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Abstract. Diversity-oriented searches retrieve objects not only similar to a ref-
erence element but also related to the different types of collections within the
queried dataset. While such characterization is flexible enough to include meth-
ods originally from information retrieval, data clustering, and similarity search-
ing under the same umbrella, diversity metrics are expected to be much less
paradigm-biased in order to discriminate which approaches are more suitable
and when they should be applied. Accordingly, we extend and implement a
broad set of quality metrics from those distinct realms and experimentally dis-
cuss their trends and limitations. In particular, we evaluate the suitability of
data clustering indexes, and similarity-driven measures regarding their adher-
ence to diversified similarity searching. Experiments in real-world datasets indi-
cate such measures are capable of distinguishing diversity methods from differ-
ent paradigms, but they heavily favor the approaches of the same group — espe-
cially cluster indexes. As an alternative, we argue diversity is better addressed
by a set of measures rather than a single quality value. Therefore, we propose
the Diversity Features Model (DFM) that combines the perspectives of the com-
peting approaches into a multidimensional point whose features are calculated
based on the distance distribution within both retrieved and queried datasets.
Empirical evaluations showed DFM compares different diversity searching ap-
proaches by considering multiple criteria, whereas overall winners can be found
by ranking aggregation or visualized through parallel coordinates maps.

1. Introduction

The proverb “A picture is worth a thousand words” is no longer just a metaphor since
images and videos produced in different application domains, such as social networks,
biology, and astronomy, outweigh text content in orders of magnitude regarding data vol-
ume and size [Pouyanfar et al. 2018]. An efficient approach for querying such data is the
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Metric Spaces Model [Hetland 2009], where objects are mapped into a known domain so
that elements become comparable by a distance function. While feature-learning can be
used for mapping complex domains into simpler spaces, e.g., multidimensional domains,
similarity criteria are employed for the retrieval of objects according to their distances to
a query object [Santos et al. 2013b, Aggarwal 2015]. Under that rationale, the farther the
elements, the most dissimilar they are. The most common similarity criterion is that of
neighborhood (k-NN) queries, which fetch the £ nearest objects to a reference element.

Neighborhood searches are efficiently executed by index-and-query algo-
rithms [Chen et al. 2017], but they present a semantic drawback in the querying of mas-
sive datasets. For instance, suppose a composer runs a search for the five most similar
tunes to the “Beatles Yellow Submarine” in a social network repository that returns ver-
sions and parodies of the aforementioned song in different languages. Although the result
set can be correct from a k-NN query standpoint, the answer is likely unfruitful. A diver-
sified answer could consider not only the closest songs but also those of distinct musical
styles, i.e., different collections within the queried dataset.

Diversified similarity searching methods cover that semantic query aspect accord-
ing to three main paradigms: (i) distance-based, (ii) novelty-based, and (iii) coverage-
based [Drosou et al. 2017]. Methods from the first paradigm aim at maximizing a sin-
gle objective function regarding the distances between the elements within the result
set [Zheng et al. 2017], whereas approaches of the second paradigm rely on a two-phase
execution in which an enlarged subset of candidates is chosen and then filtered to ensure
diversification. Such a two-phase strategy can be reduced to the problem of solving a
bi-criteria objective function where similarity and diversity compete linearly following
a user-defined parameter [Vieira et al. 2011]. Finally, coverage-based methods separate
candidates on-the-fly following a similarity threshold, which creates dynamic clusters in
the search space [Santos et al. 2013b].

While a plethora of diversity-driven methods can be found in the liter-
ature [Drosou et al. 2017], quality metrics for assessing their efficacy are rather
scarce [Smyth and McClave 2001, Santos et al. 2013a]. In fact, most studies borrow and
adapt quality metrics originally designed for information retrieval and similarity search-
ing tasks [Vieira et al. 2011, Zheng et al. 2017]. Examples of those metrics include infor-
mation retrieval measures NDCG-IA (Intent-Aware Normalized Discounted Cumulative
Gain) [Agrawal et al. 2009], and similarity-oriented approaches RB (Relative Benefit)
and OEM (Overlap Evaluation Method) [Smyth and McClave 2001, Santos et al. 2013a].

