
Memory Management in Shared Memory
Architectures: A Tutorial

Rafael D.Lins (rdl@di.ufpe.br)
Dept.de Informática- U.F.PE.- 50.739- Recife- PE - Brazil

Abstract

This paper presents a survey of lhe most important algorithms and archi­
tectures for dynamic memory management in shared memory machines.
Keywords: Multiprocessors, Memory management, Shared memory, Garbage
collection

Introduction

With today's technology the cost of adding extra processors to a machine is s­
mall. Most new large mainframes are multiprocessors already and shared memory
multiprocessors are becoming widespread. On the other hand, automatic garbage­
collection has become a fundamental issue for software modularity and portability,
besides freeing programmers of an unnecessary burden. Thus memory management
of shared memory architectures, a research area that started almost two decades ago
as an academic exercise, has now gained renewed interest. This paper presents a
brief survey of the most important ideas on dynamic memory management in shared
memory architectures.

Donald Knuth credits Marvin Minsky for first suggesting parallelism as a way to
avoid suspension of operations (Exercise 2.3.5- 12, pp.422 in (3lJ). Parallelism need
not imply concurrency. Garbage collection could occur, for example, during key­
board input, as long as it could be suspended on short notice to continue processing
on the input and !ater be resumed without losing ali the previously expended effort.

Guy Steele's Multiprocessing Compactifying Garbage Collection algorithm was
the first published parallel and concurrent architecture for garbage collection (58}.
In addition to freeing unused storage, Steele's algorithm compacted remaining list
structures to give better performance in a virtual memory environment. The mass
of detail presented by Steele contributed to make understanding his ideas difficult.

lndependently, Dijkstra proposed a similar scheme in some unpublished notes
[l6], !ater published in (17]. Dijkstra and his colleagues tackled this problem 'as
one of the more challenging - and hopefully instructive - problems' in parallel
programming. Their architecture attracted considerable interest in the computer
science community. Woodger's scenario show~d that if the granularity of the coarse
grain algorithm was made finer, a bug would appear; in describing his proof of
the algorithm Gries reported that he had 'seen five purported solutions to this
problem, either in print or ready to be submitted for publication' each of which

31

contained errors (22). A correct version of the algorithm appeared in (18]. S.Ramesh
and S.L.Mehndiratta formalised the proof of termination and absence of live-lock
in Dijkstra's algorithm [50] by using Owicki and Lamport's proof procedure [47).
Wadler, and Hickey and Cohen analysed its performance. Wadler showed that, for
time-sharing rather than multiprocessor systems, such algorithms require a greater
percentage of processor time than classical sequential collection does [62]. Hickey
and Cohen showed that a mutator-collector system could offer no more than a 50%
performance improvement on the sequential one (27).

Kung and Song developed a version which used four colours but did not need
to trace the free-list (32), and Ben-Ari, who considered it 'one of the most difficult
concurrent programs ever studied', presented severa! parallel mark-scan algorithms
based on it but with much simpler proofs of correctness than those presented by
Kung and Song, Cries and Dijkstra et ai. (5, 6). Ben-Ari's algorithms used only
two colours. Cries accredits Stenning for an unpublished version of the on-the·fly
algorithm which also used only two colours. Lamport generalised the architecture
for using multiple processes [33). The on-the-fiy algorithm was also implemented
in hardware/software in the Intel iAPX-432 microprocessor and iMAX operating
system [49).

An efficient algorithm for concurrent collection was proposed by Appel-Ellis-Li [1)
for machines that support virtual memory. This algorithm uses paging information
provided by the operating system to synchronise the operations between processors.

The previously mentioned algorithms are based on marking and scanning the
workspace. A different strategy is offered by reference counting. The first refer­
ence counting algorithm for shared memory architectures is presented by Kakuta­
Nakamura-lida in reference [30). A much simpler architecture was proposed by Lins
[36) and !ater genera.lised into a multiprocessor a.rchitecture described in (37).

Parallel Mark-Scan

In uniprocessors, the Mark-Scan garbage collection a.lgorithm works in two phases:
if the user process requests cells when the free-list is empty, the garbage collection
routine is invoked. Ali the cells in the transitive closure of root are marked before
scanning the entire heap and returning unmarked cells to the free-list. Ma.rk-Scan is
a stop/start algorithm: its minor disadvantage is that the user process is suspended
while the garbage collector runs. Its major disadvantage is the unpredicta.bility of
the garbage collection interludes, which makes it ha.rd to design systems to meet
real-time requirements.

In this section we survey an architecture and algorithms designed to overcome
the hesitancy of the Mark-Scan algorithm.

The Architecture

Thc architecture consists of two processors, called the mutator and the collecto1·,
working in parallel and sharing the same the workspace (which is organised as a
heap of cells). The mutator does ali the 'useful' work, modifying the connectivity o(
the data structure and the values of data fields within that structure. The collector

32

is solely responsible for identifying and re-cycling garbage cells. Its algorithm is
based on Mark-Scan but runs continuously in two phases. In the first phase active
cells are identified and marked; in the second phase the heap is scanned and cells
that are known to be certain garbage are returned to the free-list. The collector
makes no change to shape of the heap other than to link garbage cells into the free­
list. It does, however, use and make changes to a mark field within each cell. These
mark fields are also used by the mutator; indeed, they provide ali the necessary
communication between the two processes.

