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Abstract 

In this tutorial we present SvPablo, a graphical source code browser and perfor­
mance visualizer that integrates the University of Illinois Pablo project's dynamic per­
formance instrumentation software with HPF and C compilers and with the MIPS 
RlOOOO hardware performance mechanism. The following topics will be covered in the 
tutorial: an introduction to the SvPablo environment, including an overview of the 
Self-Defining Data Format, used to store the performance files; the instrumentation 
and visualization of HPF and C programs; the integration with the MIPS RlOOOO 
hardware performance counters; and finally an experiment using a reallife application 
running on an SGI Origin 2000, that demonstrates the usefulness of SvPablo for tuning 
application programs. 

Reswno 

Esse tutorial descreve a interface gráfica SvPablo que foi desenvolvida na University 
of Illinois para instrumentação e visualização de desempenho de programas. SvPablo 
integra o software de instrumentação de desempenho Pablo com compiladores C e 
HPF, e com o mecanismo de instrumentação de hardware disponível nos microproces­
sadores MIPS RlOOOO. Os seguintes tópicos vão ser abordados nesse tutorial: uma 
introdução a interface gráfica SvPablo, incluindo uma visão geral do Self-Defining Data 
Format, que é usado nos arquivos de desempenho; instrumentação e visualização de 
programas HPF e C; integração com o mecanismo de instrumentação de hardware do 
MIPS RlOOOO; e finalmente um experimento usando uma aplicação real, rodando numa 
SGI Origin 2000, que demonstra a utilidade do SvPablo para o ajuste de aplicações 
científicas. 

•This work was supported in part by Army contract DABT63-91-K-0004. 
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1 Introduction 

Developing an application program that achieves high performance on a scalable parallel 
system requires a cycle of experimentation and refinement in which one first identifies the 
key program components responsible for the bulk of the program's execution time and then 
modifies the program in the hope of improving its performance. For this cycle to be effective 
not only must performance data be accurate, it must be directly tied to the source program 
and to the underlying architecture. 

Traditional performance analysis tools capture dynamic performance data from the exe­
cuting code (e.g., by instrumenting MPI communication primitives) and rely on the appli­
cation software developer to map the resulting performance data to source code constructs. 
However, the use of high-levellanguages like HPF and sophisticated parallelizing compilers 
means that an application software developer's mental model of a program and the actual 
code that executes on a particular parallel system are quite different. Modero analysis tools 
must provide the requisite performance data and suggestions for performance improvements 
at the levei of an abstract, high-level program. Thus, they must integrate dynamic perfor­
mance data with information recorded by the compiler that describes the mapping from the 
high-level source to the resulting low-level, explicitly parallel code [lJ. 

Furthermore, performance analysis becomes even harder due to the complexity of new 
parallel architectures, such as DSM architectures, which have multi-leve! memory hierarchies 
and exploit apeculative execution through branch predictions. Therefore, it is extremely 
important the integration of performance analysis tools with hardware performance mecha­
nisms, to provide meaningful performance feedback to a programmer, so the behavior of the 
application program can be understood and its performance be improved. 

In this tutorial we will present SvPablo, a graphical user interface tool for instrument­
ing source code and browsing runtime performance data. SvPablo, derived from the phrase 
"Source view Pablo", integrates the University of lllinois Pablo project's dynamic perfor­
mance instrumentation software with PGI HPF (pghpf) 15], the Portland Group's commer­
cial HPF compiler, and the MIPS RlOOOO [4J hardware performance counters 13, 6J. In 
addition, using the same interface, SvPablo allows the interactive instrumentation of C pro­
grams, with ongoing work for the interactive instrumentation of Fortran 77 and Fortran 90 
programs. 

The rest of this document briefly describe the topics that will be covered in the tuto­
rial. An overview of SvPablo and the Self-Defining Data Format (SDDF) are presented in 
Section 2. The instrumentation and visualization of HPF and C programs are introduced 
in Sections 3 and 4 respectively. Section 5 addresses the hardware performance integration. 
Finally, Section 6 concludes this tutorial with an example using a real application on an 
SGI Origin 2000, demonstrating thc usefulness of SvPablo for tuning application programs. 
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2 Overview 

SvPablo was designed to provide performance data capture, analysis, and presentation for 
applications executing on a variety of sequential and parallel platforms and written in a wide 
range of languages. The current release supports ANSI C programs and HPF programs. In 
addition, work is in progress to support Fortran D95, Fortran 77, and Fortran 90. 

