
Performance Analysis Using SvPablo

Luiz De Rose •
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, U.S.A.

(derose@cs. ui uc .ed u)

Abstract

In this tutorial we present SvPablo, a graphical source code browser and perfor­
mance visualizer that integrates the University of Illinois Pablo project's dynamic per­
formance instrumentation software with HPF and C compilers and with the MIPS
RlOOOO hardware performance mechanism. The following topics will be covered in the
tutorial: an introduction to the SvPablo environment, including an overview of the
Self-Defining Data Format, used to store the performance files; the instrumentation
and visualization of HPF and C programs; the integration with the MIPS RlOOOO
hardware performance counters; and finally an experiment using a reallife application
running on an SGI Origin 2000, that demonstrates the usefulness of SvPablo for tuning
application programs.

Reswno

Esse tutorial descreve a interface gráfica SvPablo que foi desenvolvida na University
of Illinois para instrumentação e visualização de desempenho de programas. SvPablo
integra o software de instrumentação de desempenho Pablo com compiladores C e
HPF, e com o mecanismo de instrumentação de hardware disponível nos microproces­
sadores MIPS RlOOOO. Os seguintes tópicos vão ser abordados nesse tutorial: uma
introdução a interface gráfica SvPablo, incluindo uma visão geral do Self-Defining Data
Format, que é usado nos arquivos de desempenho; instrumentação e visualização de
programas HPF e C; integração com o mecanismo de instrumentação de hardware do
MIPS RlOOOO; e finalmente um experimento usando uma aplicação real, rodando numa
SGI Origin 2000, que demonstra a utilidade do SvPablo para o ajuste de aplicações
científicas.

•This work was supported in part by Army contract DABT63-91-K-0004.

47

1 Introduction

Developing an application program that achieves high performance on a scalable parallel
system requires a cycle of experimentation and refinement in which one first identifies the
key program components responsible for the bulk of the program's execution time and then
modifies the program in the hope of improving its performance. For this cycle to be effective
not only must performance data be accurate, it must be directly tied to the source program
and to the underlying architecture.

Traditional performance analysis tools capture dynamic performance data from the exe­
cuting code (e.g., by instrumenting MPI communication primitives) and rely on the appli­
cation software developer to map the resulting performance data to source code constructs.
However, the use of high-levellanguages like HPF and sophisticated parallelizing compilers
means that an application software developer's mental model of a program and the actual
code that executes on a particular parallel system are quite different. Modero analysis tools
must provide the requisite performance data and suggestions for performance improvements
at the levei of an abstract, high-level program. Thus, they must integrate dynamic perfor­
mance data with information recorded by the compiler that describes the mapping from the
high-level source to the resulting low-level, explicitly parallel code [lJ.

Furthermore, performance analysis becomes even harder due to the complexity of new
parallel architectures, such as DSM architectures, which have multi-leve! memory hierarchies
and exploit apeculative execution through branch predictions. Therefore, it is extremely
important the integration of performance analysis tools with hardware performance mecha­
nisms, to provide meaningful performance feedback to a programmer, so the behavior of the
application program can be understood and its performance be improved.

In this tutorial we will present SvPablo, a graphical user interface tool for instrument­
ing source code and browsing runtime performance data. SvPablo, derived from the phrase
"Source view Pablo", integrates the University of lllinois Pablo project's dynamic perfor­
mance instrumentation software with PGI HPF (pghpf) 15], the Portland Group's commer­
cial HPF compiler, and the MIPS RlOOOO [4J hardware performance counters 13, 6J. In
addition, using the same interface, SvPablo allows the interactive instrumentation of C pro­
grams, with ongoing work for the interactive instrumentation of Fortran 77 and Fortran 90
programs.

The rest of this document briefly describe the topics that will be covered in the tuto­
rial. An overview of SvPablo and the Self-Defining Data Format (SDDF) are presented in
Section 2. The instrumentation and visualization of HPF and C programs are introduced
in Sections 3 and 4 respectively. Section 5 addresses the hardware performance integration.
Finally, Section 6 concludes this tutorial with an example using a real application on an
SGI Origin 2000, demonstrating thc usefulness of SvPablo for tuning application programs.