Interference between collector and mutator should be minimatl. Any overhead
on the activity of the mutator required for co-operation should be kept as small as
possible. The activity of the mutator should impair the collector's ability to identify
garbage as little as possible. Every garbage cell must be appended to the free-list
eventually.

Dijkstra's algorithm used colours to represent the status of cells. The mutator
informs the collector that the connectivity of the graph has been altered by changing
the colour of a cell.

Dijkstra's A lgorithm

Dijkstra's on-the-fly garbage collection algorithm painted cells one of three colours
to indicate their status. [Black] cells are recognised by the collector as in use. [White]
cells are seen as garbage by the collector during mark-scan. [Gray] cells represent
uncertain status. This is the way the mutator will tell the collector it has changed
the connectivity of the graph.

M utator's Instruction Set

The mutator's three basic operations, New, Copy, and Delete, are assumed to be
atomic. Dijkstra omits ali other details of the mutator's program as well as the
(straightforward) details of the pointer manipulation required to implement the
free-list. A further abstraction is to ignore the synchronisation that must be done,
for instance, i f the mutator attempts to remove a node from an empty free-list

In the definition of New and Copy, whenever the mutator increases the connec­
tivity of the graph it must first 'shade' the target cell to inform the collector that
this cell's linkage has been altered.

Collector's Instruction Set

The collector is the processor in charge of the mark-scan and consequently respon­
sible for rcturning free cells to the free-list. Active cells are marked until there are
no gray cells left. The heap is then scanned, returning garbage cells to the free-list.

Unlike the Mark-Scan algorithm [41], the free-list is not necessarily empty at the
start of a garbage collection cycle. The collector must mark the free- list as well as
ali active cells to ensure that the scanning phase does not attempt to add cells onto
Lhe free-list if they are already there.

1Some mutator ovcrhead is incvitable, bccause some communication is needed from mutator to
collector to indicate that the conncctivity of the data structure has altered.

33

The marking process, mark, blackens ali cells that are reacha.ble from its start ing
points (root and the free-list). In effect it treats the hea.p as a circular buffer:
whenever it encounters a gray cell, marking is restarted from this cell. A gra.y cell
ma.y be due to the activity of mark or it ma.y mean that the mutator has increased
the connectivity of the graph and so the scanning phase, scan, should not take place
yet. No cells in the free-Jist will be gray. mark continues until it completed a full
tour of the heap without meeting any gra.y cells. Most of the marking techniques
described [12] would suffice, provided that they were restarted whenever a gray
cell was found. A notable exception is the Deutsch-Schorr-Waite pointer-reversal
method which would render objects inaccessible to the muta.tor during the trace
(54].

mark first shades the sons of the cell being marked. The shading of the sons and
the blackening of the parent should be considercd to be an atomic action.

Once the heap has been checkcd for gray cells, thc whole heap is scanned sending
white cells to the frec-Jist and resetting black cells to white. The mutator may
be active while the scan runs, continuing to gray cclls aftcr mark has successfully
completed its check. Such cells are ignorcd by thc collcctor for thc time being. Any
that are actually garbage will be collectcd in the ncxt cycle. The collector now
re-starts the mark-scan process.

Woodger's scenario

In general, coarse-grained parallel algorithms are less efficient than fine-grained ones
as more synchronisation is needed. The algorithm as presented above required ali
mutator, and some marking, operations to be atomic. Dijkstra and his colleagues
made the granularity of operations finer and were led to the erroneous situation
known as Woodger's scenario, in which if for any reason the mutator suspended ac­
tivity, colour information could be changed by the collector and the synchronisation
between mutator and collector would be lost.

The natural solution to this problem is to require the mutator to link cells to thc
graph first and then assign colour information. The collector is unchanged.

Dijkstra et al. presented an informal proof of the correctness of the on-the-fly
algorithm in this section. Gries advocated the use of formal methods as a safer
way to prove the correctness of parallel algorithms [22J. Hc used a proof method
dcveloped by Owicki and himself (46j to prove thc on-the-fly algorithm correct.

The Kung-Song Algorithm

Severa! other algorithms have been developed, either based on or similar to Dijk­
stra's. Kung and Song developed a version based on Dijkstra which used a fourth
colour, off-white, for cells on the free-list [32j. This extra colour meant that it was
not necessary to mark free-list. Like Steele, Kung and Song also used a stack2 for
marking. The cost of their marking algorithm is proportional to thc number of cells
in use (rather than the size of the hcap). The disadvantagc is that space must be
found for this dequcue.

2 Actually an out put restricted dequeue.

34

Ben-Ari's Algorithms

Ben-Ari looked for an on-the-fly garbage collection algorithm with a simpler proof
than that of Dijkstra's [5, 6). His new algorithm was then used to develop other
algorithms that might be significantly better in practice.

His algorithm uses only two colours for marking, black and white, but requires
an extra pass over the heap before the appending phase can start to return white
cells to the free-list. On the other hand it is robust with respect to the seemingly
innocent variation that introduced the bug discovered by Woodger. The mutator's
instruction set is similar to that of Dijkstra.: the only difference is that when new
links between cells are made, the target cell is pa.inted black. Whether the cell is
painted before the link is made or after is immateria.l.

