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Abstract. Monitoring the temporal evolution of data is essential in many areas
of application of databases, such as medicine, agriculture and meteorology.
Complex data are usually represented in metric spaces, where only the elements
and the distances between them are available, which makes it impossible to
represent trajectories considering a temporal dimension. In this paper we
propose to map the metric data to multidimensional spaces so that we can
estimate the element’s status at a given time, based on known states of the
same element. As it is not possible to create the complex data equivalent to its
estimated position, we propose to apply similarity queries using this position as
query center. We evaluated three types of similarity queries: k-NN, kAndRange
and kAndRev.

1. Introduction

Complex data (such as images, videos, sounds and time series) commonly do not
present the total ordering relationship as the conventional data (numbers and short texts).
Because of this, they cannot be compared and retrieved at the same manner, so they are
compared using their similarity. Considering images as an example of complex data, the
Content-based Image Retrieval (CBIR) systems extract the features of the images, usually
representing their shapes, texture or colors, and store these features in feature vectors that
represent the images. In similarity queries, these feature vectors are compared using
distance functions. The search space is in general represented in a metric space, where
only the images and the distances between them are available.

The need to manage temporal information applies to many application domains in
databases, such as medicine, agriculture, meteorology and others. However, one of the big
challenges that we have in metric data is the analysis of the temporal evolution, since it is
not possible to do this analysis as we do with multidimensional data. In multidimensional
data, we can estimate an element position in some time instant using its known positions
in other time instants as a reference, then we can trace this element’s trajectory and
finally represent its evolutionary behavior through a temporal axis variation. Thereby
it is possible to estimate the element’s position in different time instants. We cannot
perform these estimates in metric spaces as we do not have the geometric information
regarding the data, as dimensional axes or coordinates. Only the distance between the
metric elements are available.

In this paper, we propose mapping the metric data into multidimensional spaces
and, once we have the data in this space, we can analyze their evolutionary behavior and
estimate their trajectories over the time. However, we are not able to create an element
in the metric space from the multidimensional space estimate. For example, it is not
possible to rebuild an image from its estimated position in the mapped space. Therefore,
to estimate how this element would be in the original space, we use the results from
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similarity queries performed over the estimated element in the mapped space, retrieving
the real data present in the database that are close to the estimate.

We evaluated three types of similarity queries applied to the estimated position in
the mapped space. Initially, we proposed the use of simple k-nearest neighbor queries (k-
NN). However, when we use this query, we always get the same number of elements,
retrieving elements that are not near enough from the estimated position and are not
relevant to the user.

To provide better results to the user regarding the query results, we propose to use
two other types of queries. In both cases, the goal is to retrieve only the elements that are
really close to the estimates, decreasing the number of non-relevant elements in the query
result. The proposed methods are based on the kAndRange query (an intersection between
k-NN and range queries) and an approach based on reverse k-NN (the query where we
retrieve all the elements that have the query center as one of the nearest neighbors). To
both proposals, we present in this paper some of the experiments that demonstrated the
increased precision of the queries results when we compare them to the k-NN queries.

In Section 2 we present some basic concepts and related works. Section 3
describes the proposed approach to analyze the evolution of metric data over time and
Section 4 presents the performed experiments. Finally, Section 5 presents the conclusions
of this paper.

2. Basic concepts and related works

2.1. Metric Spaces and Similarity Queries

Complex data do not present the total ordering relationship as we find in conventional
data. That is why many relational operators are not applicable to them. Even equality
comparison in general is not useful. These data domains are usually represented in metric
spaces and their elements are compared by their similarity [Chavez et al. 2001].

A metric space is defined as (S, d), where S represents the elements and d is
the distance function, or metric, defined as d : S x S — RT. This distance function
must provide the properties of symmetry, non-negativity and triangular inequality
[Chévez et al. 2001]. In metric spaces we have only the data and the distances between
them.

