ~·u Ocfault no. ou .. rno. Latency
lnteser ALU ~ 6 I
lnteser Multiply I 2 2
lnteser Divide I 2 15
Load I 2 I
Store Unit I 2 I
Control Tran•fer I I I
FP Add I 2 3
FP Multiply I 2 6
FP Divide I 2 40

Table 1: Functional unit configuration. Latency is in
cycles.

geneous multilasking, makes use of Lhe dat.a parallcl­
ism in an application. A number of problems can be
solved using Ulis style of parallel programming: like
Sieve, Laplace, \Vaú:r, MP3D, Matrix multiply and
many of thc Livcrmorc loops. These constitute the set
of benchrnark programs used for this research. \Va­
ler and MP3D have been oblained from the SPLASH
suíte (lO] of bcnchmarks, Sieve and Laplace have been
written by Robcrt Boothe [3], and Matrix (multiply)
has been written by lhe authors. Six Livcrmore loops
were chosen, which exhibit varying amounts of data
parallelism, and of different granularity. They ali have
diffcrcnt characteristies lhat make them suitable o r un·
suitablc for multithreading lo varying dcgrces. Li ver·
more loops are identified by numbers. They will be
referred to as "LL #n". LLI , LL2, LL3, LIA, LLi
and LL22 have been simulated.

4.1 Default configuration

Unless statcd otherwise, ali applications are pro­
grammed to run with four parallellhreads, which ex­
ecute simultancously on the processor. The rcgister
file is sharcd cqually by the streams, irrespeclive of
lhe lalter's number. 'fhe compiler for lhe SDSP was
modificd lo produce code for a regisler scl of differ­
cnt sizes for U1is purpose. In ali simulations, a con·
stant fcteh bandwidth of four instructions per cycle is
assumcd. A 2-bit algorilhm for branch prediction is
used, asdcscribed in (5]. Sincc thecodeexecuted by ali
streams is lhe same, only one BTB is maintained, re­
gardless o f the number of lhreads. Branch instructions
of alllhreads update lhe same history after execution.
While lhis may seem too simplistic, it yielded predic­
tion accuracies upwards of 80% for ali applications.

The result commit policy is Flexible Result Com·
mit. Dependence analysis is done lhrough lhe renam­
ing tags allocated during the decode stage. A 4-way se!
associative 8KB data cache with a line size of 16 bytes
and a perfect LRU replacement algorithm is accurately
simulated. This is the default model, a direct.-mapped

23

cache being the otber one used, when so stated. An 8-
enlry slore buffer exists between the cache and lhe SU
for ali simulations. The scheduling unit, consisting of
combined reorder buffer and instruction window, has
32 entries. The word "entry• refers lo an individual
instruction. Thus, 8 blocks can bc accommodated.
The default functional unit configuration is listed in
Table 1. The SU can issuc up lo 8 instructions for
execution per cycle, as lhe functional units may write
eight different results back lo lhe SU in any cycle.
The middle column ofTable 2 summarizes this config·
uration. The right.-hand side column lists non-default
values that were used in some of the simulations.

5 Performance analysis
It is essential lo establish a base case of super·

scalar opcration al lhe outset, lo serve as a point
of reference. This will be provided by the execution
of non-multithreaded (single-thrcadcd) codc of the el·
even benchmarks on a processor with a configuration
as described in Section 2. In addition lo lhe functional
units of the SDSP, we will assume one floating point
(FP) uni! each for addition, multiplication and divi­
sion. For convenience, results are presented in two
groups: Group I contains alllhe simulated Livermore
loop benchmarks, and Group 11 contains the remain­
ing benchmarks: Laplace, MP3D, Matrix, Sicvc and
\V ater.

..

"' ""
Figure 3: Cycles (millions) of execution of Livermore
loops for difTerent difTerent fetch policies.