Source code instrumentation using SvPablo can be interactive or automatic, depending 
on the language. C, Fortran 77, and Fortran 90 programs are interactively instrumented 
using the SvPablo tool, while HPF and Fortran D programs are automatically instrumented 
by the compiler. Performance browsing is accomplished by correlating the performance 
data gathered at runtime with the source code, performing statistical analyses, and creating 
a performance file. This performance file, stored in the Pablo Self-Defining Data Format 
(SDDF) [2], is used as input to the SvPablo tool which presents the performance information 
as it relates to the original source code. 

The Pablo SDDF is a performance data description language that specifies both data 
record structures and data record instances. This data meta-format provides the following 
requirements, dictated by the nature of performance data: 

• Compactness: performance data files are often quite large, so compactness is a concern. 

• Portability: performance data may be collected on one machine and analyzed on an­
other. Consequently, SDDF is able to accommodate potential differences in byte arder, 
word length, and ftoating point representation. 

• Generality: depending on the system component being studied ( application software, 
system software, or hardware) as well as on the underlying architecture-specific charac­
teristics (shared or distributed memory), the "interesting" performance data will vary. 
Therefore, a diverse set of event types is supported by SDDF. 

• Extensibility: the set of performance event types will grow as the performance analysis 
environment is extended, so SDDF supports the addition of new event types. 

Compactness and portability are obtained with the two possible representations for SDDF 
files, a binary representation that is more compact and an ASCII representation that is 
completely portable and human-readable. Generality and extensibility are provided by the 
meta-format approach which makes it easy to have a diverse set of event types and simple 
to add new event types as they are needed. 

The SvPablo tool's interaction model, shown in Figure 1, is based on the notion of a 
project. Associated with a project are a set of application source files and one or more per­
formance contexts. Each performance context may include an instrumentation specification 
and a corresponding set of performance data. An instrumentation specificalion is sometimes 
referreclto as a configuration, and contains the source code points where performance mea­
surements probes are inserted . The performance datais generated when the instrumented 
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Figure 1: SvPablo model 

code is run and the resulting summary files are merged and analyzed statistically. Because 
these are statistics, rather than detailed event traces, SvPablo can measure the performance 
of programs that execute for hours or days on hundreds of processors. 

3 Instrumentation and Visualization of HPF programs 

SvPablo works with the commercial HPF compiler from the Portland Group lncorporated 
(PGI). As illustrated in Figure 2, the HPF instrumentation/visualization process starts with 
the compilation of the HPF program. The PGI HPF compiler automatically inserts calls to 
the SvPablo instrumentation library at the beginning and end of every procedure, and for 
each exccutable line in the program. Therefore, every line and procedure executed by the 
program contributes to the runtime performance information. 

After compiling and linking the HPF program, the user runs the instrumented executable 
code which generates a set of per-process summary files at the end of the run. One summary 
file is generated for each process activated by the prograrn, and each file contains trace 
information that was summarized during runtime for the corresponding active process. 

The next step in the instrumentation/visualization process is the merge and statistical 
analysis of the trace data. After this step, a single performance fileis generated. This SDDF 
file, referred to here as the HPF performance fil e, contains dynamic performance statistics 
for ali routines and !ines executed in the prograrn. The HPF performance file is used as 
input to the SvPablo tool which presents the performance information as it relates to the 
original source code. 

Different metrics are collected for procedure and linc statistics, as presented in Tables 1 
and 2. ln addition, as described in Section 5, a set of hardware performance events can be 
captured when running on a MIPS RlOOOO rnicroprocessor. 

Figure 3 shows SvPablo's main window, which displays the performance data for an HPF 
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Figure 2: Overall view of the HPF instrumentation 

program that simulates the dynamics of the shallow-water equations. The window is divided 
in six panes, containing the following information: 

t Project Description: displays a textual summary of the current project. 

• Source Files: lists the source files for the current project. 

• Performance Contexts: lists the performance contexts for the current project. 

• Routines in Source File: lists the routines defined in a selected source file1
• 

• Routines in Performance Data: lists the routines appearing in a selected perfor­
mance context, together with graphical prescntation of per-routine performance data. 

• Sour~e File: displays the name of the current source file, the source code, and per­
event performance data presented graphically on the individual source code tines. 