The most common similarity query operators are the range query and the k-nearest
neighbors query (k-NN). Both queries are performed from a query center. In a range
query, we retrieve all the elements that are inside a radius defined in the query. In k-
NN query, the k nearest neighbors from query center are returned. There are many
variations for these operators, such as reverse k-NN [Tao et al. 2006] and kAndRange
[Arantes et al. 2004], that are used in this research.

2.2. Metric-temporal space

In [Bueno et al. 2009], a metric-temporal model was proposed, where complex data are
compared by similarity using temporal information. The metric-temporal model projects
the metric and the temporal distances separately, generating a metric component and
a temporal one. The metric component is defined as a metric space (S, d,), where S
represents the data set that belong to the domain application, and d, : S x S — Rt isa
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metric that calculates the dissimilarity between the elements in the domain. The temporal
component is defined as a metric space (7', d;) where T" represents the time measures and
d; - T x T — R" is the metric to calculate the dissimilarity between two elements
of T. The metric-temporal space is defined as a pair (V,d,) where V =S x T and
d,: V xV — RT represents the metric between the elements from the metric-temporal
space. The d, metric is composed by ds and d; aggregation in a metric product, where
we need to define the contribution of metric and temporal components to calculate the
similarity.

The metric-temporal model allows to introduce temporal information to the
similarity queries. Therefore, by considering the data distribution in the metric space
that represents the metric component, we can approximate the elements that have more
temporal similarity and put away others that have bigger temporal distance. However, it
is not possible to analyze evolutive behavior of data over the time, verifying for example
the trajectory, once the data are still in a metric space, making analysis and geometric
estimates based on dimensional coordinates impossible.

3. Analysis of Temporal Evolution of Complex Data

In the approach proposed in this work, we intend to analyze the evolution of metric data
over time. We aim to estimate how an element will be in a defined instant of time from
other information existent in the database.

To make it possible, we proposed to map the metric data into a multidimensional
space, performing for example interpolations and extrapolations of values in their
positions in space. After mapping the data, each element can be represented in a position
inside the multidimensional space. Then we can perform estimates and queries in the
mapped space considering also a temporal dimension.

It is necessary to highlight that is not possible to estimate the complex data in
an instant of time (in a metric space), but its position inside the multidimensional space
where the metric data were mapped. It is not possible to generate the equivalent complex
data in the metric space from this position (like rebuild an image). The proposal is to
perform similarity queries using the estimated position as a query center and then retrieve
the elements existent in the database that are closer to the estimate.

Let’s consider the monitoring of a patient using medical exam images as an
example. These images are available in a database that contains images of many
patients in different phases of treatment. They are represented in Figure 1 as points in
a bidimensional space, considering that this is already the multidimensional space where
we mapped the metric data. For patient 4 we have two images: one image taken with 2
months of treatment (¢ = 2) and another one taken with 4 months of treatment (¢t = 4).
We also have images for patient Pz when the treatment was started (f = 0) and with 12
months of treatment (t = 12).

In the mapped space, from the positions of the mapped elements that represent the
patient’s images with ¢ = 2 and t = 4, we estimate the image position regarding patient
P, with 8 months of treatment. Then we perform a similarity query using this estimated
position as a query center (5-NN in the case of Figure 1), returning the closest mapped
elements, and retrieving the images associated with them. Similar approach was applied
to patient Pp, estimating the image position with 15 months of treatment.
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Figure 1. Example of k nearest neighbors query using the estimated positions of
patients P, and Pz as a query center.

In this research, three different similarity queries applied to the estimate of
the element in mapped space were appraised: k-NN, kAndRange and an adaptation
of the reverse k-NN. In the next Section we discuss the metric data mapping into
multidimensional space, and in Section 3.2 we present the different proposals for the
similarity query over the estimated position.

3.1. Metric data mapping into a multidimensional space

In this research, we propose to map this data into a multidimensional space to estimate
the temporal evolution of metric data. To do this, we have to define which method will be
used to perform the mapping and also the number of dimensions of the mapped space.