5.1 Fetch policy
Traditionally, the issuc of context switeh policy on

a multithreadcd processor has received great atiA:ntion
[1, 4, 9, 2, 3). For a proccssor with lookahcad, lhe in­
struction window creat.es a time gap between the fcteh
and execute stages. Therefore, it is more appropriate
to talk about its feteh policy. Three different mechan­
isms are compared.

l•cature Uefaul~ Value Uthers
Numb<r of lhrcads 4 6, 51 3, 2 or 1
Fetch B&ndwidth 4 inllructions/cyde -
Branth Prcdktion 2·bit hardware prcdictor -
Result Commit from Bottom 4 bloc:ks of RB Lower·moot bloc:k only
Rcgister Renaming Full rcnaming l·bit scorcboan!ing
Bypwing of rcsults Have bypassing No bypassing
Data Cad1e 8K, 4·way sei associative, DirccHnapped cache of 8K

line siu: = 16 bytes,
LRU replacemcnt algorithm

lnstruction cache Perfect cache (100% hits) -
Store Bulfer depth 8 entriu -
Oepth o(Sched. Unit 32 entries 64, 48, or 16 entrie•
Functional Units See Table I Table I
Writeslo RBIW/cyde Eight -
lnsns Jssued/cyde Eight -

Table 2: Hardware Configuration

The simplest of Utcsc, True Round Robin, allocaLes
one fe\ch cycle Lo ali Utreads, from O through N-1, in
cyclic order. This is implcmcnted via a moduloN(N =
number of threads) binary counter. At cvery clock tick.
the lhread with lD cqual Lo thc value of the counter is
allowcd Lo fetch a block of instructions. Thc counter is
advanccd on evcry clock tick, irrespective of the stale
of cxccution (running or waiting on an event) of the
threads. This results in cycle-by·cycle interleaving of
instruction blocks placed inLo the instruction window.
This policy will be referred Lo as True Round Robin
(Truc RR) fctch, since each thrcad gcts a turn Lo fetcb
oncc cvcry N cycles. Ali multitbreaded simulations
dcscribcd in this paper use True RR by default.

The second mechanism, known as Masked Round
Robin, is similar Lo True RR, with the diffcrencc that
onc or more threads can bc skipped in the proccss of
circular sclection. I f thread #2 were temporarily sus­
pendcd, say becausc of a synchronization delay, and
N = 4, the ordcr of fetching would be ... 0,1,3,0,1,3, ...
Oncc lhe synchronization attempt is successful for
thread #2, fctching would resume for it. In true round
robin, lhe ordcr would always be ... 0,1,2,3,0,1,2,3 ... ,
irrespective of the state of any thread. The bencfit of
this schemc is that threads with low parallelism can
be skipped, allowing other thrcads Lo takc thcir place
in lhe SU. This policy will be refcrrcd Lo as Masked
Round Robin, since threads may be "masked" out from
thc sclcction process from time Lo time.

Thc difliculty wiU1 this approach is in determining
when Lo cxcludc a particular thread. lt requires a re-
1iab1c means of knowing whcn thc execulion rale of
a particular Uuead is like1y to be low. The criterion
that was used is as follows: every time a thrcad fails
Lo commit its results from the lower·most b1ock in thc
reorder buffcr, fctching for that thread is suspended
until the commiL tlocs take p1ace. The effectiveness
of approach depends on lhe latency of the operation

that fails Lo commit results. The 1ongcr lhe latency,
lhe more beneficiai excluding that thread is 1ikely Lo
prove.

Both of the above schemes are based on cycl~by­
cyclc interleaving of blocks of instruction blocks from
different threads. The alternative, called Conditional
Switch, is Lo continue fetching from the same thread
until tbere is an indication of its raLe of execution be­
coming low. Severa) mu1tithreaded processors follow
this policy [1, 3, 2). However, there is an essential
difference between processors with and without1ooka­
head in lhis regard. When fetching for a thread is
sLopped in lhe forme r type of processar, instruction
cxecution continues as long as there are fetched blocks
in the SU. A scalar processar simply completes the
ones already initiated in the pipeline.

