A Framework for Set Similarity Join on Multi-Attribute Data
Leonardo Andrade Ribeiro, Felipe Ferreira Borges, Diego Junior do Carmo Oliveira

Instituto de Informatica — Universidade Federal de Goids (UFG) — Goiania — GO — Brazil

{laribeiro, felipeferreiraborges,diegooliveira}@inf.ufg.br

Abstract. Set similarity join, which finds all pairs of similar sets in a collection,
plays an important role in data cleaning and integration. Many algorithms have
been proposed to efficiently answer set similarity join on single-attribute data.
However, real-world data often contain multiple attributes. In this paper, we
propose a framework to enhance existing algorithms with additional filters for
dealing with multi-attribute data. We then present a simple, yet effective filter
based on lightweight indexes, for which exact and probabilistic implementation
alternatives are evaluated. Finally, we devise a cost model to identify the best
attribute ordering to reduce processing time. Our experimental results show that
our approach is effective and significantly outperforms previous work.

1. Introduction

Modern enterprises increasingly acquire and store large amounts of data. Massive reposi-
tories built from numerous sources, often referred to as data lakes, are becoming popular
in industry. Analytic tasks tap into such repositories to enable better decision making.
Data quality is a major concern in this scenario because dirty data can jeopardize analysis
results [Chu et al. 2016]. A recent survey of data scientists has confirmed that dirty data
still is the main problem faced at work [Kaggle 2017]. Moreover, data cleaning is a la-
borious process, frequently requiring more time than the analysis itself. Indeed, another
study has shown that cleaning and organizing data is the most time-consuming task of a
data scientist workflow [CrowdFlower 2016]. Thus, speeding up data cleaning tasks is
crucial for delivering analysis results in a timely fashion.

Set similarity join is a core operation for string data cleaning
[Chaudhuri et al. 2006, Xiao et al. 2011, Ribeiro and Hiarder 2011, Mann et al. 2016,
Wang et al. 2017], which pairs strings represented as sets whose similarity is not less
than a specified threshold. A set similarity function is employed in the join predicate to
mathematically approximate some notion of similarity. Set similarity join is attractive
owing to its efficiency in dealing with large datasets and versatility in supporting a variety
of similarity functions. Duplicate detection is a major example of the use of set similarity
join in data cleaning [Chu et al. 2016]. Duplicates are multiple and non-identical
representations of a real-world entity. Such kind of redundant information inevitably
appears in data lakes that integrate independent data sources containing overlapping
information. Under the premise that duplicates are similar in some aspect to one another,
set similarity joins can be used to find pairs of potential duplicates.

Traditional set similarity join algorithms assume string data represented by a sin-
gle set over which a simple similarity predicate is defined. However, real-world data is
often multi-attribute. While we can still use traditional algorithms by representing multi-
attribute data as a single set — either by selecting a single attribute for similarity matching

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

62

Table 1. Records containing people’s personal information.

ID Name Street City State
1 Tom Allen Texas Ave. Augusta Maine

2 Tom Alen Texas Ave. August Maine

3 Tom Alen Clancys St. New York New York
4 T. Augusta Main St. Allen Texas

or concatenating string values from multiple attributes, such approach may produce un-
satisfactory results. For example, consider the sample database shown in Table 1. The
four records represent three distinct individuals, because records 1 and 2 actually refer
to the same person, i.e., they are duplicates. If only the attribute Name is considered for
similarity matching, record 3 could be deemed as a duplicate of records 1 and 2. Instead,
if all attributes are concatenated into a single string, then is record 4 that could be con-
sidered as a duplicate of records 1 and 2, because values of Name and City, as well as
Street and State, are similar.

The above problems are avoided by representing multi-attribute data as multi-
ple sets. Accordingly, multiple similarity predicates can now be defined to compose the
join condition. To the best of our knowledge, Li et al. [Li et al. 2015] and Oliveira et
al. [Oliveira et al. 2018, do Carmo Oliveira et al. 2017] are the only previous works that
have addressed set similarity joins on multi-attribute data. In a centralized setting, Li et al.
proposed a prefix tree index to enable pruning of candidate pairs over multiple similarity
predicates. In a distributed setting, Oliveira et al. proposed a data partitioning strategy
based on a cost model to reduce both communication and computation costs.