I3en-Ari's mark is similar to Dijkstra.'s but omits the checking part: it simply
propagates blackening from the root cells (including the free-list). As soon as the
number of black cells has been observed not to have increased, the heap is scanned
and white cells are returned to the free-list.

Lamport's Multi-Processor Architecture
The previous a.rchitectures used just two processors: one for the mutator and one
for the collector. Leslie Lamport generalised the Dijkstra algorithm to use multiple
processes for both muta.tion and garbage collection [33). He also parallelised the
sequential collection algorithm. The cost to be paid is a.n increase in synchronisation
overheads between processes.

The same restriction that was placed on a single mutator must be placed on
multiple mutators: an edge from an active cell cannot be changed to point to a.
garbage one. This implies some synchronisation mechanism between the mutators
tha.t enforces a partia! ordering on their operations. The partia! ordering must be
sufficient to guarantee that the mutators correctly execute some sequential muta­
tor algorithm. Mutators must also synchronise remova! of nodes from the free-list.
Lamport suggests using multiple free-lists to reduce delays: this can be implement­
ed without difficulty. Pa.rallel marking is clone by partitioning the heap into (not
necessarily disjoint) sets, P;. Cells in one set P; may point to cells in a.nother set,
Pj. For simplicity each marker process can be thought of as marking exactly one
of these sets. Each marking process is essentially the same as Dijkstra's mark. The
only difference is that when a gray cell is discovered by one of the markers, Lamport
must restart ali of the markers, not just the one that discovered the cell. Each scan
process is the same as in the sequential algorithm, but operates upon one partition.
To run marking and scanning concurrently, Lamport pipelined these phases so that
the (i+ 1)1h execution of the marking phase runs concurrently with the i1h execution
of the scanning phase.

In Dijkstra's and Lamport 's algorithms each time a grey node is found the marker
resets itself to the sta.rt of its heap. In [44) Newman, Stallard and Woodward suggest.
that if a. link from a black to a. white node is made then the mutator sha.des the
white node and resets ali the markers as if one of them had found a grey node. The
markers will then scan through ali the nodes to find the new grey nodes.

A hybrid Steele-Lamport multiprocessor architecture is presented in referenr,e

35

[45] with the aim of reducing Steele's communication bottleneck of having a single
stack and also avoiding Lamport's repeated marking. The hybrid algorithm makes
the stack local and uses colours to control the status of nodes.

Steele's Algorithm

The first published architecture for on-the-f\y garbage collection was Guy Steele's
Multiprocessing Compactifying Garbage Collection algorithm published in [58] (see
also [59]). Although widely referenced Steele's algorithm never became as popu­
lar as Dijkstra's algorithm. The reason for that is, in our opinion, the thorough
presentation and considerable levei of detail taken by Steele. His paper included
descriptions of compaction, parameter passing mechanisms and synchronisation, as
well as mutator-collector garbage collection. If we ignore these complications, S­
teele's on-the-fly architecture is more simple. The algorithm uses a mark-bit in each
cell and a stack. The stack (rather than the third, grey, colour used by Dijkstra) is
used for communication between the mutator and the collector.

Steele uses a stack to ensure that ali reachable cells are marked. Entries in the
stack are added by the mutator when it alters the connectivity of the graph, when
it initiates a collection cycle, and as it reaches white (unmarked) cells. During the
marking phase items are popped from the stack, a.nd their children are pushed back
onto the stack where necessary, until it is empty. The collector checks lhe stack
after each mark phase to see if it is empty. lf so the mark phase is finished and lhe
collector starts with the scan phase. Otherwise mark is called again on each of the
entries on the stack.

Steele's a.lgorithm also compacts the heap by relocating active cells into one
end of the heap. There are severa! methods that might be used for compaction
(see [12]). However, a multiprocess architecture raises extra complications. New
objects may be being created while old ones are being reloca.ted. This makes things
a.wkward for a copying collector. Sliding collectors may destroy occupied cells. before
all references to them have been updated. For these reasons, Steele chose the 'two
pointer' scheme for compaction (see [25, 53, 31]), that updates any pointers to
relocated objects (for instance, any used by the parameter passing mechanism). To
deal with variable-sized objects, Steele assumes that heap memory is organised into
spaces of homogenous objects, and that each space is relocated separately. scan is
the same as in Dijkstra.'s algorithm. Gries' optimisation [23] to Dijkstra's algorithm
yields an algorithm similar to Steele's uncompactifying algorithm.

The use of more than one marker process was also suggested by Steele [58].
Ali markers add and remove nodes from a shared stack with sui table locking to
avoid conflicting access. According to [45] this locking causes the stack to become a.
bottleneck because it is frequently accessed by the markers, and the processes will
therefore spend a significant amount of time waiting for access to the stack. To solve
this problem Newman and Woodward [43] suggest the stack to be replaced by a list
o f subrools. Markers remove a node from the subroot list and commence marking the
subtree emanating from it. Whenever a node with two or more unmarked successors
is found the marker will add one or more of the unma.rked successors of the current
node to thc subroot list. Unfortunately this method may not termina.te in thc case
of some cyclic structures.