There are several methods to perform the metric data mapping for
multidimensional spaces presented in literature [Hjaltason and Samet 2003]. In this paper
we used and evaluated two methods: the Fastmap [Faloutsos and Lin 1995], whose
complexity is O(kN), and the Multidimensional Scaling (MDS) [Cox and Cox 2008],
that is a more costly method, but capable of maintaining more faithfully the distribution
of distances between the elements in the mapped space.

To define the number of dimensions in the multidimensional space that the metric
data will be mapped to, we used the concept of intrinsic dimension of the data set,
by seeking the number of dimensions that are needed to immerse the elements in a
multidimensional space keeping the distances between them [Chévez et al. 2001]. The
intrinsic dimension indicates the minimum number of attributes that are necessary to
represent a data set [Sousa et al. 2007]. There are a variety of algorithms that can be
applied to estimate the intrinsic dimension of data sets in literature [Bustos et al. 2015].
In this paper, the intrinsic dimension was estimated using the distance exponent proposed
on [Traina Jr. et al. 2000].

3.2. Similarity queries applied to the estimated position

As discussed earlier, in multidimensional space we can estimate the position of an element
at a certain instant of time based on the known positions of the same element at other
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times that exist in the database. However, it is not possible to create the complex data
in the metric space from the estimate. In this paper, we propose to conduct similarity
queries using the estimated position in the mapped space as a center, in order to return the
elements that are close to the estimate.

3.2.1. k-NN queries

The first proposal is the query to the nearest neighbors (k-NN). However, we need to
consider that, in this type of query, all the k£ nearest neighbors are retrieved, no matter their
distances from the estimated element. Hence, on this approach, the non-relevant elements
can be returned to the user. Consider here the same example of patients monitoring
described in Section 3, where we estimated the positions for P4 in ¢ = 8 and for Py
int = 15. These estimated positions are used as a query center to find the 5 nearest
neighbors, as illustrated in Figure 1. The 5 images returned for patient P, are visibly near
the estimate in ¢ = 8. However, we can also see that some of the images retrieved for Pg
int = 15 are relatively farther. Since the 5 closest elements are returned disregarding how
far they are from the element estimated, the distant elements can be returned and probably
they are not relevant for the query.

To improve the user’s satisfaction with the performed queries, decreasing the
quantity of elements that are possibly not relevant in the analysis, we propose to use two
other queries on the estimated position: kAndRange [ Arantes et al. 2004] and an approach
of reverse k-NN [Tao et al. 2006].

3.2.2. kAndRange queries

The query operator kAndRange [Arantes et al. 2004] not only searches for the nearest
neighbors, but also allows us to delimitate the maximum distance wanted for the returned
objects. In other words, it returns the nearest neighbors if they are within a certain range
radius.

In this proposal, a kAndRange query is performed from the estimate in mapped
space, and the range radius is set according to the domain of application, with the purpose
of preventing distant elements to be returned, according to the data distribution. This
range radius should reflect the average radius of a k-NN query on the data set. That
value can be estimated by a sample, or else it can be estimated considering the fractal
distribution of the data set [ Vieira et al. 2007].

To illustrate the use of kAndRange queries, in Figure 2 is presented an example
with the same scenario presented in Figure 1 but limiting the result of the k-NN query by
the average radius of a 5-NN query in the data set. In that case, only two images would
be returned for Pg.

3.2.3. kAndRev: Approach of the Reverse k-NN queries

In a reverse k nearest neighbor query (Reverse k-NN), all the elements of the database are
evaluated and those elements that have the query center as one of their nearest neighbors
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Figure 2. A kAndRange query example, with & = 5. For P4, the five nearest
neighbors would be retrieved, but for Pz, only two of them.

are returned [Tao et al. 2006]. In this work, we used an approach from Reverse k-NN
operator, by evaluating only the elements returned in the k-NN query that was applied to
the estimated position.