In this paper, we present a filter-based approach to speed up set similarity join
on multi-attribute data in a centralized setting. We propose an algorithmic framework
that allows incorporating additional filters into traditional algorithms. We then present a
simple, yet effective filter that can be implemented using simple data structures. In this
context, we evaluate exact as well as approximate implementation alternatives. Finally,
we devise a cost model to identify the best attribute ordering for similarity join processing.
We conduct an empirical evaluation on publicly available datasets. Our results show that
our proposal outperforms the algorithm of Li et al. by orders of magnitude.

The rest of this paper is organized as follows. Section 2 provides background
material. Section 3 formally describes the problem and overviews existing techniques.
Section 4 presents our proposed solution. Experimental results are reported in Section 5
and related work discussed in Section 6. Finally, Section 7 wraps up with the conclusions.

2. Background

In this section, we review traditional set similarity join concepts, definitions, and opti-
mization techniques for single-attribute data. Finally, we describe a general algorithm
based on a filtering-verification framework.

2.1. Basic Concepts

We focus on set-overlap-based similarity, in which the similarity between two strings is
derived from the overlap of their set representations. To this end, strings are first mapped

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Leonardo Andrade Ribeiro et al. .

to sets of representation units; such units are referred to as tokens. Then, set overlap can
be measured in various ways to obtain different notions of similarity.

There are several methods for mapping strings to sets of tokens. A well-known
method is based on the concept of g-grams, i.e., sub-strings of length g obtained by “slid-
ing” a window over the characters of a given string. To this end, the string is (conceptu-
ally) extended by prefixing and suffixing it with ¢ — 1 occurrences of a special character
“$”, so all its characters participate in exact ¢ g-grams. For example, the string “Tom
Allen” can be mapped to the set of 3-grams tokens { ‘$$7°, ‘$To’, ‘Tom’, ‘om ’, ‘mA’, ¢
Al’, ‘ALl “lle’, “len’, ‘en$’, ‘n$$’}. Note that the result of this mapping method can be a
multiset. Thus, we append the symbol of a sequential ordinal number to each occurrence
of a token to convert multisets into sets, e.g, the multiset {a, b, b} is converted to {aol,
bol, bo2}. In the following, we assume that all strings in the database have already been
mapped to sets; the resulting set collection is denoted by C.

Given two sets 7 and s, a set similarity function sim (7, s) returns a value in [0, 1]
to represent their similarity; larger value indicates that » and s have higher similarity.
Popular set similarity functions are defined as follows [Xiao et al. 2011].

Definition 1 (Set Similarity Functions) Let r and s be two sets. We have:

e Jaccard similarity: J (z,y) = I:B;I

* Dice similarity: D (r,s) = 2|:||47:|17|

* Cosine similarity: C (r,s) = el
’ [r|x|s]

Example 1 Consider the sets 1 = {A, B, C, D, E, F, G, H} and s ={A, B, D, E, G,
H}. We have |r| = 8, |s| = 6, and |r N s| = 6. Therefore, J (r,5) = —2— = 0.75,

8166
D (r,s) = ¢ ~ 0.86, and C (r,5) = \/8676 ~ 0.87.

Definition 2 (Set Similarity Join) Given the set collection C, a set similarity function
sim, and a similarity threshold T in the interval |0, 1], the Set Similarity Join on C returns
all set pairs (r,s) € C X C s.t. sim (r,s) > T.

We focus in rest of this paper on the Jaccard similarity. Thus, sim (7, s) by default
denotes J (r, s), unless stated otherwise. Nevertheless, all concepts and techniques pre-
sented in the following can be extended to Dice and Cosine [Xiao et al. 2011]. Finally, we
henceforth use the term similarity function (join) to mean set similarity function (join).

2.2. Optimization Techniques

Similarity functions measure the overlap between two input sets to derive a similarity
value. Thus, predicates involving such functions can be equivalently rewritten in terms
of an overlap bound [Chaudhuri et al. 2006]. Formally, given two sets r and s, then
sim (r,s) > 7iff |[rNs| > w [Ribeiro and Hérder 2011]. Now, the similarity join
can be reduced to the problem of identifying all set pairs 7 and s with enough overlap.

We can significantly reduce the comparison space by exploiting the prefix filtering
principle [Chaudhuri et al. 2006]. Prefixes allow discarding candidate pairs by examining
only a fraction of the original sets. To this end, we fix a global order O on the universe

U from which all tokens from the sets in C are drawn. We formally define the concept of
prefix and the prefix filtering principle as follows.