24

- ... -... , . .,
Figure 4: Cycles (millions) of execution of Group
11 benchmarks (Laplace, MP30, Matrix, Sieve and
Water) for difTerent fetch policies.

As in the case of scalar processors, the problem of
determining whcn Lo switch arises. Jdeally, the de­
cision Lo switch threads should be made as dose Lo thc
fctch stage as possible. The earliest this can be done

is during decodc. Upon det.ecting certain instructions,
t.he decoder sends a switch signal to t.he fetch mech­
anism. The fetch mechanism ceases fetching for lhe
currenUy aclive thread and switches to anot.her one.
The instructions t.hat can trigger a context switch are:

• inleger divide,
• floating point multiply or divide,
• a synchronization primitive.
• a long-latency 1/0 operation.
Cachc misses do not belong to this list, because lhe

decision to switch is being made at lhe decode stage.

..

tUUMUIS

Figure 5: Cycles of execution of Livermore loops for
difTerent numbers of threads in execution (1-6).

Figures 3 and 4 show t.he cycles of execution for
Group I and 11 benchmarks respectively, with lhe three
differcnt fetch policies. The base case is also shown
for sake of comparison. Each bencbmark is compiled
to run wiU1 four parallel threads, wbicb is tbe de­
fau lt number, as per Table 2. Ali olher hardware fea­
tures correspond to lhe configuration in t.he same table.
"LL#n" refers to Livermore loop # n. Performance­
wise, True RR and Masked RR emerge as about equi­
valent. While Masked RR has distinct advantages,
it has t.he drawback of sometimes masking threads
out unnecessarily. Tbreads may get masked owing to
short-latency operations, and if this occurs frequenUy,
it would result in a sparsely occupied SU. Conditional
switch, which has been included for sake of compar·
ison, has similar performance. This implies lhat lhe
lalencics of operations that trigger a context switch for
this policy are not a bottlcneck in lhe processor's exe­
culion ratc. Of lhe thrcc policies, Truc Round Robin
is lhe easiest to implement.
5.2 Number of threads

Figures 5 and 6 prescnt the results of execution of
t.he benchmarks with I, 2, 3, 4, 5, and 6 t.hreads. We
shall use the term "peak improvement" of a bench­
mark to refer to its maximum improvement among ali

25

- -llltCIUUtU

Figure 6: Cycles of execution of Group 11 benclt­
marks for difTerent numbers of threads in execution
(1-6).

mullit.hreaded simulations, i.e the maximum observed
value of speedup among 2, 3, 4, 5, or 6 t.hreads. The
lerms "speedup" and "improvement in performance"
are synonymous, and are computed according to t.hc
formula:

Speedup = (Mtper/- SlpeJ)/Siperf
wbere Mlperf and SlwJ rcfcr to multithrcaded and
single-threaded performance, respeclively. Perform­
ance is defined as the reciproca! of number of cycles.
• Observed values of peak improvement for the simu­
lated benchmarks lie between -8.6% to 57.2%, rclative
to t.he base case. A negative value indicates poorer
performance lhan lhe base case (only LL2 consis~
enUy yielded a negative value, whereas LL4 yielded a
negative value with a large number of t.hreads) . The
average peak improvement for the Livermore loops was
33.1%. The remainder of t.he benchmarks grouped t.o­
get.her showed an a ver age peak improvement of 24.5%.

Measuring performance by number of threads, for
Livermore loops on lhe average, an improvement of
25.26% over single-threaded execution was achieved
wit.h lhree t.hreads. Por six threads, there was a de­
teriorotion by 18.15%.

In Figure 5, LL4 can be seen to behave notably dif­
ferent from lhe others. This is because of a dependency
that exists across loop iterations in t.his benchmark.
Explicit synchronization primitives have to be inser·
ted to guarantee correcl execulion. Its performance
improves as number of threads is decreased, indicat­
ing t.he lower cost of synchronization. Dy thc same
tokcn, it would be expected to produce t.he best res­
ults for single-t.hreaded execution, which is not t.he case
either. The negalive effects of t.his synchronization are
outdone by t.he greater parallelism when three or less
threads are used.