The approach proposed is carried out in two steps. In the first step, the k-NN query
is done using the estimated element as the query center. In the second one, we perform
k-NN queries using each one of the elements returned in the first step as a query center.
In case an element returned in the first step does not have the estimated element as one
of its nearest neighbors, it is considered as a non-relevant element, and is then discarded.
Otherwise, the element is considered relevant.

Although we use the same k& value for the first and second steps of kAndRev query
in the experiments that are presented in this paper, these values can be defined separately,
aiming to prioritize precision or revocation of queries.

4. Experiments

To execute the experiments, we used the ALOI image data set [Geusebroek et al. 2005],
which consists of a set of 1,000 objects, photographed at 72 angles of vision, with a 5-
degree variation. From this set, we use the images of all 1,000 objects, but at 10 angles
of rotation, varying from 0 to 45 degrees. Each rotation angle was intended to represent
the variation of time, representing 10 time instants with a difference of 5 time units.
The images are classified according to the object photographed. Each image is identified
individually by its identification class (ID) and its time, as in the example illustrated in
Figure 3.

ID: 15

Figure 3. Example of the ALOI image data set.
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The feature vectors that were extracted from these images represent the gray levels
histograms in 256 bins. The choice of a feature vector that can be represented, without
mapping, in a multidimensional space occurred just to verify the influence of mapping
on precision of estimates. Which means that the very feature vector can be used in the
estimate of trajectories, allowing us to evaluate possible distortions due to the mapping.

4.1. Evaluation of data mapping

The goal of this first set of experiments is to evaluate the quality of the mapping,
checking to see if the data’s proximity distribution is maintained in multidimensional
space. The data was mapped using the Fastmap [Faloutsos and Lin 1995] and MDS
[Cox and Cox 2008].

To define the number of dimensions of mapped space, we considered the intrinsic
dimension of the data set [Traina Jr. et al. 2000]. The value we found was 9, but in
order to favor the maintenance of the original distribution of the data, we considered
10 dimensions, in a strategy that is similar to the one used in [Traina Jr. et al. 2007]. We
also performed data mappings into 3 dimensions in order to check the results obtained in
an even lower dimensionality and easily visualizable case.

To evaluate the quality of mapping, we verified if the distribution of the elements
in the original space was held in the mapped space. For every single element of each data
set (original and mapped spaces), we performed a search for the 10 nearest neighbors. The
answers of the queries were evaluated through precision and recall curves, displayed in
Figure 4, where the answers of the original data set are considered to be the correct ones.
For both mappings, the MDS algorithm reaches better results and, as expected, mapping
for 10 dimensions had better results than for 3 dimensions, being this selected to continue
to the next experiments. The average precision for data mapping in 10 dimensions with
the MDS algorithm was close to 98%.

Mapped to 3 dimensions Mapped to 10 dimensions

1 e
0.5 \z%

Precision
Precision

[=]
b

MDS —— r MOS =
. Fastmap —4— . Fastmap —4—
0 0

0 02 04 08 08 1 ] 02 04 06 0s

Recall Recall

Figure 4. Evaluation of the quality of data mapping for 3 and 10 dimensions with
MDS and Fastmap algorithms.

From the data mapping, all the experiments of the next sections were performed
using the three data sets: original, mapped to 10 dimensions with MDS and mapped to
10 dimensions with Fastmap. Throughout the text, they will be named respectively as
Hist256, MDS10 and Fastmapl0. In all experiments, we used the Euclidean distance
function.
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4.2. k-NN query evaluation

The estimates were performed at different time instants, in the following way: by having
two instances of the same object in different times, we estimated the values of every
coordinate in a third time instant, through linear interpolation/extrapolation. Using this
estimated position as a query center, we performed a query for the nearest 10 neighbors,
in order to return images close to the estimate at that time point. To evaluate the quality of
the estimates, the results were compared to the 10 nearest neighbors of the real element at
the same time used for the estimate, since the element exists in the original data set (that
is the real image of the object in the time instant used for the estimate).