63

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Algorithm 1: Similarity join algorithm.
Input: A sorted set collection C, a threshold 7
Output: All pairs (7, s) s.t. sim (r,s) > T

1 117"']|Z/{| — 9
2 foreachr € C do

3 M <— an empty map from set to a similarity score
4 foreach t € pref (r,7) do

5 foreach s € I; do

6 if Filter (r, s,) then

7 | M[s] < —oo

8 else

9 | M[s] « M[s] +1
10 It « I; U{r}
1 | Emit (Verify (z, M, 1))

Definition 3 (Prefix) A set ' C r is a prefix of r if r' contains the first |r'| tokens of r.
Further, we denote by pref (r,T) the prefix of r of size | (1 — 1) X |r|| + 1.

Lemma 1 (Prefix Filtering Principle [Chaudhuri et al. 2006]) Let r and s be two sets.
If sim (r, s) > 7, then pref (r,7) N pref (s,7) # @.

Example 2 Consider again the sets r and s in Example 1; note that both sets are al-
ready lexicographically sorted. For T = 0.8, we have pref (r,0.8) ={A, B} and
pref (s,0.8) ={A}.

Note in the example above that sim (r,s) < 0.8 even though r and s share a
token in their prefixes. The prefix filtering principle defines a condition necessary, but
not sufficient to satisfy the original overlap constraint: an additional verification must be
performed on the remaining tokens of both sets. Further, the number of candidates can be
reduced by using document frequency ordering, Og, as global token order to obtain sets
ordered by increasing token frequency in the collection C . The motivation is to minimize
the number of sets agreeing on prefix elements and, in turn, candidate pairs by moving
lower frequency tokens to the prefix positions.

Other popular optimizations include size-based filtering
[Ribeiro and Harder 2011] and positional filtering [Xiao et al. 2011]. Size-based
filtering exploits the fact that a set r can only be similar to sets whose size is within
[|[r] x 7,|r] x 77']. Positional filtering exploits the position of tokens in common
between two sets to derive tighter overlap bounds.

2.3. Similarity Join Algorithm

Most current similarity join algorithms follow a filtering-and-verification approach sup-
ported by an inverted index [Mann et al. 2016]. Algorithm 1 provides a high-level de-
scription of this approach. An inverted list I; stores all sets containing a token ¢ in their
prefix (Line 1). The input collection C' is scanned and, for each set r, its prefix tokens
are used to find candidate sets in the corresponding inverted lists (Lines 4-5). This is the
filtering phase, where a variety of filters are applied for pruning candidates (Lines 6-7).
If a candidate set passes through, its similarity score is accumulated in a map (Line 9). A
reference to r is appended to the inverted lists associated to its prefix tokens (Line 10).
Note that by indexing only prefix tokens, sets with no overlap in their prefixes are never

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Leonardo Andrade Ribeiro et al. .

Table 2. Prefixes of the records in C.

Set prefo prefi prefa
A B D C
A B,D C
u B A B C
v B B A C

considered as candidate pairs. After the filtering phase, the similarity between r and each
of its candidates is fully calculated in the verification phase and similar pairs are sent to
the output (Line 11).

3. Similarity Join on Multi-Attribute Data

In this section, we begin by defining the problem of answering similarity joins on multi-
attribute data. Then, we describe the algorithm of Li et al. and discuss its shortcomings.

3.1. Problem Statement

Let’s first redefine our terminology and notation to deal with multi-attribute data. We
assume that each record in the input database follows the same schema and has been
mapped to a list of sets representing its attribute values. For simplicity, the term record
refers henceforth to a record representation as a list of sets. Thus, we now denote a record
by r = ry, ..., "y, Where r; represents the set derived from the ith attribute value; we call r;
a set attribute. Accordingly, C now denotes a collection of records and 7 a list of similarity
thresholds 7y, ..., 7,,. Finally, sim (r, s) is redefined as a conjunctive similarity expression
over the input records r and s, where each conjunct is a similarity predicate:

sim (r,s) = /\ simy (14, 8;) > 7.
i=0
Definition 4 (Similarity Join on Multi-Attribute Data) Given a record collection C
and a similarity expression sim, the Similarity Join on C returns all record pairs
(r,s) € C x Cs.t. sim (r,s) = true.

3.2. Existing Solution

Prefix filtering is prevalently adopted by state-of-the-art algorithms on single-attribute
data [Mann et al. 2016]. An intuitive way of using prefix filtering on multi-attribute data
is to concatenate the prefix tokens of all set attributes. We call the result of such concate-
nation a record token and the set of all possible record tokens for some ordering of the set
attributes a record prefix. Clearly, given two records r and s, if sim (r, s) > 7, then r and
s must share a record token. For example, consider the prefixes of the records composed
by three set attributes in Table 2; for simplicity, only the prefixes are shown. The only
candidate pairs are (7, s), which share the record token Ao D o C, and (u, v), which share
the record token B o B o (.