36

Crammond's Algorithm

Morris' algorithm [42, 12] is a popular choice for garbage collection in sequential
Prolog [4, 14, 2], systems since it is both space efficient and retains the order of cells
on the heap; i.e., it is a sliding compaction algorithm. This feature allows the heap
to be reclaimed through backtracking as well (refer to [2] for a detailed description
of Morris' algorithm applied to a WAM based Prolog). The main problem with
compaction is not in calculating the final location of a cell but rather in finding
and updating all cells pointing to this cell. The Morris algorithm obtains this by
forming relocation chains as the heap is scanned which can be updated once the
final destination of a cell is known. It makes use of two extra bits in each cell on
the heap (one for marking and the other for relocation chains) and consists of three
phases. First ali active cells in the heap are marked. Then a downward scan is
performed (top-to-bottom) and ali downward pointers are relocated. F inally, the
heap is re-scanned from bottom to top relocating ali upward pointers.

In Crammond's architecture [14] the shared-memory is divided into small heaps
of the same size. Each processor manages a heap and a stack. Marking distinguishes
between internai and externai pointers to the heap. Externai pointers are sent to
the stack, which at the end of the marking phase stores ali externai pointers to
the corresponding heap. The stack is used in the compaction phase, in which a
parallel version of Morris' algorithm is adopted. When garbage collection is needed
processors suspend computation and synchronise. They must also synchronise after
the marking phase and at the end of the compaction phase.

Crammond's algorithm is not concurrent. Its aim is to obtain efficient garbage
collection by allowing ali processors to work in a cooperative way, thus reducing the
suspension time. A similar strategy for a non-compacting algorithm was devised by
Boehm-Demers-Shenker [8].

Copying Architectures

Copying garbage collection is widely used in uniprocessors and is particularly suited
for machines with virtual memory [20, 11]. In this scheme the heap is divided
into two contigous semispaces. During normal program cxecution only one of the
semispaces is used. Space allocation happens linearly. When the current semispace
is exhausted the user process is stopped and the collector copies live data (in the
fmm-space) into the other semispace (the to-space). At the end of this process the
names of the two semispaces are fiipped and the execution of the user program is
resumed.

One way to make the copying algorithm efficient in shared memory architectures
consists in synchronising processors' activity and letting each of them copy parts of
the heap simultaneously. Halstead in the Multilisp garbage collector [24] assumes
t.hat thc number of active cells is small. He allows a processor to lock a cell that
rieeds to be copied, copy it into the processor's to-space, set the forwarding address
in the old heap cell and then unlock it.

Crammond's approach [14] divides the heap into as many smaller heaps as the
number of processors, each of these consists of a from anda to-space. On running out

37

of space ali processors synchronise and start copying as in the sequential algorithm,
but if a pointer to a cell in a non-local from-space is found a reference to the
source cell is stored in a stack local to each processor. In a second phase, the
references in the stack are used in finding the corresponding to-space address of a
non-local pointer. After ali processors have finished copying they are allowed to
resume computation.

The Appel-Ellis-Li Algorithm

Baker modified the copying algorithm to avoid long pauses, making it suitable for
real-time applications in uniprocessors [3]. When the to-space fills up the user
processor is suspended, but then only the root objects are copied. The user process
is rc-started immediately. More reachable objects are copied incrementally from
from-space to to-space, every time the user process allocates more objects. Thus
every fetch and allocation is slowed down by a small, bounded amount of time.
According to reference [1], in the. absence of hardware support Baker's algorithm
is not efficient, since a few extra instructions must be performed on every fetch.
Brooks' variant [9) is intended to be efficient on stock hardware, but neither Baker's
nor Brooks' algorithm is concurrent.

Appel and his colleagues [1) devised a concurrent version of Baker's copying
algorithm for shared machines that use virtual memory support. Their main idea is
to use virtual-memory page protections to detect from-space memory references by
thc mutator.

If the mutator runs out of space it suspends ali the muta.tor threads. The collector
scans any remaining unscanned objects, flips the role of the two spaces, copies the
reachable objects from from-space, a.nd resumes the mutator threads. The collector
also sets the virtual-memory protection of the unscanned area's pages to be "no
access". Whenever the mutator tries to access an unscanned object, it will raise a
page-access exception. The collector fields the exception and scans the object on
that page, copying from-space objects and forwarding pointers as necessary. Then
it unprotects the page and resumes the mutator at the faulting instruction. To the
mutator, that page appears to have contained only to-space pointers ali along, and
thus the mutator will fetch only to-space pointers to its registers.

The collector also executes concurrently with the mutator, scanning pages in thc
unscanned area and unprotecting them as ea.ch is scanned. The more pages scanned
concurrently, the fewer page-access traps taken by the mutator.

Appei-EIIis-Li's a.lgorithm relies on the virtual-memory hardware to provide an
efficient, medium-gra.ined synchronisation between the collector and the mutator. A
flip suspends mutator operation and thus the existence of a large number of root
objects may cause a rather high latency.

Le Sergent and Barthomieu [55) describe a similar copying garbage collecting
scheme for virtually shared memory architectures.