The estimates were performed for the 1,000 objects of the data set. Four levels
of time distance were considered between the instants of the elements used for estimates.
These levels have been identified as 1, 2, 3 and 4 for the past, intermediate and future
times, and they represent, respectively, a difference of 20, 15, 10 and 5 units of time
between the elements, as shown in Figure 5.

Time
0 5 10 15 20 25 30 35 40 45
Futureli @ ® g
Future? @ & ; @
Future3 @ & &
Future 4 [ ] &5 [ i
intermediate 1 @ [y L
Intermediate 2 @@ = &
Intermediate 3 @ & @
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E]
®
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&
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@ reference elerner;ts . f-i'n esltimate
Figure 5. Time intervals for estimates.

The estimates evaluation for each data set are presented in precision and recall
graphics, shown in Figures 6, 7 and 8.

Past Intermediate

Precision

= 7 Past 1 —— Intermediate | —&— I & = Future 1 —&— |
9 Past 2 1 | a> |Intermediate2 | a> | Future 2 ]
Past 3 °7 |Intermediate 2 1 Future 3 |
Past 4 —5— _ |Intermediated —8— | Future 4 —8— |
re = : . - ol . . : | 0 nbis e
0 02 04 06 08 1 0 02 04 08 06 f 0 32 04 06 08 f
Recall Recall Recall

Figure 6. Evaluation of estimates performed on data set Hist256.

Despite variations in precision levels, the behavior of the curves was similar to
the same query in different spaces. To MDS10, the average precision varied from 64.5%
(Past 1) to 92.7% (Intermediate 4).
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Figure 7. Evaluation of estimates performed on data set MDS10.
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Figure 8. Evaluation of estimates performed on data set Fastmap10.

To perform the remaining experiments, we opt to use the estimates regarding
Future 4. In Figure 9 it is possible to see the comparison between the estimates results
in Future 4 for Hist256, MDS10 and Fastmapl0, where we can note that the results
for Hist256 and MDSI10 are very similar, with an average precision of 83% and 81%
respectively. If we consider only the initial levels of recall, that difference is even smaller.

c
o
‘w
‘o
o
& o | Fastmaplo —&—

- MDS10 —e

0 Hist256 —8—

0 02 04 06 08 1
Recall

Figure 9. Estimate evaluation comparison to Future 4 in the data sets Hist256,
MDS10 and Fastmap10.

4.3. Comparative evaluation between k-NN, kAndRange and kAndRev

To evaluate the quality of the results of the similarity queries using the estimate as a center
of the query, in the following experiments we compared the answers of k-NN, kAndRange
and kAndRev queries.

However, to evaluate whether the returned elements are truly relevant
semantically, in all queries we considered to be relevant the returned elements that belong
to the same class of the query center. That is, those elements who correspond to images
of the same object used to generate the estimate.
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For all queries, the value of k£ was defined as 10. To perform kAndRange, the
maximum range radius was determined by calculating the average of the /0-NN query
radius considering all the elements of the set: pre-calculated average of the distances of
the tenth element returned in /0-NN queries. For the kAndRev queries, the same k value
(10) was used in the first and second step.

In Figure 10 we present the total of images retrieved and the total of relevant
images retrieved (images of the same object used for estimate). The results are presented
to each search space (Hist256, MDS10 and Fastmap10). We verified that, by performing
k-NN queries, (1,000 /0-NN queries), 72,1%, 70.7% and 65.6% of the 10,000 return
elements were relevant to Hist256, MDS10 and Fastmap 10 respectively.

Hist256 MDS10 Fastmapl0
10000 10000 10000

000 8000 2000

6000 6000 6000 i

4000 \:I’ _! 4000 —.1 A000 | 1

2000 1:| I 2000 ‘ -,!- 2000 |
v} - o i d o

kNN kAndRange kAndRev kBN kAndRange kAndRev kNN kAndRange kAndRey

M Total of elements retrieved M Relevant elements retrieved

Figure 10. Comparative between the results of the k-NN, kAndRange and
kAndRev queries, for the data sets Hist256, MDS10 and Fastmap10.