Aiming at investigating the biases of those metrics towards diversity algorithms,
we (i) adapt a set of distinct measures, and (ii) extend clustering indexes, such as Sil-
houette [Aggarwal 2015], for the evaluation of different diversified similarity searching
methods. Results indicate distinct quality measures may favor groups of diversity al-
gorithms, being that separation clearer for scores from cluster-oriented metrics. Accord-
ingly, we propose a new multidimensional evaluation measure for diversity, named Diver-
sity Features Model (DFM), by combining previous relevant metrics from data clustering
and similarity-driven statistics. Our argument is diversified similarity searching is fairer
addressed by a multidimensional viewpoint whose entries are calculated based on the
distance distributions within both retrieved and queried sets, rather than single quality in-
dexes. Moreover, we claim DFM outputs can be interpreted as multiple lists of preferences
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so that overall winners can be found by ranking aggregation methods [Fagin et al. 2003].
We evaluated DFM in real-world datasets, and results indicated our approach is flexible
enough for comparing different diversity methods with multiple criteria, whereas DFM
entries can also be visualized and interpreted through parallel coordinates maps. The
main contributions of this study are summarized as follows:

1. Extension of data clustering indexes and similarity-driven measures for the evalu-
ation of diversified similarity searches,

2. Experimental shreds of evidence that metrics may favor groups of algorithms from
the same paradigm,

3. A new multidimensional measure for assessing the quality of diversified similarity
searching outputs, which complies with ranking aggregation principles.

The remainder of the paper is organized as follows. Section 2 provides back-
ground concepts and discuss diversity searching. Section 3 presents the extensions for
diversity metrics and introduces DFM. Section 4 provides the experimental evaluations
and comparisons, while Section 5 concludes the study.

2. Preliminaries

2.1. Diversified similarity searching

A metric space is a pair (S, §) with a given domain S and a distance function ¢ that comply
with properties of (i) symmetry, §(s;,s;) = d(s;,s;); (ii) non-negativity, §(s;, s;) > 0;
and (iii) triangle inequality, 0(s;, s¢) + 6(sg, 5;) > 0(s;, s;), for any objects sy, s, 5; € S.
Examples of distance functions include the Minkowski family L, being the L, function
the well-known Euclidean distance.

Given a particular dataset S C S, a range query (Rq) retrieves every element in
S that is far from a query element s, € S at most a given threshold £ € R, so that
Rq(s4,€,8,0) = {si | si € S,0(s4,8,) < &}. Analogously, a neighborhood query
(k-NN) retrieves k, k € N, elements in S whose distances to query element s, € S are the
smallest, i.e., a neighborhood query is a range search!' with an initially unknown radius &
so that | Rq| = k [Hetland 2009, Chen et al. 2017].

Range and k-NN queries may struggle in the searching of high-density datasets
since distances among elements may be very close to each other. In this scenario,
small variations in the radius & produce large variations in the result set cardinality. As
a consequence, k-NN queries may become unstable since their results are likely non-
unique’ [Pestov 2013]. Density may also reduce the utility of similarity searching in data
exploration as retrieved elements are expected to be very similar among themselves. Di-
versity is employed in that context for enhancing neighborhood queries.

Roughly speaking, given a diversity metric div and a value £ < |S|,§ C S,
a diversified result set R C S complies with R = argmaxp,cs z/—xdiv(R'). Ap-
proaches for solving such an optimization problem are categorized into three groups,
namely (i) distance-based, (ii) novelty-based, and (iii) coverage-based. Distance-based
approaches, however, examine the entire queried set S rather than considering the query
element perspective [Jain et al. 2004, Zheng et al. 2017].