:.:.§ :::·::.:::::::::::::: , •

J

11 ~~==:::::::~-;::::;~..,.,-;

•.•.•••••••• 'l

·~ ; -=-···········:

.
. o• IIIIIAOS

Figure 7: Average execution cycles (in millions) of
Livermore loops with direct and associative caches
for difTerent numbers of threads (1-6).

. ···········;····· :············:············:···········:

. j ... L ,":" ~-1.) ~
: : : : . : . :

. . .

-. ;.-:::-:= .. ~ ~ ~
: : :

~ t ..•.•.. • . ; •.••..• . .•. ~-•.. ...• ; ••........• ; ;
I ••• '••· ,, ;,,,,,, •• ••• ~••••• ••••• .. ;. •. ••• •• ,,,; •••••• ,,,,,;

•tMIU OI IU14t l

Figure 8: Average execution cycles (in millions) with
direct and associative caches for Laplace, MP30,
Matrix, Sieve and Water, with varying numbers of
threads (1-6) .

5.3 Associative vs direct cache

To allow sharing, the cache could either be par­
titioned among threads, or a uniform cache can be
shared by ali threads. In the partilioned case, the
space available to any one thread is small, since its
accesses are limited to a section of the total cache. Ir
the cache is uniform (not partilioned), the entire cache
space is availablc to ali threads. There is a high prob­
ability of contention, however, as each thread would
try to establish its working set in the cache. Eilher
way, the cffcctivcncss of lhe cache is reduced. We
picked a uniform cache for our study because it is sim­
pler to design. Moreover, as lhe number of lhreads
being executed cha.nges, the sizes of partitions of Lhe
latter would also have to be cha.nged. This problem
does nol arise in uniform caches.

Thcrc is another aspect to cache behavior in a multi-

26

lhrea.ded processor, one lhat can go in its favor. Con­
sider the execution of threads thal have small work­
ing sets, small enough that lhe working sets of ali of
them can be accommodated at lhe same time. In such
a case, tbe total number of acccsses to the cache is
higber, even though lhe bit rale may remain lhe same.
This is particularly true for a cache lhat is capable of
servicing a cache miss at one localion, while providing
data to lhe processar from olher locations at the same
time. By doing so, only lhe thread that experiences lhe
cache miss slows down, while lhe processor continues
to execute lhe olher threads. However, this requires
a cache wilh higher design complexity. The simula­
tions described in lhis paper assume that lhe cache is
capable of servicing one line refill while simultaneously
providing data. A second miss renders lhe cache in­
capable of servicing data requests, and requires thal
the missing !ines be refilled. We use a 4-way sei asso­
ciative cache, with an LRU replacement policy.

Figures 7 and 8 show the performance of bench­
marks with dilferenl numbers of threads in execution,
with direct and associative caches. The hit rales ob­
served for these simulations are listed in Table 3. As
lhe number of lhreads increases, hit rale is seen to im­
prove, and lhen fali . The rea.son for this is that lhe
working seis of most threads can be accommodated
as long as the number of lhreads is not too large, but
beyond a certain point too many threads contend for
the same locations in lhe cache, causing misses to oc­
cur more frequenlly. This effecl is more pronounced
for the Livermore loop benchmarks as compared to the
others. The former are insignificant in lhe amount of
code they contain, and exhibit great data locality. As
a result, working seis are small. The others contain
significant amounts of code, and their access patterns
are less regular.

I Thn:ads I S.nchmarks I Cache Hit Rate I o ... ,ct I Assoe

6 Group I 66.33 86.83
6 Group 11 60.20 91.50
s Groupl 72.83 86.33
5 Group 11 66.40 94.40
4 Group I 74.50 80.00
4 Group 11 73.60 91.17
3 Group I 70.33 60.00
3 Group 11 77.20 89.33
2 Group I 71.33 77.67
2 Group 11 93.46 93.77
I Groupl 65.83 72.33
I Group 11 90.44 93.33

Table 3: Average hit ratu for direct and 4-way
set associative caches when simulated for difTerent
numbers of threads.