Generational Copying

In many applications in computer science, independently of languages or programs,
one can observe the fact that most objects live a very short time, while a small

38

percentage of them live much longer [34, 61 , 57, 63, 15, 26]. This means that
most objects that survive one garbage collection tend to live ali computation long.
Thus, copying these objects is wasted computational effort. Generational copying
in uniprocessors [34] avoicl~ rnuch of this repeated copying by segregating objects
into two or more areas by age, and scavenging arcas containing old objects less often
than the younger ones. Objects in younger areas that survive a few scavenges are
moved a few scavenges to older areas to keep the copying costs down.

Sharma and Soffa [56] describe a way of introducing generations to the Appel­
Ellis-Li algorithm. Their simulation results show that when compared against a
parallel copy collection algorithm (1], the parallel generational collector performs
better in lhe case of programs with larger amounts of of longer-lived cells. For
these programs, the parallel generational collector performed up to 67% less copying
than Appel-Ellis-Li's algorithm and reduced elapsed times up to an additiona.l 12%;
corresponding reductions in mutator overhead were a.Jso observed.

Similar work to Sharma.-Soffa.'s was presented by Rõjemo in [51], in the context of
implementing lazy functiona.lla.ngua.ges, in which a reduction of garbage collection
time of almost 20% was observed.

Reference [8] presents a generationa.l ma.rk-scan algorithm that makes use of pagc
locking mechanisms.

Parallel Reference Counting

Reference Counting is a simple memory management technique [13, 12]. It consists
of storing in each data structure the number of externai references to it in a counter.
The count of newly alloca.ted cells is one, copying references increments the count
of the target cell, and deleting decrements the count, testing for zero, in which case
the cell is recycled by being sent to the free-list.

Standa.rd reference counting has the drawback of not being able to recycle cyclic
structures, as their count never fali lo zero [40]. Severa! uniprocessor algorithms
present a solution for this problem in the context of implementing Lisp and func­
t ional langua.ges [21, 7, 28]. General cyclic algorithms have a.lso been proposed,
but thcy were either incorrect [10], non-terminating in pa.thological cases [52] or
extremely expensive to implement [48, 60]. A simple and efficient algorithm for
cyclic reference counting was proposed and optimised by Lins and his colleagues
[39, 35, 38].

In this section we present algorithms based on reference counting.

The Kakuta-Nakamura-Iida Architecture

In this architecture each cell has fixed size, two reference counts and a one-bit tag.
The tag bit is a mark field for tree traversals. The first reference counter stores the
number of externai references to a cell, while the second reference counter is used
in the detection of cyclic structures. The mutator has direct access to the free-list.
Only lhe collector accesses the reference counts and the ma.rk-bit.

For communication between the mutator a.nd the collector two queues are used.
Every mutator operator causes communica.tion between processors and the mutator

39

queucs instructions and respective pointers. The collector dequeues instructions
and pointers and executes the operation requested by the muta.tor. This causes a
communication overhead a.nd this algorithm is fa.r too complicated to provide an
efficient implementation.

Parallel Cyclic Reference Counting

A much simpler approach to reference counting in shared memory architectures is
reported in [36). Here the workspace is accessible directly by the mutator and the
collector.

In case of simulta.neous access from both processors to a given cell semaphores
are used such as to guarantee that the mutator will have priority over the collector.
There is also another shared data structure: the Delete-queue, which is organised as a
FIFO. The mutator is only a.llowed to push data onto the Delete-queue. Conversely,
the collector is only allowed to dequeue data from the Delete-queue. The muta.tor
has two registers ca.lled front-free-list, which stores a pointer to the head of the free­
list, and front-del-queue, which stores a pointer to the front of the Delete-queue.
The collector has two registers called back-free-list, which stores a pointer to the last
cell in the free-list, and back-del-queue, which stores a. pointer to the back of the
Delete-queue.

For the sake of simplicity Lins follows Dijkstra and his colleagues [18] and his de­
scription ignores the synchronisation that must be clone when the mutator attempts
to remove a node from a.n empty free-list or the collector tries to get a reference
from an empty Delete-queue. These situations should happen infrequently and any
convenient synchronisation primitive can be used.

New tests if there are free cells on the free-list. If so, it links it to the graph and
a.djusts the free-list accordingly. References are copied in the same way as in the
standard reference counting algorithm. When pointers are deleted a reference to the
target cell is pushed onto thc Dclete-queue.

The collector is the processor in charge o f the delction of pointers and feeding free
cells into the free-list. The main routine in thc collector runs forever as the kernel
of the operating system, and operates by removing cells from the Delete-queue and
testing their reference count. If there are no references to the cell, its descendants
are examined recursively and the cell is appended to the free-list. Otherwise the
referencc count is decremented and Lins' tricolor local mark-scan algorithm is in­
voked [39] . First the transitive closure of the cell is painted rcd and have their count
decremented. Then alocai scan searches for externai pointers to the subgraph under
inspection. If any are found the subgraph below this point is painted green and have
the reference count of the cells visited increased, to take into account the internai
pointers within the subgraph (which had been set to zero in the first phase). Finally
thc garbage cells (non-grccn) are are linked to the free-list. The local mark-scan
algorithm is explained in detail in [39, 35].