ITies at the k" position are broken arbitrarily.
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Figure 1. (a) k-NN, (b) GMC, and (c) BRID results for query “Find the 04 closest
and diverse cities to Orlando/FL’ with ¢,;,, = d4iv = ddin, = Lo, and A = 0.5.

Novelty-based methods model the optimization problem as a dual-criteria func-
tion in which similarity and diversity compete among themselves ruled by a linear \ pa-
rameter defined in the [0, 1] interval. The setting of parameter A = 0 (weighting diversity
as irrelevant) turns the optimization problem in a neighborhood query, whereas increas-
ing A values push retrieved elements away from the queried object. The finding of the
optimal \ value is an NP-hard problem [Drosou et al. 2017], and practical solutions rely
on meta-heuristics for producing suitable outputs [Vieira et al. 2011].

The Maximal Marginal Relevance (MMR) [Carbonell and Goldstein 1998]
method adapts that dual model for diversified neighborhood queries by assigning a score
for each element s; in the queried set S according to the function MM R(s;,s,) =
(1 — A) - bsim(sis8q) +2 - X - Zsjen ddiv(si, s;), where similarity and diversity are
measured by distinct functions dg;,, and dg;,, respectively. The result set R (initially
empty) is built in & incremental steps so that the element s; € S\ R with highest value
of MMR(s;,s,) is chosen as the next nearest diversified neighbor at each step. The
Greedy with Marginal Contribution (GMC) [Vieira et al. 2011] method uses a new ob-
jective function MMC(s;,s4) = (1 — A) - Ssim(Si, 8¢) +2- X - Zsjen Oaiv(Si, 85) + 2 -

A - Zﬁ é‘;\RlR |=h=IR] daiv, (i, s ) for weighting the contribution of elements s;, outside

the partial result set R, whereas functions d4;, and d4;,, can be different. Figures 1(a-b)
show an example of a GMC result set in contrast to that of a k-NN query.

The Swap [Yu et al. 2009] novelty-based method uses similarity-driven permuta-
tions for avoiding result sets to being stuck at local maxima. First, Swap constructs a
result set R with the closest & elements to the query object. Next, the remaining elements
in S \ R are sorted by similarity and individually swapped with R objects according to
an objective function, such as MMC. If the swap provides higher scores, then the changes
are consolidated in R. The method stops when every S element is swapped at least once.
Additionally, heuristic-driven approaches as GMC and Swap rely on data sampling for
speeding-up their execution in practice. Therefore, a queried set S’ C S is usually em-
ployed as their inputs rather than the entire dataset S [Vieira et al. 2011].

Coverage-based methods follow a different premise since they rely on creat-
ing separations in the search space for modeling diversity. For instance, the Motley
method [Jain et al. 2004] employs a user-provided separation distance € R, for retriev-
ing diversified nearest neighbors. Given a query object s, € S, the Motley implementation
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sorts the elements s; € S regarding their distances to s, and includes the nearest neighbor
in the diversified result set. Next, it incrementally evaluates the sorted list of candidates
until the remaining k& — 1 diversified neighbors are found, i.e., a distance-sorted candidate
s; is included in the partial result set R’ if 6(s;, s;) > r,Vs; € R'.

The Better Results with Influence Diversification (BRID) [Santos et al. 2013b]
method creates dynamic thresholds that eliminate the need for any extra user-provided
parameters. BRID separations are based on influence, which expresses how much re-
sult set entries cover regions in the search space. Formally, the mutual influence be-
tween a pair of objects s;,s; € S is calculated as I(s;,s;) = 1/d(s;,s;) so that an
element sy, is said to be more influenced by s; than s; whenever I(sp, s;) > I(sp, s;).
An influence-based relationship between a query object s, and a result set entry s;
enables constructing strong influence sets that include only non-influenced elements.
Accordingly, a strong influence set for (s, s;) is Ly, s, = {s; € S| (I(si,s;) >
I(si,84)) N (L(sj,si) > I(sj,54))}. BRID uses strong influence sets for retrieving the
k closest elements in S to s, € S that are non-influenced by any result set entry so that
a diversified k-NN query produces R = {r; € S|Vs; € R :r; ¢ f3j7sq AV s; €

S\R: (6(7’1;,3(1) <(siysq)VISs; ER s € fsj,sq> A |R| < k}. Figures 1(b—c) com-
pare BRID and GMC result sets.