To quickly identify pairs with record tokens in common, Li et al. [Li et al. 2015]
builds a prefix tree, where each original prefix token corresponds to a node and a root-to-
leaf path forms a record token. Leaf nodes are associated with an inverted list of records

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

66

Figure 1. Prefix tree index.

containing the corresponding record token in their prefix. Figure 1 shows the prefix tree
for the records in Table 2. The proposed algorithm, called henceforth PrefTreeJoin, first
builds the prefix tree before comparing all record pairs appearing in the inverted lists.
The complete prefix tree can be very large since its size grows exponentially with the
number of set attributes involved in similarity predicates. Thus, a partial prefix tree is
derived from the complete prefix tree in a bottom-up manner by eliminating unnecessary
branches and merging the corresponding inverted lists. To avoid building the complete
prefix beforehand, a greedy algorithm is proposed that directly constructs a partial prefix
tree in a top-down manner. However, this algorithm requires knowledge of the sizes of
inverted lists under all tree nodes. Therefore, it is unclear how to obtain such information
without constructing the complete prefix tree first.

Besides the above issue, PrefTreeJoin has two major drawbacks. First, the con-
struction of the partial prefix tree, whether in a bottom-up or top-down manner, is compu-
tationally expensive. Indeed, it can even take more time than the filtering and verification
phases in some datasets (see [Li et al. 2015], Figure 8). Second, the algorithm is blocking,
i.e., it cannot output any result without reading all its input. Similarity join is typically
used in concert with other operations in a data analysis process and such blocking behav-
1or prevents pipelined execution.

4. Our Solution

In this section, we present our solution for efficiently computing similarity join over a
record collection. We first introduce an algorithmic framework to enable additional filters
in similarity join algorithms. Then, we instantiate this framework with a filtering tech-
nique based on lightweight indexes. Finally, we present a cost model to identify the best
order for set attributes.

4.1. Overview

We can straightforwardly adapt existing similarity join algorithms to multi-attribute data.
To this end, we first select a set attribute, on which a regular filtering phase is carried
out; we call this selected set attribute primary set and the remaining ones secondary sets.
Then, we only need to adapt the verification phase for evaluating not only the primary set
against the corresponding sets of the matching candidates but also evaluate the similarity
predicates on the secondary sets.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Leonardo Andrade Ribeiro et al. .

pref; prefs

primary set secondary sets A
e omm [2t W

prefix prefix @preﬁx E‘
{ N

primary index secondary indexes E—

(a) Overview of our approach. (b) Secondary index.

Figure 2. Our proposed solution.

Note that the above approach already avoids all drawbacks of PrefTreeJoin: the
inverted index is more compact, dynamically built as the record collection is processed,
and result pairs can be produced at each iteration. However, we miss the opportunity to
exploit multiple similarity predicates to reduce the number of similarity computations.
Indeed, building an inverted index over the prefixes of a single set has less pruning power
than building a prefix tree over all sets. For example, in Table 2, selecting the first attribute
as primary set generates 4 candidate pairs, namely (7, s), (r,u), (r,v), and (u, v), whereas
a prefix tree generates only 2.

In this context, the main idea behind our approach is to enhance the filtering phase
by using additional, lightweight indexes for filtering on the secondary sets. Figure 2 (a)
illustrates our proposal. Again, a set attribute is defined as primary set, on which the
primary index is built and regular filters are applied. But now further indexes are built on
(part of) the secondary sets; we refer to those indexes as secondary indexes. We assume
that set attributes are ordered: for each record r = 7, ..., r,, 7o is the primary set and r;,
1 <2 < n are the secondary sets. We defer the discussion on determining the set attribute
ordering to Section 4.4.

4.2. Algorithmic Framework

We now present our framework for incorporating secondary indexes into existing simi-
larity join algorithms. The algorithmic framework is described in Algorithm 2. The un-
derlying data structures are created for each secondary index prior to scanning the record
collection (Line 2). The filtering phase starts processing the primary set of the current
probing record r: prefix tokens of 1 are used to find matching candidates and filters
are applied on 1y and sq to prune record pairs (Lines 5-8). Then, additional filtering is
performed on the surviving pairs using the secondary indexes (Lines 10—13). These filter-
ing checks are applied on r; and s.id, the corresponding secondary attribute of 7 and the
record identifier of s, respectively. Finally, the secondary sets of r are indexed after the
verification phase (Lines 18-19).

