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Abstract

This paper describes a technique for improving the
performance of a superscalar processor through mul-
tithreading. The technique ezploits the instruction-
level parallelism available both inside each individual
stream, and across streams. The former is ezploited
through out-of-order exccution of instructions within
a stream, and the latter lhrough ereculion of in-
structions from different streams simultaneously. As-
pects of mullithreaded superscalar design, such as fetch
policy, cache performance, instruction scheduling, and
functional unit utilization are studied. We analyze
performance based on the simulation of a superscalar
architecture and show thal il is possible to provide sup-
port for mulliple streams with minimal extra hardware,
yet achieving significant performance gain (20 - 55%)
across a range of benchmarks.

1 Introduction

In an effort to improve performance, computer de-
signers make use of parallelism at various levels - from
coarse-grain parallelism, at the program or applica-
tion level, to very fine-grain parallelism, at the level
of individual instructions. In most cases, extraction
of parallelism is the responsibility of software, either
being specified explicitly in the programming language
or discovered by the compiler. Superscalar processors,
on the other hand, accomplish this through hardware
techniques. As compared to traditional scalar pro-
cessors, superscalars require a wider pipeline. In or-
der to generate correct results and extract as much
parallelism as possible, they may also use sophistic-
ated techniques like out-of-order execution (8], register
renaming [11] and speculative execution [6]. The hard-
ware in a superscalar processor is responsible for keep-
ing track of dependencies, determining when an in-
struction is to be executed, and on which functional
unit,

The processor’s own finile resources place a limit
on its maximum achievable performance. The paral-
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lelism present in the program being executed (hence-
forth referred to as workload) is an equally important
factor. With present VLSI technology, it is possible to
provide sufficient hardware to take advantage of short
periods of high parallelism. Very often, however, the
processor is unable to execute the maximum number
of instructions, owing to true dependencies on both
short and long latency operations, and mispredicted
control transfer operations. This paper explores the
effectiveness of multithreading in creating a workload
with greater parallelism. Rather than expend hard-
ware to meet peak requirements, it is used for support
of multiple threads, and applications programmed ac-
cordingly.

The methodology of multithreading is also ad-
dressed in this paper. The processor must have fetch
and issue mechanisms that allow it to execute the dif-
ferent threads with equal or different priorities, as de-
sired. Benefits of superscalar techniques like speculat-
ive execution and register renaming should be available
to all threads. On-chip resources like registers and the
cache have to be shared by all threads in an effect-
ive way. Section 3 deals with architectural support for
multithreading.

This paper uses a particular superscalar processor,
called SDSP [12), as an example of an architecture
that could benefit from these techniques. SDSP is a
pipelined RISC processor with the ability to fetch and
decode four instructions per cycle. The SDSP has been
designed for integer processing, and therefore does not
possess floating point (FP) computation units. The
difference between the superscalar model we use and
the SDSP is only that we employ these units, since
our benchmarks contain floating point computations.
A discussion of the SDSP architecture follows in Sec-
tion 2. The emphasis is on techniques used for ex-
ploiting the parallelism available in workloads. Sec-
tion 4 briefly describes the simulation methods and
benchmarks used. Different performance factors and
design issues are dealt with in Section 5. Section 6
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Figure 1: Organization of essential components in

SDSP

draws conclusions and presents alternatives for fur-
ther improving performance. Throughout this paper,
the terms “instruction stream” and “thread” are used
interchangeably, and refer to one segment of a parallel
program.

2 The SDSP architecture

The Superscalar Digital Signal Processor (SDSP)
is being developed as part of an on-going research
project, with full considerations towards VLSI imple-
mentation. Figure 1 shows the architectural organiz-
ation of the processor. Its key components are: the
Instruction Unit (1U), decoders, the Scheduling Unit
(SU) and the Execution Unit (EU). The basic data-
flow through these units is as follows: the IU fetches a
block of four contiguous instructions (each instruction
is 32-bits long) from instruction memory. A hardware
branch predictor, with a 2-bit prediction algorithm
5], allows speculative fetching. For each valid fetched
instruction, the decoder decodes opcodes and fetches
operands, il available. It then places the decoded in-
structions into the instruction window (IW) part of
the scheduling unit, where they remain until they are
scheduled for execution. When an instruction is free
of dependencies and a functional unit is available, it is
executed in the execution unit (EU). Upon completion
of execulion, resulls are written back to the schedul-
ing unit. This may canse other instructions that were
awailing these results to become ready for execution.
A brief description of the key units follows; a more

20

thorough explanation can be found in [12, 13].
2.1 Decoder
The decoder is responsible for the following tasks:

o decoding opcodes and fetching operand val-
ues/tags,

e assigning new renaming tags to destination re-
gisters, and

# placing decoded instructions along with all values
and tags into the scheduling unit.

The required value or tag for a source operand is
obtained by performing an associative lookup on all
entries in the reorder buffer (RB) in the SU, with its
register number as the key. If more than one entry
malches, value/tag from the most recent occurrence
is used. If there is no match in the SU, its value is
obtained from the register file.