" {\
_

_;---./
c.:::J [:=J,

j . -~ c::J•,_,w .. _,,.,..,11,.
_,
,.....,. .. _ ,....,,.

w "' ... ""
I UCMIII.UU

Figure 9: Performance of Livermore loops for
scheduling units with 64, 48, 32 and 16 entries.

On lhe whole, performance is betler wilh an assoei­
ative cache than wilh a direcl one. This is only to be
expecled, but note lhat lhe difference in performance
keeps increasing sleadily as the number of threads is
increased. This is because there is grealer conlention
wilh many threads acccssing lhe cache lhan a single
one. Also note that cache performance has a direct
bearing on overall performance, as can be seen in lhe
correlatíon between cache bit rale (Table 3) and cycles
of execution (Figures 7 and 8).

5.4 Depth of scheduling unit
The lookahead capability of a processor [71 is de­

termíned by lhe síze of its ínstruction window. Fig­
ures 9 and 10 show how varying lhe SU Depth af­
fects performance. The difference in multithreaded
and single-thrcaded performance reduces as a deeper
SU is used. A deep SU helps in finding more inde­
pendent inslructions, making multilhreading less use­
fui. Thcre is a significant incrcasc in performance
between 16 and 32 entry SU's. The difference between
32 and 48 entry cases is much less, and negligible for
lhe next increment of 16. For some programs, a grealer
SU depth results in lower performance. The execution
of Matrix for instance, is slower by 0.59% with a 64-
entry SU as comparcd to a 48-entry SU. Two factors
contribute to lhis behavior: first, branch prediction
statistics are updated only when an instruction is shif­
ted out of the SU during rcsult commit, and delayed
updating might cause other branch instructions to be
mispredicted. The second contributor is lhe restric­
tcd loadfstore policy. Since an instruction stays in the
store buffcr until its entry in lhe SU is shifted out,
other storcs, and conscquenUy loads, could be preven­
ted from beíng issued.
5.5 Functional units

The choice o f numbers of functional units lo employ
depends on the available instruction-level parallelism
and on the hardware cost of a functional unit. For
síngle-lhreaded executíon, lhe column Default no. of

27

c:::J, tJ"
C=:J,

c=J•twoo.M

- · "* _ , "
-·l'fllad-
-•....a.MI

Figure 10: Performance of Group 11 benchmarks for
5chedulíng units with 64, 48, 32 and 16 entries.

Tab1e 1 lists a configuration of functional units lhat
has been found to be suitable [12j. Column Other
no of the samc table lists a more enhanced config­
uration of functional units. This will be referred to
simply as lhe "enhanced" configuration. Simulation
results are shown in Figures 11 and 12. A "++" in­
dicales that thc enhanced configuration of functional
units has been used for lhat simulation. Wilh lhe de­
fault number.~ of FU's, performance wilh multithread­
ing is better by 11.60% for the Livermore loops. Group
!I benchmarks yield an improvement of 15.27%. Wilh
the enhanced configuration, the speedup for the Liv­
ermore loops over lhe single-threaded case with this
configuration is 24.85%. For lhe remaining bench­
marks, lhe equivalent speedup is 17.42%. Thus, for
both groups of benchmarks, lhe relative speedup over
single-threaded execution is greater wilh lhe enhanced
configuration than witb lhe default configuration. The
improvcment shown by lhe Livermorc loops is greater,
owing lo lheir computation-intensive nature. To get an
idea of the relative usefulness of each of lhe functional
units, Table 4 lists the percentage of total execution
cyclcs that lhe extra functional units were made use
of, averaged over ali benchmarks. These results argue
strongly in favor of a second load unit, and a ftoating
point multiplicr, though lhe latter is more usefulto lhe
compute-intensive Group I benchmarks.