48

2 Overview

SvPablo was designed to provide performance data capture, analysis, and presentation for
applications executing on a variety of sequential and parallel platforms and written in a wide
range of languages. The current release supports ANSI C programs and HPF programs. In
addition, work is in progress to support Fortran D95, Fortran 77, and Fortran 90.

Source code instrumentation using SvPablo can be interactive or automatic, depending
on the language. C, Fortran 77, and Fortran 90 programs are interactively instrumented
using the SvPablo tool, while HPF and Fortran D programs are automatically instrumented
by the compiler. Performance browsing is accomplished by correlating the performance
data gathered at runtime with the source code, performing statistical analyses, and creating
a performance file. This performance file, stored in the Pablo Self-Defining Data Format
(SDDF) [2], is used as input to the SvPablo tool which presents the performance information
as it relates to the original source code.

The Pablo SDDF is a performance data description language that specifies both data
record structures and data record instances. This data meta-format provides the following
requirements, dictated by the nature of performance data:

• Compactness: performance data files are often quite large, so compactness is a concern.

• Portability: performance data may be collected on one machine and analyzed on an­
other. Consequently, SDDF is able to accommodate potential differences in byte arder,
word length, and ftoating point representation.

• Generality: depending on the system component being studied (application software,
system software, or hardware) as well as on the underlying architecture-specific charac­
teristics (shared or distributed memory), the "interesting" performance data will vary.
Therefore, a diverse set of event types is supported by SDDF.

• Extensibility: the set of performance event types will grow as the performance analysis
environment is extended, so SDDF supports the addition of new event types.

Compactness and portability are obtained with the two possible representations for SDDF
files, a binary representation that is more compact and an ASCII representation that is
completely portable and human-readable. Generality and extensibility are provided by the
meta-format approach which makes it easy to have a diverse set of event types and simple
to add new event types as they are needed.

The SvPablo tool's interaction model, shown in Figure 1, is based on the notion of a
project. Associated with a project are a set of application source files and one or more per­
formance contexts. Each performance context may include an instrumentation specification
and a corresponding set of performance data. An instrumentation specificalion is sometimes
referreclto as a configuration, and contains the source code points where performance mea­
surements probes are inserted . The performance datais generated when the instrumented

~.. r~ f \.J I . • '·

1 ;·lSTITUTO !""' f" 1. •

BtBt.IJ i t.L:t.\

. ..r : •.•
\ ~ , . .

user
Caixa de texto

user
Texto digitado

user
Texto digitado
 49

PROJECf

~
Sourcc

files
Perfonnance contcxts

/···\
Performanc~ Performance

dJta d:ua

Figure 1: SvPablo model

code is run and the resulting summary files are merged and analyzed statistically. Because
these are statistics, rather than detailed event traces, SvPablo can measure the performance
of programs that execute for hours or days on hundreds of processors.

3 Instrumentation and Visualization of HPF programs

SvPablo works with the commercial HPF compiler from the Portland Group lncorporated
(PGI). As illustrated in Figure 2, the HPF instrumentation/visualization process starts with
the compilation of the HPF program. The PGI HPF compiler automatically inserts calls to
the SvPablo instrumentation library at the beginning and end of every procedure, and for
each exccutable line in the program. Therefore, every line and procedure executed by the
program contributes to the runtime performance information.

After compiling and linking the HPF program, the user runs the instrumented executable
code which generates a set of per-process summary files at the end of the run. One summary
file is generated for each process activated by the prograrn, and each file contains trace
information that was summarized during runtime for the corresponding active process.

The next step in the instrumentation/visualization process is the merge and statistical
analysis of the trace data. After this step, a single performance fileis generated. This SDDF
file, referred to here as the HPF performance fil e, contains dynamic performance statistics
for ali routines and !ines executed in the prograrn. The HPF performance file is used as
input to the SvPablo tool which presents the performance information as it relates to the
original source code.