2,2 Scheduling unit

The reorder buffer, instruction window and dy-
namic scheduling logic make up the scheduling unit
of the SDSP. An entry is made in the SU for each
and every valid instruction decoded. The SU is main-
tained in a FIFO manner, with newly decoded instruc-
tions being entered at the top. Place is made for these
by shifting the contents of the entire SU down by one
block (four instructions for SDSP), and shifting out
the oldest block of instructions from the bottom of the
SU. Computation results from the shifted out instruc-
tions arc written to the register file. This operation is
known as result commit, since it updates the in-order
state of the machine to a new point of execution. If
the results of the bottom entries are not yet available,
they cannot be committed, and SU entries cannot be
shifted down. Consequently, no new entries can be
made. This occurrence is known as a scheduling unit
stall.

The dynamic scheduling algorithm is simply “old-
est first”. For a scheduling unit with FIFO ordering,
this implies that instructions closer to the bottom have
higher priority. The scheduling logic analyzes instruc-
tions from bottom to top, issuing the ones that are
ready for execution.

3 Running multiple threads

While multithreading might provide more parallel-
ism, it comes at a cost. First, there is added hardware
to support multiple threads. This includes extra stor-
age o hold the state (e.g. contents of registers) of
several threads, and the extra complexity in dynam-
ically scheduling instructions. Second, wasted cycles
result from synchronization and communication delays
between threads. These are inherent in the parallel
programming model and cannot be avoided. Third,



a context switch penalty (in terms of wasted cycles)
is incurred in switching execution from one thread to
another. Fourth, the total number of instructions ex-
ccuted increases, because of the overhead of creating
multiple threads. Finally, there is a loss in the local-
ity of both data and instruction accesses to memory.
Lower locality has a negative effect on performance
owing to the reduced effectiveness of the cache.

In light of the above observations, it would be inter-
esting to see the effects of multithreading on the oper-
ation of a superscalar processor. The methodology for
multithreading must address the above considerations,
and keep the following two goals in mind [1]:

1. To have a low cost of switching contexts, since
this is simply an overhead.

2. To have good single-thread performance, so that
applications with low parallelism, and inherently
sequential code like critical sections can execute
efficiently.

One way of executing several threads on a processor
is to load the state of a particular thread from memory,
execute that thread, and switch contexts by storing
back its new state to memory before loading that of an-
other one. This is the technique used by many multith-
readed processors [1, 3, 2]. The “state” of a thread ina
superscalar processor consists of the following: ils set
of registers, program counter, reorder buffer, instruc-
tion window, and store buffer. Saving and restoring all
this information at every context switch constitutes an
enormous overhead. Therefore, a different approach to
multithreading is taken. All threads stay resident on
the processor at all times, and instructions from differ-
ent threads are execuled simultaneously. All resources
on the chip, viz. the register file, reorder buffer, in-
struction window, store buffer, and renaming hardware
are shared by the threads. The manner in which the
register file is shared is determined by the compiler.
Register allocation is thus static, and in the results
presented in this paper, all threads are allotted equal
numbers of registers. Different static distributions can
be made by the compiler, if it is capable of determining
an appropriale distribution. The reason for selecting
an equal distribution is its simplicity in the compiler
as well as the hardware. Sharing of the remaining re-
sources among different threads changes dynamically
and is dircctly dependent on the fetch policy used by
the processor.