1This pane is uscd only for inleraclive inslrumcnlalion. 
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Metric narne Description 
Count number of procedure activations 
Exclusive Duration time in seconds spent in the procedure, 

excluding calls to other procedures 
Inclusive Duration total time in seconds spent in the procedure 
Send Msg Duration time in seconds spent sending messages 
Receive Msg Duration time in seconds spent receiving messages 

Table 1: Procedure statistics metrics 

Metric name Description 
Count number of occurrences of the line 
Duration total time in seconds spent executing the line 
Exclusive Duration time in seconds spent in the line excluding procedure calls 
Message Send Duration time in seconds spent sending messages 
Message Send Count number of messages sent 
Message Send Size total number of bytes in messages sent 

.Message Receive Duration time in seconds spent receiving messages 
Message Receive Count number of messages received 
Message Receive Size total number of bytes in messages received 

Table 2: Line statistics metrics 

The SvPablo browser provides a hierarchy of color-coded performance displays, includ­
ing a high-level routine profile and source code scrollboxes. The color columns graplúcally 
summarize the number of calls and the cumulative time for the routines, and the metrics 
for the tines executed in the program (one column for each tine statistics metric). Clicking 
the mouse pointer in the color column area next to the routine name in the pane Routines 
in Performance Data or next to the tine in the Source File pane results in one of the 
following displays, depending on the button used: 

• Lcft button: displays tlte value associated with the color box under the pointer 

• Middle button: displays a dialog prompting for different distrihutions of values 
within the color range (linear, quadratic, or exponential). 

• Right button: displays a legend describing each column and the colors associated 
with the minimum and maximum values for the individual columns 

In addition, pop-up dialogs showing other statistics and detailed information about a partic­
ular routine or a particular line, including per-processar metrics, can be obtained by clicking 
the mouse on the routine name or the tine. 
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Figure 3: Performance data from the ahallow-water equationa program 
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4 Instrumentation and Visualization of C programs 

SvPablo allows the interactive instrumentation of ANSI C programs. As illustrated in Fig­
ure 4, the C instrumentation/visualization process starts with the creation of a project, 
followed by the instrumentation of selected constructs (sometimes referred to as evcnts) in 
the C source files, and then generation of an instrumented executable program. After the 
interactive instrumentation of the C program, the remaining process is similar to the one 
described-for HPF. 
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Figure 4: Overall view of the C instrumentation 

For each C source file selected to be instrumented, SvPablo parses thc file to identify 
instrumentable constructs2

, displays ali functions defined and called by the code in the 
Routines in Source File pane, and displays the file contents in the scrollable Source 
Code pane. Within the Source Code pane, !ines containing instrumentable constructs (events) 
are marked with a w>n symbol to the left of the source line. These events can be selected 
to be instrumented via the Instrument menu, shown in Figure 5, or by clicking the mouse 
on the corresponding !inc. A "~" symbol appears on the line to the left of the ">" symbol 
indicating that it has been marked for instrumentation . Notice that Figure 5 shows the 

21n the current implementalion, /unction call.t and ouler loopJ are lhe instrumenlable conslrucls. 
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Figure 5: Instrumentable conetructa and performance data in the file prbaor. c 
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SvPablo main window for a project after the instrumented program was compiled and run, 
thus it also displays the program's performance data. 

5 Hardware Performance Integration 

Hardware performance monitoring is integrated into SvPablo with the use of the MIPS 
RlOOOO hardware performance counters. The MIPS RlOOOO microprocessor provides detailed 
information on the behavior of the chip through its hardware performance facility. This 
performance facility provides two hardware performance counters, each one able to track up 
to 16 different events, as presented in Table 3. 

Countcr zero Countcr onc 
No. event No. event 
0-----cycles ·- - ·--- 16 Cycles 

1 lnstructions issued 17 lnstructions graduated 
2 Load/ prefetch/sync issued 18 Loadfprefetch/sync graduated 
3 Stores issued 19 Stores graduated 
4 Store conditional issued 20 Store conditional graduated 
5 Failed store conditional 21 * Floating-point instructions (grad) 
6 Branches decoded 22 Write back from data cache 

to secondary cache 
7 Write back from secondary 23 TLB refill exceptions 

cache to System interface 
8 Single-bit ECC errors on 24 Dranches mispredicted 

seconclary cache data 
9 • lnstruction cachc misses 25 * Data cache misses 
lO • Secondary cache misses (inst.) 26 • Secondary cache misses (data) 
11 Secondary cache way 27 Secondary cache way 

mispreclictecl (instruction) mispredicted (data) 
12 Externai intervention requests 28 Externai intervention hits 
13 Externai invalidation requests 29 Externai invaliclation hits 
14 Virtual cohcrency 30 Upgrade requests on dean 

secondary cache !ines 
15 • lnstructions graduated 31 Upgrade rcquests on shared 

···-·. -·-.. ·--... - ···- ·- . ---- ·-- secondary cache !ines 
·---- - - ------

Table 3: MIPS RlOOOO Counters ( • denotes dcfault cvcnts captured by SvPablo) 