Different metrics are collected for procedure and linc statistics, as presented in Tables 1
and 2. ln addition, as described in Section 5, a set of hardware performance events can be
captured when running on a MIPS RlOOOO rnicroprocessor.

Figure 3 shows SvPablo's main window, which displays the performance data for an HPF

50

HPF
source code

+
I PGIHPF

comniler

~ ..
instrumented SvPablo HPF
obiectcode trace librarv per -process t r 5ummarv fi!~

Linker t
IHPFCombine performance

t 1-----

' file
instrumented f--+ t
executable Graphical

performance
hrntli~Pr

Figure 2: Overall view of the HPF instrumentation

program that simulates the dynamics of the shallow-water equations. The window is divided
in six panes, containing the following information:

t Project Description: displays a textual summary of the current project.

• Source Files: lists the source files for the current project.

• Performance Contexts: lists the performance contexts for the current project.

• Routines in Source File: lists the routines defined in a selected source file1
•

• Routines in Performance Data: lists the routines appearing in a selected perfor­
mance context, together with graphical prescntation of per-routine performance data.

• Sour~e File: displays the name of the current source file, the source code, and per­
event performance data presented graphically on the individual source code tines.

1This pane is uscd only for inleraclive inslrumcnlalion.

51

Metric narne Description
Count number of procedure activations
Exclusive Duration time in seconds spent in the procedure,

excluding calls to other procedures
Inclusive Duration total time in seconds spent in the procedure
Send Msg Duration time in seconds spent sending messages
Receive Msg Duration time in seconds spent receiving messages

Table 1: Procedure statistics metrics

Metric name Description
Count number of occurrences of the line
Duration total time in seconds spent executing the line
Exclusive Duration time in seconds spent in the line excluding procedure calls
Message Send Duration time in seconds spent sending messages
Message Send Count number of messages sent
Message Send Size total number of bytes in messages sent

.Message Receive Duration time in seconds spent receiving messages
Message Receive Count number of messages received
Message Receive Size total number of bytes in messages received

Table 2: Line statistics metrics

The SvPablo browser provides a hierarchy of color-coded performance displays, includ­
ing a high-level routine profile and source code scrollboxes. The color columns graplúcally
summarize the number of calls and the cumulative time for the routines, and the metrics
for the tines executed in the program (one column for each tine statistics metric). Clicking
the mouse pointer in the color column area next to the routine name in the pane Routines
in Performance Data or next to the tine in the Source File pane results in one of the
following displays, depending on the button used:

• Lcft button: displays tlte value associated with the color box under the pointer

• Middle button: displays a dialog prompting for different distrihutions of values
within the color range (linear, quadratic, or exponential).

• Right button: displays a legend describing each column and the colors associated
with the minimum and maximum values for the individual columns

In addition, pop-up dialogs showing other statistics and detailed information about a partic­
ular routine or a particular line, including per-processar metrics, can be obtained by clicking
the mouse on the routine name or the tine.

52

Figure 3: Performance data from the ahallow-water equationa program

53

4 Instrumentation and Visualization of C programs

SvPablo allows the interactive instrumentation of ANSI C programs. As illustrated in Fig­
ure 4, the C instrumentation/visualization process starts with the creation of a project,
followed by the instrumentation of selected constructs (sometimes referred to as evcnts) in
the C source files, and then generation of an instrumented executable program. After the
interactive instrumentation of the C program, the remaining process is similar to the one
described-for HPF.