The remainder of this section describes how ex-
actly multiple threads are supported on the SDSP. Two
goals are kept in mind: to keep hardware complexity
at a minimum, and not to increase the cycle time of the
machine by an amount that would undo any benefits
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of the modifications. Unless stated otherwise, the let-
ter N refers to the number of simultaneously executing
threads.
3.1 Instruction unit

The IU of the SDSP has to be enhanced to manage
the control flow for all executing threads. There are
N program counters, instead of one. A block of four
contiguous instructions is fetched in one cycle, as be-
fore. Instructions fetched in one cycle all belong to the
same thread, but fetching in different cycles is done
from different streams. Branch prediction with mul-
tiple threads is addressed in the next section.
3.2 Decoder and scheduling unit

The scheduling unit has an extra field that holds
the thread ID (TID) of the decoded instruction. The
remaining fields stay the same. In addition to the tasks
mentioned earlier, the decoder performs the following:

o assigns the correct TID value in the extra field in
the SU,

o modifies the associative lookup for fetching op-
erand values/tags to succeed only if the thread
number and the register number match those of
the instruction being decoded.

The decoder still assigns a unique tag to each and
every valid instruction decoded, irrespective of the
thread. It also places the decoded block at the top
of the SU, as before. The tag issued to a particular
instruction is different not only from all others issued
to instructions of the same thread, but from all other
tags in use, irrespective of thread number. That is,
the renaming hardware continues to allocate tags as if
all instructions belonged to the same thread, and does
not reuse one until its previous occurrence is no longer
in use.

3.3 Instruction scheduling

The improvement in performance that a superscalar
can achieve depends on its ability to issue instructions
out-of-order [6]. Preliminary results on the VLSI im-
plementation of the SDSP processor indicate that SU
design is critical in meeting timing constraints of the
processor [13]. It is therefore important that multith-
reading not add to the existing complexity of the SU.

Once instructions are decoded and placed into the
SU, the scheduling logic does not have to concern itself
with the thread that an instruction belongs to. This is
because all dependencies have been expressed in terms
of matching tag values between the instructions. Once
source operand values are known, and functional units
available, the instruction can execute. This approach
to multithreading has some distinct advantages. First,
the issue logic need not be changed from its original
design. Second, all independent instructions, whether
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Figure 2: Reorder buffer with the ability to commit
results from one of four bottom slots.

they belong to the same thread or different threads, are
identified, thereby exploiting as much ILP as possible.
This approach also allows all threads to be scheduled
with the same priority. If different priorities are to
be allotted, the fetch policy of the processor can be
adapled to favor or discriminate against the particular
thread(s).

3.4 Instruction execution

Other than the case of control-transfer (CT) opera-
tions, instruction execution and Functional Unit (FU)
design is the same with multithreading as in a single-
threaded processor. In the SDSP, the detection of a
mispredicted CT operation results in all entries above
it in the SU being discarded. With multithreading, the
discarding is done selectively; only instructions belong-
ing to the same thread as the mispredicted instruction
are discarded. Thus, all entries above the mispredicted
one, and with a matching thread ID are discarded.

3.5 Write back and result commit

Wihen a functional unit completes a computation,
the result is written back to the SU. The entry with
the same tag number as that of the result gets updated.
Uniqueness of tags guarantees that matching tag num-
bers will produce correct results, and the TID can be
ignored. The Write Back stage of the pipeline is thus
exactly the same as for single-threaded execution.

In a processor that utilizes a reorder buffer, only
instructions in the lower-most block (of size 4 instruc-
tions in the SDSP) may write resluts into the register
file, provided there are no exceptions associated with
them. This is necessary for exception recovery when
speculative execution is done.

For a multithreaded processor, the situation is quite
different. Figure 2 shows a picture of what the reorder
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buffer and instruction window might look like at some
point in execution. Assume that block #0 is not ready
to commit its results at this stage but block #1 is. If
the instructions in block #1 belong to a thread dif-
ferent from the ones in block #0, then the former are
allowed to write their results to the register file. If
they do belong to the same thread, result commit is
not permitted for block #1. If block #1 is unable to
commit its results, block #2 is examined. Block #2
will commit its results only if they are ready and the in-
structions belong to a thread that is different from both
block #0 and block #1. In this way, any number of
blocks can be examined, limited by: (a) the complex-
ity the designer is willing to bear to have this feature,
and (b) timing constraints of the result commit stage,
since the process of making a decision causes a delay.
The ability to commit results from some block other
than the lower-most one will be referred to as Flexible
Result Commit. The reorder buffer used in our simu-
lations allows us the flexibility to examine four blocks
of instructions for result commit.