2.2. Quality metrics for diversified similarity searching

Metrics for quantifying results from diversified similarity searching are mainly “bor-
rowed” from information retrieval and similarity searching [Santos et al. 2013a]. For
instance, the metric Intent-Aware Normalized Discounted Cumulative Gain (NDCG-IA)
extends measure NDCG [Agrawal et al. 2009] by considering the categories of retrieved
elements in the assignment of scores regarding results that include different labels. The
drawback of applying either NDCG or NDCG-IA metrics for diversity searching is they
require the queried sets to be labeled.

On the other hand, similarity searching metrics evaluate only the distances among
result set elements. For instance, the Relative Benefit (RB) [Smyth and McClave 2001]
tackles the trade-off between similarity and diversity by adopting k-NN queries as a base-
line, i.e., RB assumes the results of a k-NN query represent similarity only so that the
relative benefit of a diversity algorithm can be calculated by counting the differences be-
tween its result and that of a k-NN. While such a measure highlights how much methods
diverge from k-NN, it does not address the quality of diversity itself.

Quality metric Overlap Evaluation Method (OEM) [Santos et al. 2013a] uses the
distances between elements in the result set R and the query object for constructing strong
influence sets for every entry in 'R. OEM calculates the overlapping among those strong
sets by counting the number of elements lying in the intersection of both sets as an w-

score (R, s,) = 1/2- Y, Yy cr (1 — (e Ny |/ 1y U [Sj7sq|)) Jsi # 850
The higher the w-score, the better the algorithm according to the bias in which result set
entries shall not influence themselves.

Finally, the metric Dissimilarity Feature Method [Santos et al. 2013a] introduces
the idea of using multiple measures for addressing diversity. It uses six statistics calcu-
lated as the minimum, maximum, mean, and standard deviation of the distance distribu-
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tion within R. Such entries can be used for finding the most suitable diversity method
through a weighted sum [Santos et al. 2013a].

3. Material and Methods

3.1. Cluster metrics extension for diversified similarity searching

Relative measures for validating clusters quantify the difference between two data par-
titions, which may also be suitable for comparing how representative the retrieved ele-
ments of a diversity query are. Let the elements of a set S be divided into % clusters
C =1{C,,Cy,...,Ch},U C; = S, and each subgroup C; be represented by an object
s; € S, relative metrics target a dual optimization problem in which (i) inner cluster dis-
tances must be minimal, and (ii) distances between clusters’ representatives must be maxi-
mal. The Silhouette index (Sil(C)) models that optimization problem by using the average
distance within clusters as a normalization factor. We extend Sil/(C) into Sil*(R,S’,C)
for measuring the quality of a result set R regarding the queried set S’ C S, as in Eq. (1).

v(c)

—\J. . Zciec (5div(5i75h).
cl’

cc Odiv Sj, Si
YO=" e s

(e

Sil*(R,S',C) = Y(Ci) = ey

where s, € S’ is the representative element of C}, that is the closest cluster to Cj, i.e.,
8(si, sn) < 0(s;, s;) for any pair (C}, s;), C; € C. Another relative-based cluster measure
is the Dunn index (Dunn(C)), which models inner and outer cluster separation according
to their diameters. We extend the Dunn index into Dunn*(R,S’,C) by using result set
entries s; € S’ and their distances to the query object s, € S. Accordingly, the largest
inner cluster distance is normalized by the diversity to the query element, as in Eq. (2).