,------------ -·
L ------ ------./1

I I
I I

Create or I I
I I
I

edit project I

~
I I

I
I

1 Instrument I
I

C files I
I
I
I
I
I
I
I
I

VJsuauze I

.., performance I
I

filp I
I ,

------~

/.:s ------.r
YEabln.- ,, ____ ,,

1-------- ____ ,

Instrumented

Cprogram

1
c

compiler

~
SvPabloC

trace library

lnstrumented ~~ I
objectcode

~
Per-process v Summa~ file~

1
Linker

J CCombine J

lnstrumented
+ ~

executablc Performance
file

Figure 4: Overall view of the C instrumentation

For each C source file selected to be instrumented, SvPablo parses thc file to identify
instrumentable constructs2

, displays ali functions defined and called by the code in the
Routines in Source File pane, and displays the file contents in the scrollable Source
Code pane. Within the Source Code pane, !ines containing instrumentable constructs (events)
are marked with a w>n symbol to the left of the source line. These events can be selected
to be instrumented via the Instrument menu, shown in Figure 5, or by clicking the mouse
on the corresponding !inc. A "~" symbol appears on the line to the left of the ">" symbol
indicating that it has been marked for instrumentation . Notice that Figure 5 shows the

21n the current implementalion, /unction call.t and ouler loopJ are lhe instrumenlable conslrucls.

54

Figure 5: Instrumentable conetructa and performance data in the file prbaor. c

55

SvPablo main window for a project after the instrumented program was compiled and run,
thus it also displays the program's performance data.

5 Hardware Performance Integration

Hardware performance monitoring is integrated into SvPablo with the use of the MIPS
RlOOOO hardware performance counters. The MIPS RlOOOO microprocessor provides detailed
information on the behavior of the chip through its hardware performance facility. This
performance facility provides two hardware performance counters, each one able to track up
to 16 different events, as presented in Table 3.

Countcr zero Countcr onc
No. event No. event
0-----cycles ·- - ·--- 16 Cycles

1 lnstructions issued 17 lnstructions graduated
2 Load/ prefetch/sync issued 18 Loadfprefetch/sync graduated
3 Stores issued 19 Stores graduated
4 Store conditional issued 20 Store conditional graduated
5 Failed store conditional 21 * Floating-point instructions (grad)
6 Branches decoded 22 Write back from data cache

to secondary cache
7 Write back from secondary 23 TLB refill exceptions

cache to System interface
8 Single-bit ECC errors on 24 Dranches mispredicted

seconclary cache data
9 • lnstruction cachc misses 25 * Data cache misses
lO • Secondary cache misses (inst.) 26 • Secondary cache misses (data)
11 Secondary cache way 27 Secondary cache way

mispreclictecl (instruction) mispredicted (data)
12 Externai intervention requests 28 Externai intervention hits
13 Externai invalidation requests 29 Externai invaliclation hits
14 Virtual cohcrency 30 Upgrade requests on dean

secondary cache !ines
15 • lnstructions graduated 31 Upgrade rcquests on shared

···-·. -·-.. ·--... - ···- ·- . ---- ·-- secondary cache !ines
·---- - - ------

Table 3: MIPS RlOOOO Counters (• denotes dcfault cvcnts captured by SvPablo)

To enahle capture of more than two events cluring program execution, the operating
system kernel maintains a set of 32 virtual counters, multiplexing the physical counters

56

across these. When this multiplexing approach is used, the kernel switches events at every
clock with each event being counted once every n clock cycles, where n is the number of
events selected for each counter. 'rhis multiplexing sacrifices accUiacy, that is inversely
proportional to the number of events selected from each counter, but increases coverage,
since it is possible for a program to access the information from all events.

1'hrough the SvPablo interface, the user can select the hardware events to be instru­
mented by providing at runtime an ASCII file containing the events of interest. If this file is
not available dUiing runtime, the SvPablo data captUie library uses a default set of events,
marked with an asterisk in Table 3. The SvPablo data captUie library configures the RlOOOO
processor to query the virtual counters, recording this data with extant application measUie­
ments. In addition to presenting the data obtained from the counters, SvPablo uses data
from selected events to synthesize new metrics, such as MFLOPS per processor and branches
mispredicted percentage, for each executed line.

6 Application Tuning Example

In this section we demonstrate the usefulness of SvPablo for tuning application programs.
As an example, we use a numerical model to simulate doud and density current dynamics.
This model is a three-dimensional, non-hydrostatic, finite difference, convective cloud model
which utilizes a quasi-compressible version of the Navier-Stokes equations. The program
was originally written in CM Fortran for the CM5 and was translated to HPF to run on
the SGI Origin 2000. The current version has approximately 9000 lines. In this example,
we executed two versions of the program (baseline and modified) on an Origin 2000, using 8
processors.