The Lazy Mark-Scan Algorithm

An important optimisation of the a.lgorithm above is introduced in reference [35).
In this new algorithm the mark-scan phase is performed lazily, i.e. whenever the

40

free-list is empty. The lazy algorithm uses a queue as an extra control structure to
avoid performing the local mark-scan every time a pointer to a cell with multiple
references is deleted. lnstead a reference to these cells is placed on the control queue.
These cells are painted white.
The collector only analyses the control queue when the Delete-queue is empty. Cells
are popped from the front of the control queue and their colour is tested. If it
remains white then it is still not clear wheather the last pointer to a cycle has been
deleted and so a local mark-scan is performed. (Note that a cell painted white and
pushed onto the control queue may be sent to the free-list by another call to delete.
l,From the free-list it may be recycled while it still has a reference from the control
queue.)

A Multi-Processor Architecture

Reference [37] presents a generalisation of the architecture in the last section to
work with any number of mutators. Following Lamport [33], the mutators must be
synchronised in some way so they do not interfere with one another. This synchro­
nisation mechanism must enforce some partia! ordering on mutator's operations,
which are viewed as atomic actions. This means that if a mutator i has started
an operation before a mutator j then operations will takc placc according to this
precedence. This partia! ordering must be enough to guarantee that the mutators
correctly execute some sequential mutator algorithm. This avoids problems such as
sending to the free-list cells still in use by performing the deletion of a pointer to a
cell before a copy operation to the same cell.

Synchronisation is also needed amongst mutators when removing nodes from a
common free-list. The use of severa! separate free-lists associated with each mutator
can reduce synchronisation delays.

Instead of pointing directly to the front of the Delete-queue, now each processor
will keep a reference to an externai register which points at the front of the Delete­
queue, and similarly for the front of the free-list.

The instruction set for the mutators is the same as wc had before with only one
mutator. In this architecture ali collectors are synchronised in such a way as to allow
ali of them to run each phase of the mark-scan simultaneously. The control strategy
for synchronisation is such that when one of the collectors starts to mark-scan ali the
other collectors can do is either to finish or suspend their operation and mark-scan
also.

Summary

The table below summarises the algorithms presented according to its philosophy,
the number of processors, whether mutator and collector activity is concurrent or
uot, thc way mutator and collector communicate, the space overhead, the most
important references to it and to uniprocessor algorithms on which it is based, and
finally some general comments.

41

Dijkstra lmut. yes
et ai. 1 co!.
Kung-Song 1mut. yes

1 col.
Ben-Ari 1 mut. yes

1 col.
1 mut. yes
1 co!.
1 mut. no
1 co!.

Ehn lmut. ycs
I co!.

Cries lmut. yes
1 co!.

l.amport n-mut. yes
p-col.

Stcclc 1-mut. yes
1-col.
n-mut. yes
p-col.

Newman n-mut. yes
ct ai. p-col.

n-mut. yes
p-col.

Crammond many no
pro c.

Boehm many no
et ai. pro c.

llalstead many no
pro c.

Crammond many no
pro c.

Appcl I mut. no
ct ai. I col.
Sharma- 1 mut. no
SolTa. I col.
Rõjemo I mut. no

I co!.

Kakuta 1 mut. yes
et ai. I co!.
Lins I mut. yes

I co!.
n-mut. yes
p-col.

mut-col
communication

non-direct
3 colours
stack
4 colours
2 colours

3 colours

3 colours

3 colours

2 colours
stack
3 colours

stack

global
stack
3 colours

4 colours
local stacks
synchronises
processors
synchronises
processors

2 bits

2 bits
stack
1 bit

2 bits

2 bits

1 bit

1 bit
stack
2 bits

I bit
stack
I bit
stack
2 bits

2 bits
p stacks
I bit
stack
I bit

Copymg

synchronises I bit
processors stack
synchronises I bit
processors stack
direct I bit
page-lock
direct I bit
page-lock
direct I bit
page-lock

(18, 22]

[32]

[5, 6]

(5, 6]

(5, 6]

[19]

[23]

[33]

[58, 59]

[58, 59]

[44]

(44]

[14]

[8]

[24]

[14]

[I]

[56]

[51]

Reference Countmg

2 stacks 2cnt.1bit [30]
2 stacks

stack lcnt.2bits [36]
3 colours 1 stack
stack 1cnt.2bits (37]
3 colours 1 stack

42

(41 , 31] best known alg.

[41, 31] optimises [18]

[4 1, 31] optimises [18]
extra scan

(41, 31] optimises (18]_
similar to [19]

(41, 31] optimiscs (18]
incrementai

[4 1, 31] similar to [5]

(41, 31] similar to [58]

[41, 31] gencraliscs [18]

{41, 31] compactifying

[41, 31] communication
bottlcneck

[41, 31] optimises [33]
phys.ord. scan

(41, 31] hybrid of
[58] and [33]

[42] sliding
Prolog impl.

[34] generational

{20, 11] Multilisp impl.

[20, 11]

[3, 9, I] real-time
virtual mcm. O.S.

[1, 34] generational,
based on [I]

[1 , 34] similar to [56]
based on [1]

(!3, 40] communication
bottleneck

[39, 35]

(39, 35] generalises (36]
based on [33]

Conclusions

We have presented most of the algorithms for dynamit memory management in
shared memory arthitectures. Referente [38] presents a tomprehensive destription
of these algorithms.