Dunn*(R,S',C) =

'm €C spECM

<5dw(si,8j)/g1ax <max 5dw(sh,sq)>) 2)

min
CZ'7Cj €C7Ci?éCj

Finally, the Davies-Bouldin index models clusters’ quality by using the distances
among them for normalization. We extend that metric into DB*(R,S’,C) as in Eq. (3).

DB*(R,S,C) = % . Z (dz’am(C’i) + dz’am(@)) )

| | C;,C;€C,Ci#C; 5di71(51',, Sj)
where diam/(C;) is the largest distance between any pair of elements in C;.

3.2. Clusters uncovered by matching the results to the queried set

Although diversified similarity searching methods do not generate clusters on the queried
set, retrieved elements can be seen as cluster representatives found by the querying al-
gorithm. Under that premise, we employ the returned elements in R as “medoids” for
the construction of clusters over the queried set S’ C S. Such a rationale, coupled with
novelty-based diversity algorithms, generates partitions similar to those of the £-Medoids
clustering method, in which §” elements are assigned to the closest object in R rather
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than a de facto medoid. Figures 2(a—d) illustrate the approach where S’ delimits a search
region in S, and queried objects are clustered around R entries.

Coverage-based Motley and BRID algorithms return diversified elements that are
separated according to distance thresholds. Therefore, we consider the queried set S’ as
the union of the closed balls in the search space centered at elements in R with coverage
radii equal to the distance separation r. Figures 2(e—f) show examples of clusters pro-
duced by Motley in a particular diversified neighborhood search as well as the limits of
the query set S’. Analogously, we model BRID queried set of elements S” according to the
dynamic thresholds that define the influences from the entries in R and the query object
s4. The separation distance r for every cluster in BRID is defined as the distance between
the representative element in R and s,. Accordingly, clusters are also closed balls in the
search centered at result set entries with coverage radii as large as their influences over
the queried object. Figures 2(g—h) illustrate such cluster formation in which the limits of
the query set S’ are expected to increase with k.

Figure 2. Clusters for diversified results. (a) Entire dataset S, (b) closed query
ball delimiting the queried set S’, (c) S’ in novelty-based methods, (d) ele-
ments are assigned to clusters defined by the % retrieved elements, (e) S’
in Motley, (f) clusters are formed according to distance separation r, (g) S’
in BRID, and (h) clusters follow dynamic influences to retrieved elements.

3.3. The Diversity Features Model — DFM

While cluster-oriented metrics measure the cohesion and separation generated by diversity
searching on top of queried sets, they may also favor approaches that produce closed balls
in the search space, i.e., coverage-based. Such a claim is reinforced by the empirical
observations reported in Section 4.1, in which cluster indexes indicated either Motley or
BRID as the most suitable searching routine in 9 out of 12 comparisons.

We argue diversity is fairer addressed by a set of measures rather than a single
quality value as an alternative for softening such separation-based bias. Accordingly, we
introduce the Diversity Features Model (DFM), a multidimensional model that combines
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the perspectives of both cluster and similarity-oriented metrics by using the distance dis-
tributions within both retrieved and queried sets. DM produces a seven-dimensional score
for every compared search approach, where each DFM entry can be seen as a list of indi-
vidual preferences so that overall winners are found by ranking aggregation. Moreover,
DFM scores can be visualized through parallel coordinates maps in which a baseline line
is drawn for a k-NN query. DFM (R, S’, C) entries are calculated as in Eq. (4).

DFM(R, 8/7 C) = <SZl*7 Dunn*v RB*? Hdivy Odivy Msim, Usim>
paw =1/ (2- (K =k) - Y D Gawlsisy)

$;€ER S]'ER,S]'#Si

Odiv = \/m : Z Z (Oaiv(Siy 55) — fhdin)”

8;ER s;€R,5;7#5; (4)
Hsim = 1/k : Z 55im(5i7 Sq)
S;ER
— L.Z((g.(s,s)_ m)’
sim E_1 = sim\ 915 9¢q Hsim

4. Experiments

This section provides an empirical evaluation of quality metrics for diversified similar-
ity searches regarding four real-world datasets. Table 4 describes the queried datasets,
including their cardinality |S|, dimensionality R%, and associated distance function &.