Figure 6 shows SvPablo's main window after the generation of the performance data
for the baseline program. We started tuning our application by selecting the routine s.mix,
which had the largest cumulative time (197.20 seconds, as shown in the corresponding metric
display). 'l'he metrics corresponding to each column in the pane Source File and the range
of values for each metric (for the !ines of the file s..mix .hpf) is pr~sented in Figure 7(A).

Scrolling down the source code, we observe that most of the execution time for the routine
s..mix was spent computing the array fs, when performing the operations X - Mixing and
Y - Mixing. This is easily identified due to the color-coded performance displays. !n this
example, we observe that most of the execution time for each computation of fs is dueto
communication (represented by the last 2 columns to the right in the Source Code pane).
As shown by the specific metric displays, out of the 97.68 seconds for the total execution
time for the highlighted line, 90.66 seconds was due to message receives and 7.06 seconds
was due lo message sends. We also observe that this statement had in exccss of 5.6 million
data cachc misses and each processar achieved al most 0.05 MFLOPS.

An analysis of the loop indicatcs that lhe reason for this poor performance could be due
to the circular shift of the array flx. This array is computed in thc prcvious slalement of the

57

l<'igure 6: Performance data from the baseline program

58

l<'tgure '{: .t'ertormance metrtca and range of valuea for the baaeline program lA) and for the

wudilied program (B)

59

Figure 8: Performance data from the modified program

60

loop, so the processors have to wait during each iteration of the)oop for the circular shift to
occur. To improve the performance of this routine, we split the originalloop into four loops,
one for each statement inside of the original)oop. By splitting the)oop, we expected that
due to prefetching, the data migration would start as soon as each iteration of the previous
loop was completed.

Figure 8 displays the performance data for the modified version of the program, with t he
metrics and range of values for each column being presented in Figure 7(B). We observe that
as expected, after splitting the original loop, the communications occurred between loops,
reducing considerably the duration of message sends and message receives (to 0.14 and 2. 71
respectively for the same highlighted statement from Figure 6). In addition, we observe a
reduction in the number of data cache misses, with the total time for the statement being
only 0.31 seconds and performance dose to 20 MFLOPS per processor.

Due to the loop splitting and the moving of the communications, the total time of the
)oop control was increased by a factor of three (from approximately 6 seconds accounted to
execute the single loop control statement in the baseline program to roughly 18 seconds to
execute ali four Joop control statements in the modified program). However, even with this
increase in execution time for the loop control, the total execution time for the routine s..mix
dropped by one order of magnitude.

References

[1] AOVE, V., MELLOR-CRUMMEY, J., WANG, J.-C., ANO REEO, D. lntegrating Compi­
lation and Performance Analysis for Data-Parallel Programs. Proceedings of Supercom­
puting'95 (November 1995) .

. (2] AYOT, R. The Pablo Self-Defining Data Format. Tech. rep., Department of Computer
Science at the University of Illinois at Urbana-Champaign, April 1994.

(3] MIPS TECHNOLOGIES INC. Definition of MIPS RJOOOO Performance Counters, 1996.
http:/ f www .sgi .com/MIPS fproducts/r 10k/PerLCnt/ R10K_PF _Count.doc.html.

[4] MIPS TECHNOLOGIES INC. RJOOOO Microprocessor User's Manual, version 2.0 ed., Oc­
tober 1996. http:/ / www.sgi.com/MIPS/ products/ r 10k/UMan_ V2.0/ R10K_UM.cv .html.

[5] THE PORTLANO GROUP, INC. PGHPF User's Cuide, 1994.

[6] ZAGHA, M., LARSON 1 B., TURNER, S., ANO ITZKOWITZ, M. Performance Analy­
sis Using the MIPS R10000 Performance Counters. Proceedings of Supercomputing'96
(November 1996).

61