To enahle capture of more than two events cluring program execution, the operating 
system kernel maintains a set of 32 virtual counters, multiplexing the physical counters 
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across these. When this multiplexing approach is used, the kernel switches events at every 
clock with each event being counted once every n clock cycles, where n is the number of 
events selected for each counter. 'rhis multiplexing sacrifices accUiacy, that is inversely 
proportional to the number of events selected from each counter, but increases coverage, 
since it is possible for a program to access the information from all events. 

1'hrough the SvPablo interface, the user can select the hardware events to be instru­
mented by providing at runtime an ASCII file containing the events of interest. If this file is 
not available dUiing runtime, the SvPablo data captUie library uses a default set of events, 
marked with an asterisk in Table 3. The SvPablo data captUie library configures the RlOOOO 
processor to query the virtual counters, recording this data with extant application measUie­
ments. In addition to presenting the data obtained from the counters, SvPablo uses data 
from selected events to synthesize new metrics, such as MFLOPS per processor and branches 
mispredicted percentage, for each executed line. 

6 Application Tuning Example 

In this section we demonstrate the usefulness of SvPablo for tuning application programs. 
As an example, we use a numerical model to simulate doud and density current dynamics. 
This model is a three-dimensional, non-hydrostatic, finite difference, convective cloud model 
which utilizes a quasi-compressible version of the Navier-Stokes equations. The program 
was originally written in CM Fortran for the CM5 and was translated to HPF to run on 
the SGI Origin 2000. The current version has approximately 9000 lines. In this example, 
we executed two versions of the program (baseline and modified) on an Origin 2000, using 8 
processors. 

Figure 6 shows SvPablo's main window after the generation of the performance data 
for the baseline program. We started tuning our application by selecting the routine s.mix, 
which had the largest cumulative time (197.20 seconds, as shown in the corresponding metric 
display). 'l'he metrics corresponding to each column in the pane Source File and the range 
of values for each metric (for the !ines of the file s..mix .hpf) is pr~sented in Figure 7(A). 

Scrolling down the source code, we observe that most of the execution time for the routine 
s..mix was spent computing the array fs, when performing the operations X - Mixing and 
Y - Mixing. This is easily identified due to the color-coded performance displays. !n this 
example, we observe that most of the execution time for each computation of fs is dueto 
communication (represented by the last 2 columns to the right in the Source Code pane). 
As shown by the specific metric displays, out of the 97.68 seconds for the total execution 
time for the highlighted line, 90.66 seconds was due to message receives and 7.06 seconds 
was due lo message sends. We also observe that this statement had in exccss of 5.6 million 
data cachc misses and each processar achieved al most 0.05 MFLOPS. 

An analysis of the loop indicatcs that lhe reason for this poor performance could be due 
to the circular shift of the array flx. This array is computed in thc prcvious slalement of the 
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l<'igure 6: Performance data from the baseline program 
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l<'tgure '{: .t'ertormance metrtca and range of valuea for the baaeline program lA) and for the 

wudilied program (B) 
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Figure 8: Performance data from the modified program 
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loop, so the processors have to wait during each iteration of the )oop for the circular shift to 
occur. To improve the performance of this routine, we split the originalloop into four loops, 
one for each statement inside of the original )oop. By splitting the )oop, we expected that 
due to prefetching, the data migration would start as soon as each iteration of the previous 
loop was completed. 

Figure 8 displays the performance data for the modified version of the program, with t he 
metrics and range of values for each column being presented in Figure 7(B). We observe that 
as expected, after splitting the original loop, the communications occurred between loops, 
reducing considerably the duration of message sends and message receives (to 0.14 and 2. 71 
respectively for the same highlighted statement from Figure 6). In addition, we observe a 
reduction in the number of data cache misses, with the total time for the statement being 
only 0.31 seconds and performance dose to 20 MFLOPS per processor. 

Due to the loop splitting and the moving of the communications, the total time of the 
)oop control was increased by a factor of three (from approximately 6 seconds accounted to 
execute the single loop control statement in the baseline program to roughly 18 seconds to 
execute ali four Joop control statements in the modified program). However, even with this 
increase in execution time for the loop control, the total execution time for the routine s..mix 
dropped by one order of magnitude. 
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