The limitation of the answer set by using kAndRange and kAndRev has decreased
the number of non-relevant elements retrieved (false positives). Despite the reduction
of the total of relevant retrieved (true positive), the precision was increased for every
case analyzed. By comparing the k-NN query to kAndRange, the precision of queries
increased from 72.1% to 79% in Hist256, from 70.7% to 77.5% in MDS10 and from 65%
to 72.4% in Fastmapl10. If we consider the kAndRev queries, the precision of the queries
has increased to 89.2% in Hist256, 85.9% in MDS10 and 81.9% in Fastmap10.

To exemplify the exclusion of non-relevant images of the query answers, the
results of k-NN queries compared to the results of kAndRange and kAndRev queries are
shown in Figure 11. Queries for 4 estimates A, B, C, and D performed in the set MDS10
are shown. For each one of the estimated elements, the images retrieved for the 10 nearest
neighbors are shown. The images highlighted by rectangles refer to those returned by the
kAndRange queries (A and B) and by kAndRev queries (C and D). The identifiers placed
in each image correspond to the ID of the object photographed and the time, respectively.
In the examples presented in Figure 11, both strategies (kAndRange and kAndRev) held
the relevant images retrieved in the /0-NN query and excluded all (except B) the non-
relevant elements (images of other objects). The B and D queries were carried out with
the same query center, to illustrate the differences in the results of these two strategies.

5. Conclusion

Complex data usually presents high dimensionality or are non-dimensional, and therefore
represented in metric spaces, where only the data and distances between them are
available. The absence of dimensional coordinates makes the representation of

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)



Isis C. O. S. Fogaga et al. .

75 - 10 75-15  75-20 | 507-0 507-5 ~20 507-10 406-5
708-10 | 708-5 708-15 708-0 708-20 708-10 567 35 567 - 40 |567 - 45 567 -30 63525
438-10 | 438-5 438-10 438-0 438-15 438-20 438-25 438 30| 448 - 448-0 467 -0
i E ~ - B
708 - 10 708-5 708B-15 708-0 708-20 708-10]|567-35 567-40 567-45 567-30 635-25
| ) ---

Figure 11. k-NN queries results compared to kAndRange (highlighted in A and
B) and kAndRev (highlighted in C and D).

trajectories impossible in these spaces only with the addition of a temporal dimension, as
can be carried out in multidimensional spaces. In this paper, we proposed the mapping of
complex data represented in metric spaces into multidimensional spaces, with the goal of
making the temporal evolution analysis of this data possible. The number of dimensions
in the multidimensional space was defined using the concept of intrinsic dimension of the
data set. The experiments presented showed that the data distribution was satisfactory
maintained in the mapped space.

Since it is not possible to create the complex data equivalent of its estimated
position in multidimensional space, we proposed to apply the similarity query using this
position as a query center. Three kinds of similarity queries were appraised, all of them
relating to the search for the nearest neighbors of the estimated position.

We evaluated the application of the k-NN query initially. The experiments
presented showed that the results of the queries using the estimated positions reached
an average precision of up to 92.7% in the mapped space. However, the direct definition
of a fixed number of elements in the predicate of k-NN query can result in the retrieval
of non-relevant elements to the user, especially in the case when the search is conducted
in an area with few elements close. With the purpose of retrieving only elements that
are really close to the estimated position, and then relevant, the application of two other
queries were proposed: kAndRange (intersection of k-NN and Range queries) and an
approximation of the Reverse k-NN, kAndRev, (only the elements retrieved for k-NN that
have the query center as one of the k nearest neighbors are returned). The experiments
showed that the proposed methods increased the precision of the answers compared to the
queries to the nearest neighbors.
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