Though the techniques described are specific to
SDSP’s style of instruction scheduling, they can easily
be extended to other schemes that achieve out-of-order
execution. If the processor used a mechanism like the
CDC 6600 scoreboard or Tomasulo’s algorithm [11],
for instance, the only change needed would be that the
TID would no longer be ignored, but used along with
the register number for tracking dependencies between
instructions. The techniques described here are also
just as applicable if reservations stations were used in-
slead of an instruction window.

4 Simulation methods

A total of eleven benchmarks, all written in C, have
been simulated. Each one is compiled, assembled and
linked into a single object module, using software tools
for the SDSP processor. The object module is then
loaded into an instruction-level simulator, which simu-
lates the benchmark as accurately as possible by main-
taining the values of the register set (including PC),
reorder buffer, instruction window and store buffer on
a cycle-by-cycle basis.

The simulator is scalable and reconfigurable in
terms of the hardware configuration it represents.
There are a total of 128 registers, which are shared
by the threads. Allocation of registers is static, being
done at compile-time. In our case, the 128 registers are
distributed equally among all threads. This allocation
15 easy to implement, and is also consistent with our
model of parallel programming, in which all threads
execute the same piece of code on different items of
data. This method of programming, known as homo-



Type of FU Default no. | Other no.
Integer ALU
Integer Multiply

Integer Divide
Load

Latency

Store Unit
Control Transfer
FP Add

FP Multiply

FP Divide
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Table 1: Functional unit configuration. Latency is in
cycles.

geneous mullitasking, makes use of the data parallel-
ism in an application. A number of problems can be
solved using this style of parallel programming;: like
Sieve, Laplace, Water, MP3D, Matrix multiply and
many of the Livermore loops. These constitute the set
of benchimark programs used for this research. Wa-
ter and MP3D have been obtained from the SPLASH
suite [10] of benchmarks, Sieve and Laplace have been
written by Robert Boothe [3], and Matrix (multiply)
has been wrilten by the authors. Six Livermore loops
were chosen, which exhibit varying amounts of data
parallelism, and of different granularity. They all have
different characteristics that make them suitable or un-
suitable for multithreading to varying degrees. Liver-
more loops are identified by numbers. They will be
referred to as “LL #n". LL1, LL2, LL3, LL4, LLT
and LL22 have been simulated.

4.1 Default configuration

Unless stated otherwise, all applications are pro-
grammed to run with four parallel threads, which ex-
ecute simultancously on the processor. The register
file is shared equally by the streams, irrespective of
the latter’s number. ‘The compiler for the SDSP was
modified to produce code for a register set of differ-
ent sizes for this purpose. In all simulations, a con-
stant fetch bandwidth of four instructions per cycle is
assumed. A 2-bit algorithm for branch prediction is
used, as described in [5]. Since the code executed by all
streams is the same, only one BTB is maintained, re-
gardless of the number of threads. Branch instructions
of all threads update the same history after execution.
While this may seem too simplistic, it yielded predic-
tion accuracies upwards of 80% for all applications.

The result commit policy is Flexible Result Com-
mit. Dependence analysis is done through the renam-
ing tags allocated during the decode stage. A 4-way set
associative 8KB dala cache with a line size of 16 bytes
and a perfect LRU replacement algorithm is accurately
simulated. This is the default model, a direct-mapped
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cache being the other one used, when so stated. An 8-
entry store buffer exists between the cache and the SU
for all simulations. The scheduling unit, consisting of
combined reorder buffer and instruction window, has
32 entries. The word “entry” refers to an individual
instruction. Thus, 8 blocks can be accommodated.
The default functional unit configuration is listed in
Table 1. The SU can issue up to 8 instructions for
execution per cycle, as the functional units may write
eight different results back to the SU in any cycle.
The middle column of Table 2 summarizes this config-
uration. The right-hand side column lists non-default
values that were used in some of the simulations.

5 Performance analysis

It is essential to establish a base case of super-
scalar operation at the outset, to serve as a point
of reference. This will be provided by the execution
of non-multithreaded (single-threaded) code of the el-
even benchmarks on a processor with a configuration
as described in Section 2. In addition to the functional
units of the SDSP, we will assume one floating point
(FP) unit each for addition, multiplication and divi-
sion. For convenience, results are presented in two
groups: Group I contains all the simulated Livermore
loop benchmarks, and Group II contains the remain-
ing benchmarks: Laplace, MP3D, Matrix, Sieve and
Water.
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Figure 3: Cycles (millions) of execution of Livermore
loops for different different fetch policies.