A cknowledgements

This work was sponsored by CNPq (Brazil) grants 40.9110/88-4 and 80.4520/88-7.

R eferences

[1] A.W. Appel, J.R. Ellis, and K.Li. Real-time tonturrent tollettion on stotk
multiprotessors. ACM SIGPLAN Notices, 23(7):11-20, 1988.

[2] K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin. Garbage tollettion for
Prolog based on WAM. Communications of the ACM, 31(6):719- 741, 1988.

[3] H.G. Baker. List protessing in real-time on a serial tom pu ter. Communications
of the ACM, 21(4):280-94, 1978.

[4] Y.Bekkers, O. Ridoux, and L. Ungaro. A survey on memory management for
logit programming. In I WMM'9!!, LNCS 637,Springer Verlag, 1992.

[5] M.Ben-Ari. On-the-fly garbage tollettion: new algorithms inspired by program
proofs. Automata, languages and programming., 14-22, Springer-Verlag, 1982.

[6] M.Ben-Ari. Algorithms for on-the-fly garbage tollection. ACM Tran-
s.Prog.Lang. & Syst., 6(3):333-344, July 1984.

[7] D.G. Bobrow. Managing reentrant struttures using referente tounts. ACM
Transactions on Programming Languages and Systems, 2(3):269-273, July 1980.

[8] H-J.Boehm, A.J . Demers, and S.Shenker. Mostly parallel garbage collection.
ACM SJGPLAN Notices, 26(6):157-164, 1991.

(9] R. A. Brooks. Trading data space for reduccd time and tode spate in real-time
garbagc tollection on stotk hardware. SLFP'82, 256-242, 1984. ACM.

[10] D.R. Brownbridge. Cyclit referente counting for combinator mathines. F­
P&CA '85, Springer-Verlag.

[11] C.J.Cheney. A non-recursive list compacting algorithm. Communications of
lhe ACM, 13(11):677-8, November 1970.

[12] J.Cohen. Garbage collection of linked data structures. ACM Computing Sur­
veys, 13(3):341- 367, September 1981.

[13] G.E. Collins. A method for overlapping and erasure of lists. Communicalions
of lhe ACM, 3(12):655-657, Dec. 1960.

43

[14] J .Crammond. A garbage collection algorithm for shared memory parallel pro·
cessors. lnternational Journal of Parallel Programming, 17(6):497-522, 1988.

[15] J .DeTreville. Experience with concurrent garbage collectors for Modula-2+.
Technical Report 64, DECSRC, Paio Alto, California, August 1990.

[16] E. W. Dijkstra. Notes on a real time garbage collection system. From a conver·
sation with D.E.Knuth (private collection of D.E.Knuth), 1975.

[17] E.W. Dijkstra, L.Lamport, et ai. On-the-fiy garbage collection: An exercise in
cooperation. LNCS 4 6, Springer-Verlag, 1976.

[18) E.W. Dijkstra, L.Lamport, et ai. On-the-fiy garbage collection: An exercise in
cooperation. CACM21(11):965-975, November 1978.

(19] L. Ehn. A contribution to the increase of efficiency of on-the-fly garbage col·
lection. Computers And Artificiallntelligence, 8(1):83-91, 1989.

[20] R. Fenichel and J. Yochelson. A Lisp garbage collector for virtual memory
computer sysiems. Communications of the ACM, 12(11):611-612, Nov. 1969.

[21] D.P. Friedman and D.S. Wise. Reference counting can manage ihe circular
environments of mutual recursion. lnf Process. Lett., 8(1):41-45, Jan. 1979.

[22] D.Gries. An exercise in proving parallel programs correct. Communications of
thc ACM, 20(12):921-930, Dec. 1977.

[23] D.Gries. On believing programs to be correct. Communications of the ACM,
20(1):49-50, Jan. 1977.

[24] R.H. Halsiead, Jr. lmplementation of Multilisp: Lisp on a multiprocessor.
L&FP'84, ACM, 1984.

[25) T.P. Hart and T.G.Evans. Notes on implementing LISP for the M- 460 comput­
er. The Programming Language LISP: lts Operation and Applications., 191-203,
1964. Information International, Inc.

(26] 13.Ha.yes. Using key object opporiunism to collect old objects. In OOPSLA91,
pages 33-46. ACM, October 1991. Phoenix, Arizona..

[27] T.Hickcy and J.Cohen. Performance analysis of on-the-fly garbage collection.
Communications ofthe ACM, 27(11):1143-1154, Nov. 1984.

[28] R.J.M.Hughes. Managing reduction graphs with reference counts. Departmen·
tal Research Report CSC/87 /R2, University of Glasgow, March 1987.

[29] R.E.Jones and R.D.Lins. Garbage Collection: Algorithms for Automatic Dy­
namic Memory Management, John Wiley & Sons, 1996. ISBN O 471 94148
4.

[30] I<.I<akuta, H.Nakamura, and S.Iida. Parallel reference counting algorithm. ln­
formation Processing Letters, 23(1):33- 37, 1986.

44

[31) D.E. Knuth. The art of computer programming, volume I: Fundamental algo·
rithms, chapter 2. Addison-Wesley, Reading, Ma., 2nd edition, 1973.