5.6 Result commit from multiple blocks
Figures 13 and 14 show lhe usefulness of commilr

ting rcsults rrom a block olher than lhe lower-most one
with multithreading. For lhe Livermore loops, per­
formance was better by an a ver age of 34.61% when
result commits took place from multi pie (four) blocks.
Wilhout lhis ability, scheduling unit stalls occur wilh
grcaler frcquency. (See Figure 2). Group 11 bench­
marks showed an improvement o r of 11.21% wilh lhis
feature. The point of reference of single-threaded ex­
ecution was not used here, since, as explained in Sec­
tion 3, doing lhis wilh only one lhread is not feasible.

"T

.. "" IUCII tU U
U1 ""

Figure 11: Comparison of cxccution cycles for differ­
ent numbers of functional units (Livermore Loops) .
"++" indicates the enhanced conliguration.

Figure 12: Comparison of execution cycles of Group
11 benchmarks for difTerent conligurations of runc­
tional units. "++" refers to the enhanced conlig­
uration.

Benchmarlcs Extra Unot % Cycles Used
Group I lnteger ALU 1.630
Group 11 lnteger ALU 3.516
Group I lnteger ALU O.H8

Group 11 lnteger ALU 0.972
Group I Load Unit 8.482
Groupll Load Unit 13.006
Group I Store Unit 0.000
Group 11 Store Unit 0.000
Group I lnteger Multiply 1.377
Group 11 lnteger Multiply 3.352
Group I lnteger Divide 0.017
Group 11 lnteger Divide 0.134
Group I FP Add 10.115
Group 11 FP Add Ul6
Group I FP Multiply 30.140
Group 11 FP Multiply 7.754
Group I FP Divide 10.563
Group 11 FP Divide 0.164

Tablc 4: Average usage of extra functional units as
a percentage of total cycles.

UI

o

~ 1

.. ~ ~~
-o- Lowe&l

·············· ··-······ ·······

0.5

UI U2 U22 11.3 liA U7 AVG

I o o p s

Figure 13: Cornparison of execution cycles with the
reorder buffer committing results from a single and
multiple (four) blocks, for Group 1 benchmarks.

6 Conclusion

28

This paper showed how mullithreading can be used
for creating larger amounls of Instruction-level Paral­
lelism in the workload. Based on simulations on our
superscalar architecture, we observed a speedup of 20
to 55% for most benchmarks. For the extra cost of
hardware incurred, lhis is a significant improvement.
The caveaL, of course, is that there is a cost ~
ciated with multithreading, which can reduce overall
performance. An exarnple of this is LL2, wbich sbowed
consistently poorer performance compared to the base
case in Section 5.2. In the final analysis, it is the char­
acteristics of the program ilself (one of whicb is ils
instruction parallelism) that determine how beneficiai
multithreading will be.

One of the considerations in devising a multithread­
ing technique was minimizing the hardware overhead.
Of the key componenls of the SDSP, the instruction
unit and lhe logic for result commit are lhe only areas
affected. The instruction unit has to keep track of
severa! PC's instead of just one. This involves differ­
entiating between the mispredicted operations of dif­
ferent tbreads, and providing a mechanism to sequence
among the various PC's for instruction fetch. As res­
ulls in Section 5.2 indicate, a modulo N binary counter
is sufficienL for this purpo6e (to implement the 'l'tue
R.ound R.obin fetch policy).

The change to lhe resull commitslage involves writ­
ing resulls from one of four different locations to the
register file, as opposed to a single one. Minor changes
are also required in the decode slage, handling of mis­
prcdicted control transfer instructions and access to
the register file. The remaining components - re­
gister file, reorder buffer, instruction window, f une-

I
J
~

Figure 14: Comparison of uecution cyc:lu with lhe
reorcler bvffer committing results from a s ingle and
multiple (four) blocks, for Group 11 benchmarks.

tional units and instruclion issue logic are virtually
unchanged. An additional field for thread ID of Lhe
instruclion is Lhe only change in Lhe scheduling unit,

6.1 Scope for improvement

Severa! allernatives may be considered in trying lo
improvc performance further, some of which are:

1. Employ more cache ports and functional units,
especially lhe scarce ones.

2. Align instructions in memory in such a way that
control transfcr operations lie at Lhe end of a
fetched block, and branch targets at lhe beginning
of a block. That way, ali of Lhe fetched instruc·
tions in a block will be valid.