5.1 Fetch policy

Traditionally, the issue of context switch policy on
a multithreaded processor has received great attention
(1,4, 9,2, 3]. For a processor with lookahead, the in-
struction window creates a time gap between the fetch
and execute stages. Therefore, it is more appropriate
to talk about its fetch policy. Three different mechan-
isms are compared.



Teature ~ Default Value Others
Number of threads 4 6,53, 20r1
Fetch Bandwidth 4 instructions/cycle -
Branch Prediction 2-bit hardware predictor —
Result Commit from | Bottom 4 blacks of RB Lower-most block only
Register Renaming Full renaming 1-bit scoreboarding
Bypassing of results Have bypassing No bypassing
Data Cache 8K, 4-way set associative, Direct-mapped cache of 8K
line size = 16 bytes,
LRU replacement algorithm
Instruction cache Perfect cache (100% hits) -
Store Buffer depth 8 entries -
Depth of Sched. Unit | 32 entries 64, 48, or 16 entries
Functional Units See Table 1 Table 1
Writes to RBIW /cycle | Eight -
Insns Issued/cycle Eight =

Table 2: Hardware Configuration

The simplest of these, True Round Robin, allocates
one fetch cycle to all threads, from 0 through N-1, in
cyclic order. This is implemented via a modulo N (N=
number of threads) binary counter. At every clock tick,
the thread with 1D equal to the value of the counter is
allowed to felch a block of instructions. The counter is
advanced on every clock tick, irrespective of the state
of execution (running or waiting on an event) of the
threads. This resulls in cycle-by-cycle interleaving of
instruction blocks placed into the instruction window.
This policy will be referred Lo as True Round Robin
(True RR) fetch, since each thread gets a turn to fetch
once every N cycles. All multithreaded simulations
described in this paper use True RR by default.

The second mechanism, known as Masked Round
Robin, is similar to True RR, with the difference that
one or more threads can be skipped in the process of
circular selection. I thread #2 were temporarily sus-
pended, say because of a synchronization delay, and
N = 4, the order of fetching would be ...0,1,3,0,1,3,...
Once the synchronization attempt is successful for
thread #2, fetching would resume for it. In true round
robin, the order would always be ...0,1,2,3,0,1,23...,
irrespective of the state of any thread. The benefit of
this scheme is that threads with low parallelism can
be skipped, allowing other threads to take their place
in the SU. This policy will be referred to as Masked
Round Robin, since threads may be “masked” out from
the selection process {rom time to time.

The difficulty with this approach is in determining
when to exclude a particular thread. It requires a re-
liable means of knowing when the execution rate of
a particular thread is likely to be low. The criterion
that was used is as ollows: every time a thread fails
to commit its resulls from the lower-most block in the
reorder buffer, fetching for that thread is suspended
until the commit does take place. The effectiveness
of approach depends on the latency of the operation
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that fails to commit results. The longer the latency,
the more beneficial excluding that thread is likely to
prove.

Both of the above schemes are based on cycle-by-
cycle interleaving of blocks of instruction blocks from
different threads. The alternative, called Conditional
Suwitch, is to continue fetching from the same thread
until there is an indication of its rate of execution be-
coming low. Several multithreaded processors follow
this policy [1, 3, 2]. However, there is an essential
difference between processors with and without looka-
head in this regard. When fetching for a thread is
stopped in the former type of processor, instruction
execution continues as long as there are fetched blocks
in the SU. A scalar processor simply completes the
ones already initiated in the pipeline.
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Figure 4: Cycles (millions) of execution of Group
1l benchmarks (Laplace, MP3D, Matrix, Sieve and
Water) for different fetch policies.

As in the case of scalar processors, the problem of
determining when to switch arises. Ideally, the de-
cision to switch threads should be made as close to the
fetch stage as possible. The earliest this can be done



is during decode. Upon detecting certain instructions,
the decoder sends a switch signal to the fetch mech-
anism. The fetch mechanism ceases fetching for the
currently active thread and switches to another one.
The instructions that can trigger a context switch are:

o integer divide,

o floating point multiply or divide,

 a synchronization primitive.

o a long-latency I/O operation.

Cache misses do not belong to this list, because the
decision to swilch is being made at the decode stage.
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Figure 5: Cycles of execution of Livermore loops for
different numbers of threads in execution (1-6).