Table 1. List of queried datasets.

| Name | [S| | R? | dgm = 04w | Description |
US_CITIES | 25,375 | 2 L, Geographic entries of U.S. cities.
NASA 40,150 | 20 Ly Features from NASA/SISAP images.
PHOTO.F 300 | 256 Ly Features from photos of human faces.
FACES 1,016 | 761 Ly Characteristics from face images.

Datasets were split according to a holdout rule in every evaluation where 100
elements were employed as query objects, and the remaining entries were used as the
queried set. Additionally, since novelty-based algorithms examine a factorial-based num-
ber of combinations on data cardinality, we restrict the queried set S” within the original
dataset S so that experiments could finish within a reasonable time (weeks). In particu-
lar, we set S’ by using an average radius that covers at least 10x the maximum value
of queried neighbors. Under that rationale, we bound |S’| to 300, 300,200, and 500
in datasets US_CITIES, NASA, PHOTO_F, and FACES, respectively. Motley distance-
separation threshold r was determined empirically for every queried set S’ so that exactly
k neighbors are returned for each diversified neighborhood search. The approaches were
implemented by using Python version 3.6.8 running in a local machine GNU/Linux Mint
19.2 with an Intel Core 77 processor, I6GB RAM, and a 1TB SATA disk.
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4.1. Individual quality metrics for diversity searching

The reported values represent the average measures obtained for the execution of 100
diversity searches for £k = {5,7,9,11,13,15,17}. Motley’s parameter was set to
r = 0.3,0.3, 1.104, and 25 in datasets US_CITIES, NASA, PHOTO_F, and FACES, re-
spectively. The objective function metric was defined as the same scoring function of
method MMR. In all experiments, the higher the individual metric value, the better.

In the first evaluation, we evaluate the impact of parameter A in novelty-based al-
gorithms. Due to space limitations, we report only a representative analysis for varying
A values (A = {0.0,0.3,0.5,0.7,1}) and a fixed number of neighbors £ = 9 regard-
ing the queried set US_CITIES, which summarizes the dominant behavior we found by
searching other datasets with the same \ setup. Figure 3 shows the quality metrics for
novelty-based methods Swap, MMR, and GMC. Cluster-oriented measures Sil*, Dunn*,
and D B* increased with ), but similarity-driven metrics peaked with distinct and inter-
mediate A values in each dataset. The average performance was reached by value A\ = 0.5,
which we use as the query setup in the next experiments.

Figure 4 juxtaposes both novelty and coverage-based methods, and results show
cluster-oriented metrics Sil*, Dunn* and D B* separated those two approaches by as-
signing better scores to coverage-based algorithms. Silhouette endorsed BRID as the
most suitable choice, Davies-Bouldin chose Motley, and Dunn exposed the choice be-
tween BRID and Motley may depend on the neighborhood value k. Notice, although
different cluster-oriented metrics produced different outputs, all of them picked coverage-
based methods. Finally, experimental results pinpoint cluster-oriented metrics may be
unsuitable for measuring diversity regarding high-dimensional datasets as the ratio be-
tween similarity-only k-NN and coverage-based diversity methods reduced expressively
for larger values of k in high-dimensional sets PHOTO_F and FACES, respectively.