[32) H.T. Kung a.nd S.W. Song. An efficient parallel garba.ge collection system and
its correctness proof. IEEE Foundations of CS, 120-131. IEEE, 1977.

(33] L.La.mport. Ga.rba.ge collection with multiple processes: An exercise in pa.ral­
lelism. ICPP'76, 50-54, 1976.

(34] H.Lieberma.n and C.Hewitt. A rea.l-timegarbage collector ba.sed on the lifetimes
of objects. CACM, 26(6):419-29, 1983.

[35] R.D. Lins. Cyclic reference counting with lazy mark-sca.n. lnformation Pro­
cessing Letters, vol 44(4): 215-220, North-Holland, December 1992.

[36] R.D. Lins. A sha.red memory a.rchitecture for parallel cyclic reference counting.
Microprocessing and Microprogramming, 34:31-35, September 1991.

[37) R.D. Lins. A multi-processar shared memory a.rchitecture for pa.ra.Uel cyclic
reference counting. Microprocessing and Microprogramming, 35:563-568, 1992.

(38] R.D.Lins and R.E.Jones. Dynamic Memory Ma.nagement: Algorithms for
Garbage Collection. to be published by John Wiley & Sons.

[39] A.D. Martinez, R.Wachenchauzer, and R.D. Lins. Cyclic reference counting
with local mark-scan. lnformation Processing Letters, 34:31-35, 1990.

[40] J.H.McBeth. On the reference counter method. Communications of the ACM,
6(9):575, September 1963.

(41] J.McCa.rthy. Recursive functions of symbolic expressions and their computa.tion
by machine. Communications of the ACM, 3:184-195, 1960.

[42] F.L. Morris. A time-and space-efficient garbage compa.ction a.lgorithm. Com­
munications of the ACM, 21(8):662-5, 1978.

(43] LA. Newma.n, R.P. Stallard, and M.C. Woodward. Performance of pa.rallel
ga.rbage collection a.lgorithms. Computer Studies, 166, September 1982.

[44) I.A. Newman, R.P. Stalla.rd, and M.C. Woodward. Improved multiprocessar
ga.rbage collection algorithms. In /C Parai/e/ Processing, 367-368, 1983.

[45] I. A. Newma.n, R.P. Stallard, a.nd M.C. Woodwa.rd. A hybrid multiple processar
ga.rba.ge collection algorithm. Computer Journal, 30(2):119-127, 1987.

[16] S.Owicki a.nd D.Gries. Verifying properties of parallel programs: An axiomatic
approach. Communications of the ACM, 19(5):279-285, Ma.y 1976.

(47] S.Owicki a.nd L.Lamport. Proving liveness properties of concurrent progra.ms.
ACM T.Programming Languages and Systems, 4(3):455-495, 1982.

[18] E.J.H. Pepels, M.C.J.D. van Eekelen, and M.J. Pla.smeijer. A cyclic reference
counting a.lgorithm and its proof. TR-CS 88-10, University of Nijmegen, 1988.

45

[49] F.J. Pollack, G.W. Cox, et al. Supporting Ada memory management in the
iAPX-432. pages 117-131. SIGPLAN Notices (ACM) 17,4, 1982.

[50] S. Ramesh and S.L. Mehndiratta. The liveness property of on-the-fty garbage
collector- a proof. Information Processing Letters, 17(4):189- 195, 1983.

[51] N. Rojemo. A concurrent generational garbage collector for a parallel graph
reducer. PIWMM'92, LNCS 637, Springer Verlag, 1992.

[52] J .D. Salkild. lmplementation and analysis of two reference counting algorithms.
Master's thesis, University College, London, 1987.

[53] R.A. Saunders. The LISP system for the Q-32 computer. The Programming
Language LISP: lts Operation and Applications., 220-231, Inf.International Inc,
1964.

[54] H. Schorr and W. Waite. An efficient machine independent procedure for
garbage collection in various list structures. CACM, 10(8):501-506, Aug. 1967.

[5~] T. Le Scrgent and B. Barthomieu. Incrementai multi-threaded garbage collec­
tion on virtually shared memory architectures. IWMM'92, LNCS 637, Springer
Verlag, 1992.

[56] R.Sharma and M.L.Soffa. Parallel generational garbage collection. In Proceed­
ings of OOPSLA '91, pages 16-32, 1991.

[57] R.A. Shaw. Empírica[Analysis of a Lisp System. PhD thesis, Stanford Uni­
versity, 1988. Tech. Rep. CSL-TR-88-351.

[58] G.L. Steele. Multiprocessing compactifying garbage collection. Communica­
tions of the ACM, 18(9):495-508, September 1975.

[59] G.L. Steele. Corrigendum: Multiprocessing compactifying garbage collection.
Communications of the ACM, 19(6):354, June 1976.

[60] S.J. Thompson and R.D. Lins. Cyclic reference counting: a correction to Brown­
bridge's algorithm. unpublished notes, 1988.

[61] D.M. Ungar. Generation scavenging: a non-disruptive high performance storage
reclamation algorithm. ACM SIGPLAN Notices, 19(5):157-167, Aprill984.

[62] P.L. Wadler. Analysis of an algorithm for real-time garbage collection. Com­
munications of the ACM, 19(9):491-500, September 1976.

[63] B.Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection.
ACM Lisp and FP, June 1990.

46