Figures 3 and 4 show the cycles of execution for
Group I and 11 benchmarks respectively, with the three
different fetch policies. The base case is also shown
for sake of comparison. Each benchmark is compiled
to run with four parallel threads, which is the de-
fault number, as per Table 2. All other hardware fea-
tures correspond to the configuration in the same table.
“LL#n" refers to Livermore loop #n. Performance-
wise, True RR and Masked RR emerge as about equi-
valent. While Masked RR has distinct advantages,
it has the drawback of somelimes masking threads
out unnecessarily. Threads may get masked owing to
short-latency operations, and if this occurs frequently,
it would result in a sparsely occupied SU. Conditional
switch, which has been included for sake of compar-
ison, has similar performance. This implies that the
latencies of operations that trigger a context switch for
this policy are not a bottleneck in the processor’s exe-
cution rate. Of the three policies, True Round Robin
is the easiesl to implement.

5.2 Number of threads

Figures 5 and 6 present the results of execution of
the benchmarks with 1, 2, 3, 4, 5, and 6 threads. We
shall use the term “peak improvement” of a bench-
mark to refer to its maximum improvement among all
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Figure 6: Cycles of execution of Group Il bench-
marks for different numbers of threads in execution
(1-6).

multithreaded simulations, i.e the maximum observed
value of speedup among 2, 3, 4, 5, or 6 threads. The
terms “speedup” and “improvement in performance”
are synonymous, and are computed according to the
formula:

Speedup = (Mtpers — Stpes)/Stpers
where M1pe,; and Stpers refer to multithreaded and
single-threaded performance, respectively. Perform-
ance is defined as the reciprocal of number of cycles.
& Observed values of peak improvement for the simu-
lated benchmarks lie between -8.6% to 57.2%, relative
to the base case. A negative value indicates poorer
performance than the base case ( only LL2 consist-
ently yielded a negative value, whereas LL4 yielded a
negative value with a large number of threads ). The
average peak improvement for the Livermore loops was
33.1%. The remainder of the benchmarks grouped to-
gether showed an average peak improvement of 24.5%.

Measuring performance by number of threads, for
Livermore loops on the average, an improvement of
25.26% over single-threaded execution was achieved
with three threads. For six threads, there was a de-
tertoration by 18.15%.

In Figure 5, LL4 can be seen to behave notably dif-
ferent from the others. This is because of a dependency
that exists across loop iterations in this benchmark.
Explicit synchronization primitives have to be inser-
ted to guarantee correct execution. Its performance
improves as number of threads is decreased, indicat-
ing the lower cost of synchronization. By the same
token, it would be expected to produce the best res-
ults for single-threaded execution, which is not the case
either. The negative effects of this synchronization are
outdone by the greater parallelism when three or less
threads are used.
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Figure 7: Average execution cycles (in millions) of
Livermore loops with direct and associative caches
for different numbers of threads (1-6).
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Figure 8: Average execution cycles (in millions) with
direct and associative caches for Laplace, MP3D,
Matrix, Sieve and Water, with varying numbers of
threads (1-6).

5.3 Associative vs direct cache

To allow sharing, the cache could either be par-
titioned among threads, or a uniform cache can be
shared by all threads. In the partitioned case, the
space available to any one thread is small, since its
accesses are limited to a section of the total cache. If
the cache is uniform (not partitioned), the entire cache
space is available to all threads. There is a high prob-
ability of contention, however, as each thread would
Lry to establish its working set in the cache. Either
way, the cffectiveness of the cache is reduced. We
picked a uniform cache for our study because it is sim-
pler to design. Moreover, as the number of threads
being executed changes, the sizes of partitions of the
latter would also have to be changed. This problem
does not arise in uniform caches.

There is another aspect to cache behavior in 2 multi-
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threaded processor, one that can go in its favor. Con-
sider the execution of threads that have small work-
ing sets, small enough that the working sets of all of
them can be accommodated at the same time. In such
a case, the total number of accesses to the cache is
higher, even though the hit rate may remain the same.
This is particularly true for a cache that is capable of
servicing a cache miss at one location, while providing
data to the processor from other locations at the same
time. By doing so, only the thread that experiences the
cache miss slows down, while the processor continues
to execute the other threads. However, this requires
a cache with higher design complexity. The simula-
tions described in this paper assume that the cache is
capable of servicing one line refill while simultaneously
providing data. A second miss renders the cache in-
capable of servicing data requests, and requires that
the missing lines be refilled. We use a 4-way set asso-
ciative cache, with an LRU replacement policy.