On the other hand, the metric Objective function assigned the highest scores to
algorithm MMR (which attempts to maximize the scoring function itself) but no overall
significant differences were found between the quality of MMR and either novelty-based
(e.g., Swap) or coverage-based approaches (e.g., Motley). Analogously, the influence-
based OEM metric assigned higher scores to BRID (which uses influences for finding
diversity), but it was unable to promote other coverage-based methods. Altogether, OEM-

0.1 0.6
0.08 |- (b)
A £ 0.06 |- 2 04
A E B
3004 1S 0y
0.02 |-
0

0 025 05 075 1 0 025 05 075 1
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£ 04f 204 13 04
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S 8 (e) €3]
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Figure 3. Individual quality scores for different values of ).
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Figure 4. Quality of searching methods according to six metrics.

oriented results indicate influences were also found by novelty-based approaches as in the
MMR and Swap performances over US_CITIES. Similarity-based RB metric was also
unable to separate novelty and coverage-based methods, as no consistent differences were
observed between optimization methods over competitors BRID and Motley.

Such findings indicate cluster-oriented metrics favored coverage-based diversity
approaches, which can be explained by the separation principle found within clustering
outputs. On the other hand, similarity-driven metrics were unable to assert fair winners,
since they promote algorithms that follow a predictable result set construction rule, e.g.,
OEM favored BRID, and Objective function endorsed MMR. In the next experiments, we
examine how those biases can be softened by using a multidimensional metric model.
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4.2. Multidimensional metrics for diversity searching

We evaluate DEM outputs regarding two distinct perspectives: (i) a visual quality assess-
ment by using parallel coordinates maps, and (ii) a consolidation of compared diversity
methods through a ranking aggregation approach. In both cases, we juxtapose the DFM
results regarding diversity algorithms in comparison to those produced by a k-NN query.
Figures 5(a—d) show DFM outputs for value £ = 9 and the search setup of experiments in
Figures 4, in which multidimensional entries are normalized.

(a) US_CITIES (b) nasa (c) PHOTO_F (d) Faces

KNN—— GMC Motley — BRID — MMR—— |

Figure 5. Visualization of DFM outputs by parallel coordinates maps.

The average scores for the k-NN result sets form the smallest circles inside the
parallel coordinates and distortions onto the map borders indicate better performances.
Statistic-driven measures attracted novelty-based methods, whereas cluster-oriented met-
rics drew coverage-based approaches. GMC and Swap covered the largest area for set
US_CITIES, whereas methods BRID and Motley showed the largest distortions in com-
parison to k-NN in the DFM map of NASA set. Finally, methods GMC and MMR Swap
covered the largest area in the parallel coordinates of PHOTO_F and FACES sets.

Table 2. Top-3 diversity methods according to DFM entries and MedianRank.

| Top-k | US.CITIES | NASA | PHOTO.F | FACES |

#1 GMC GMC MMR MMR
#2 Swap Motley Swap Swap
#3 MMR BRID GMC Motley
#4 Motley MMR Motley GMC
#5 BRID Swap BRID BRID
#6 k-NN k-NN k-NN k-NN

We employed the MedianRank algorithm [Fagin et al. 2003] for ranking those vi-
sual observations and determine which were the most suitable diversity methods. Accord-
ingly, we consider each DFM dimension as one individual and weightless ranking whose
positions are determined by the scores reached by every compared quality metric — Ta-
ble 2. Results indicate distinct algorithms may be more efficient for querying different
sets regardless of their paradigm. For instance, the top-3 outcomes hint GMC and Swap
algorithms were the most suitable methods for querying set US_CITIES, while GMC
and Motley approaches were the most appropriate for searching NASA. Such findings
are slightly different from the visual area analysis since MedianRank fetches the median
position of algorithms in individual rankings. The results pinpoint DFM enables soften-
ing individual biases from different metrics by combining those measures through either

11
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data visualization, which indicates how much a diversity search output diverges from a
k-NN query, or ranking aggregation, which filters top-k performances.

5. Conclusions

This paper has discussed diversity searching algorithms and quality metrics for measuring
their performances. Since individual indexes tend to favor particular groups of algorithms,
we proposed a multidimensional metric model, coined DFM, for softening individual bi-
ases. Experimental evaluations indicated DFM outputs are visualized by parallel coordi-
nates maps, whereas overall winners can be spotted through ranking aggregation.
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