3. Use ajudicious fetch policy, that slows down fetch­
ing for a thread in a region of low execution rale.

4. Use software scheduling to eliminale unnecessary
delays owing lo synchronizalion.

T he fina l altcrnativc, that of software scheduling
and code rearrangement, can havc a great impact on
performance. One of Lhe limitations of the multith­
reading paradigm thal has been used in this study is
that the code the threads execute is the same. The soft.­
ware scheduling algorithm is static, which has its own
limitations. Howcver, even with static scheduling, one
can wrile parallel codc for an application in more than
one way. In many cases, it may be possible to reduce
lhe synchronization overhead by rearranging code and
dividing tasks judiciously.

29

References
[I) Anant Asarw..J. "Performance tradeotrs in multith­

readed processon,". IEEE Tronaoclion.t on Porul­
lel ond Dillribulcd Sy•l•m•, 3{5):52~S39, September
1992.

[2] R. Alverson, O. Callaban, O. Cummins•, B. Koblenz,
A. Poretrlitld, and B. Smith. "The Tera Compuler
System,•. In Procettling1 o/fnlemolionol Conference
on Sy1lem Science, pages l-6, June 1990.

[3] Bob Boothe and Abhiram Ranade. "lmproved
multithreadins t.echniques for hidins communication
latcncy in multiprovessors,". In Proceeding• o/lhe
191

• lnlemoliono/ SJII!lpolium on Compuler A rchilte·
lun; pages 214-223, May 1992.

(4] R. H. Halstead Jr and T. Fujit.a. "A multithreaded
processor archit.ecture for par..Jiel symbolic comput.­
ing,•. In Proutding• o f lhe 15' • /nlemolionol Sym·
po1ium on Compuler Arehileelure, pages 443-451,
June 1988.

(5] John Hennessey and David Pattuson. "Compuler
Arehilulure: A Quonliloli•e Approoch, •. Morsan
Kaufmann Publishen, Inc., San Fransisco, Califomia,
second edition, 1996.

(6) Mike Johnson. "Super40olor Microproee11or De1ign, •.
Prentice Hall, Enslewood Clilfs, 1991.

(7] R. M. Ktller. "Look-ahead processon,". Compuling
Survev•, 7(4):177-195, December 1975.

(8] IBM Miaoelectronics and Molorola Inc. "Por»erPC
603 RISC Microproceuor U1cr'• Manuol, •, 1994.

(9] Rishiyur S. Nikhil and Arvind. "Can daiallow sub­
sume von Nuemann computins?.". In Proeeeding1 o f
lhe 161h /nlernolionol Svmpoaium on Compuler Ar­
chileclure, pages 262-272, 1989.

(to] J .P. Sin3b, Wolte-Oietricb, and Anoop Cupt.a.
"SPLASH: Stanford Paralltl Applications for Sbared­
Memory,•. Technic..J Repor! CSL-TR-92-526, SIM·
ford Univenity, Compuler Syalems Laboralory, Stan·
ford University, CA 94305, 1992.

(11] R. M. Tomasulo. "An Efficienl Algorithm for Exploit·
ins Multi pie Arithmetic Units". IBM Joumol, 11:25-
33, January 1967.

[12] Steven W..Jiace and Nader Bagherzadeh. "Perform·
ance lssues of a Supcrsc..Jar Microprocessor,". In
Proceeding• o/lhe 1994 /nlemolionol Con/erence on
Poro/lei Proceuing, volume I, pages 293-297, Augusl
1994.

(13] Steven Wallace, Nirav Dagli, and Nader Baghenadeh.
"Desisn and lmplementat.ion of a 100 MHz Reorder
Bulfer,". In 31'h A/idr»eal SJII!lpJium on CireuiiJ ond
Sv•lem•, August 1994.