Figures 7 and 8 show the performance of bench-
marks with different numbers of threads in execution,
with direct and associative caches. The hil rates ob-
served for these simulations are listed in Table 3. As
the number of threads increases, hit rate is seen to im-
prove, and then fall. The reason for this is that the
working sets of most threads can be accommodated
as long as the number of threads is not too large, but
beyond a certain point too many threads contend for
the same locations in the cache, causing misses to oc-
cur more frequently. This effect is more pronounced
for the Livermore loop benchmarks as compared to the
others. The former are insignificant in the amount of
code they contain, and exhibit great data locality. As
a result, working sets are small. The others contain
significant amounts of code, and their access patterns
are less regular.

Threads | Benchmarks | Cache Hit Rate
Direct | Assoc.

6 | Groupl 66.33 | 86.83
6 Group 11 60.20 | 91.50
5 Group [ 72.83 | 86.33
5 Group 11 66.40 | 94.40
4 Group | 74.50 | 80.00
4 Group 11 73.60 | 91.17
3 Group 1 70.33 | 80.00
3 Group I1 77.20 | 89.33
2 Group [ 7133 | 7767
‘) Group 11 9346 | 93.77
1 Group | 65.83 | 72.33
1 Group 11 90.44 | 93.33

Table 3: Average hit rates for direct and 4-way
set associative caches when simulated for different
numbers of threads.
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Figure 9: Performance of Livermore loops
scheduling units with 64, 48, 32 and 16 entries.

or

On the whole, performance is belter with an associ-
ative cache than with a direct one. This is only to be
expected, but note that the difference in performance
keeps increasing steadily as the number of threads is
increased. This is because there is greater contention
with many threads accessing the cache than a single
one. Also note that cache performance has a direct
bearing on overall performance, as can be seen in the
correlation between cache hit rate (Table 3 ) and cycles
of execution (Figures 7 and 8).

5.4 Depth of scheduling unit

The lookahead capability of a processor [7] is de-
termined by the size of its instruction window. Fig-
ures 9 and 10 show how varying the SU Depth af-
fects performance. The difference in multithreaded
and single-threaded performance reduces as a deeper
SU is used. A deep SU helps in finding more inde-
pendent instructions, making multithreading less use-
ful. There is a significant increase in performance
between 16 and 32 entry SU’s. The difference between
32 and 48 entry cases is much less, and negligible for
the next increment of 16. For some programs, a greater
SU depth results in lower performance. The execution
of Matrix for instance, is slower by 0.59% with a 64-
entry SU as compared to a 48-entry SU. Two factors
contribute to this behavior: first, branch prediction
statistics are updated only when an instruction is shif-
ted out of the SU during result commit, and delayed
updating might cause other branch instructions to be
mispredicted. The second contributor is the restric-
ted load/store policy. Since an instruction stays in the
store buffer until its entry in the SU is shifted out,
other stores, and consequently loads, could be preven-
ted from being issued.

5.5 Functional units

The choice of numbers of functional units to employ
depends on the available instruction-level parallelism
and on the hardware cost of a [unctional unit. For
single-threaded execution, the column Default no. of
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Figure 10: Performance of Group |l benchmarks for
scheduling units with 64, 48, 32 and 16 entries.

Table 1 lists a configuration of functional units that
has been found to be suitable [12]. Column Other
no of the same table lists a more enhanced config-
uration of functional units. This will be referred to
simply as the “enhanced” configuration. Simulation
results are shown in Figures 11 and 12. A “++” in-
dicates that the enhanced configuration of functional
units has been used for that simulation. With the de-
fault numbers of FU’s, performance with multithread-
ing is better by 11.60% for the Livermore loops. Group
11 benchmarks yield an improvement of 15.27%. With
the enhanced configuration, the speedup for the Liv-
ermore loops over the single-threaded case with this
configuration is 24.85%. For the remaining bench-
marks, the equivalent speedup is 17.42%. Thus, for
both groups of benchmarks, the relative speedup over
single-threaded execution is greater with the enhanced
configuration than with the default configuration. The
improvement shown by the Livermore loops is greater,
owing to their computation-intensive nature. To get an
idea of the relative usefulness of each of the functional
units, Table 4 lists the percentage of total execution
cycles that the extra functional units were made use
of, averaged over all benchmarks. These results argue
strongly in favor of a second load unit, and a floating
point multiplier, though the latter is more useful to the
compute-intensive Group I benchmarks.

5.8 Result commit from multiple blocks

Figures 13 and 14 show the usefulness of commit-
ting results from a block other than the lower-most one
with multithreading. For the Livermore loops, per-
formance was better by an average of 34.61% when
result commits took place from multiple (four) blocks.
Without this ability, scheduling unit stalls occur with
greater frequency. (See Figure 2). Group II bench-
marks showed an improvement of of 11.21% with this
feature. The point of reference of single-threaded ex-
ecution was not used here, since, as explained in Sec-
tion 3, doing this with only one thread is not feasible.
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Figure 11: Comparison of execution cycles for differ-
ent numbers of functional units (Livermore Loops).
“4+4" indicates the enhanced configuration.
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Figure 12: Comparison of execution cycles of Group
11 benchmarks for different configurations of func-
tional units. “++" refers to the enhanced config-
uration.

Benchmarks Extra Unit % Cycles Used
Group 1 Integer ALU 1,630
Group II Integer ALU 3516
Group | Integer ALU 0.748
Group I1 Integer ALU 0.972
Group 1 Load Unit 8.482
Group Il Load Unit 13.006
Group | Store Unit 0.000
Group 11 Store Unit 0.000
Group 1 Integer Multiply 1.377
Group 11 Integer Multiply 3.352
Group | Integer Divide 0.017
Group 11 Integer Divide 0.134
Group 1 FP Add 10.115
Group 11 FP Add 4616
Group | FP Multiply 30.140
Group I1 FP Multiply 7.754
Group | FP Divide 10.563
Group 11 FP Divide 0.164

Table 4: Average usage of extra functional units as
a percentage of total cycles.
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Figure 13: Comparison of execution cycles with the
reorder buffer committing results from a single and
multiple (four) blocks, for Group | benchmarks.

6 Conclusion

This paper showed how multithreading can be used
for creating larger amounts of [nstruction-level Paral-
lelism in the workload. Based on simulations on our
superscalar architecture, we observed a speedup of 20
to 55% for most benchmarks. For the extra cost of
hardware incurred, this is a significant improvement.
The caveat, of course, is that there is a cost asso-
ciated with multithreading, which can reduce overall
performance. An example of this is LL2, which showed
consistently poorer performance compared to the base
case in Section 5.2. In the final analysis, it is the char-
acteristics of the program itself (one of which is its
instruction parallelism) that determine how beneficial
multithreading will be.

One of the considerations in devising a multithread-
ing technique was minimizing the hardware overhead.
Of the key components of the SDSP, the instruction
unit and the logic for result commit are the only areas
affected. The instruction unit has to keep track of
several PC’s instead of just one. This involves differ-
entiating between the mispredicted operations of dif-
ferent threads, and providing a mechanism to sequence
among the various PC’s for instruction fetch. As res-
ults in Section 5.2 indicate, a modulo N binary counter
is sufficient for this purpose (to implement the True
Round Robin fetch policy).

The change to the result commit stage involves writ-
ing results from one of four different locations to the
register file, as opposed to a single one. Minor changes
are also required in the decode stage, handling of mis-
predicted control transfer instructions and access to
the register file. The remaining components - re-
gister file, reorder buffer, instruction window, func-



Figure 14: Comparison of execution cycles with the
reorder buffer committing results from a single and
multiple (four) blocks, for Group Il benchmarks.

tional units and instruction issue logic are virtually
unchanged. An additional field for thread ID of the
instruction is the only change in the scheduling unit,

8.1 Scope for improvement

Several alternatives may be considered in trying to
improve performance further, some of which are:

1. Employ more cache ports and functional units,
especially the scarce ones.

. Align instructions in memory in such a way that
control transfer operations lie at the end of a
fetched block, and branch targets at the beginning
of a block. That way, all of the fetched instruc-
tions in a block will be valid.

. Use a judicious fetch policy, that slows down fetch-
ing for a thread in a region of low execution rate.

. Use software scheduling to eliminate unnecessary
delays owing to synchronization.

The final alternative, that of software scheduling
and code rearrangement, can have a great impact on
performance. One of the limitations of the multith-
reading paradigm that has been used in this study is
that the code the threads execute is the same. The soft-
ware scheduling algorithm is static, which has its own
limitations. However, even with static scheduling, one
can wrile parallel code for an application in more than
one way. In many cases, it may be possible to reduce
the synchronization overhead by rearranging code and
dividing tasks judiciously.
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