Note that only the identifier of the candidate records is needed to probe the sec-
ondary indexes. The performance benefits of using record identifiers are twofold: it avoids
scanning the prefixes of the secondary sets for each candidate and allows fast searching in
the underlying data structures. Thus, the overhead introduced by probing the secondary
indexes in the filtering phase is minimized.

67

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

68

Algorithm 2: Algorithmic framework.

Input: A record collection C; the number of secondary indexes [; a list of similarity thresholds
Output: All pairs (7, 8) s.t. sim (r,s) > 7

1 11,12,...I|u|<—@

2 St...S! « BuildIndex

3 foreachr € C do

4 M <— an empty map from record to a similarity score
5 foreach ¢t € pref (ro,70) do

6 foreach s € I; do

7 if Filter (o, so, 7o) then

8 | Mls] + —co

9 else

10 for1 <i<ldo

1 if Filter (ri, s.id,ﬂ;,Si) then
12 M]s] + —o0

13 L break

14 if M[s] # — oo then

15 | Mls] < M[s] +1

16 | [t < It U{r}
17 Emait (Verify (x, M, 1))
18 for1 <i<ldo

19 |_ Index (n;, r.ad, T;, Si)

4.3. Secondary Indexes

Secondary indexes must enable prefix filtering using the secondary sets of the probing
record and identifiers of candidate records. In addition, they must lend themselves to
an efficient implementation. Figure 2 (b) depicts our proposed secondary index, which
maps prefix tokens of secondary sets to inverted lists of record identifiers. The indexing
of secondary sets is shown in Algorithm 3. In the filtering phase, we check whether the
identifier of s appears in any inverted list associated with the prefix tokens of r; these
steps are formalized in Algorithm 4.

Note that we can enable more filters by storing more information on the sec-
ondary indexes, such as set sizes and token positions. However, besides increasing index
space, simply adopting all available filtering techniques may not improve performance.
For example, a key observation in a recent experimental evaluation of several similar-
ity join algorithms is that overly complex filters can instead increase execution runtime
[Mann et al. 2016]. This observation matches our own experience and has motivated our
design of lightweight indexes on secondary sets.

We implement the inverted lists of secondary indexes using set data structures.
Thus, filtering on secondary sets is performed based on fast set membership checking. A
potential issue is that the size of the inverted list can grow very large and consume signif-
icant memory resources. We can mitigate this problem using Bloom filter [Bloom 1970],
a space-efficient, probabilistic data structure. On one hand, it produces no false negatives
and, thus, no true matching pair is erroneously pruned, i.e., correctness is preserved. On
the other hand, false positives are possible, which results in unnecessary comparisons in
the verification phase. We compare Bloom filter against an exact set implementation in
Section 5.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Leonardo Andrade Ribeiro et al. .

Algorithm 3: Indez (r;,id, 7;, S*)

1 foreach t € pref (r;, 7;) do
2 | S}« Sfu{id}

Algorithm 4: Filter (r;,id, 7;, S*)

t return id & Useprer(rsm) S}

4.4. Set Attribute Ordering

Identifying a suitable set attribute ordering is crucial to our approach since it determines
the primary and secondary sets. Moreover, we can also apply this ordering to similarity
computations in the verification phase. A natural choice is to sort the attributes in increas-
ing order of processing cost. We can estimate the processing cost of a set attribute from
the number of candidates generated from its prefix. Our cost model is defined as follows.

Definition 5 (Set Attribute Cost) Let pref; be the set of all tokens appearing in the pre-
fixes of the ith set attribute and pf; (t) be the frequency of token t in those prefixes. The
cost of the ith set attribute, denoted by P;, is given by:

p= Y (pﬁ;Z(t))

tepref;

For example, in Table 2, we have the following processing costs: Py = 143 = 4,
Pr=0+3+1=4,and Py =0-+6 = 6.

5. Experiments

We now report the results of our experimental study. The goals of the empirical exper-
iments are to evaluate the performance impact of 1) set attribute ordering based on our
cost model, 2) number of secondary indexes, and 3) inverted list implementation, and 4)
compare our proposal against PrefTreeJoin.

We used two, publicly available, real-world datasets: DBLP!, containing Com-
puter Science publications and IMDB?, containing movie information. We generated two
instances from each source dataset by randomly selecting 20k records with 3 and 5 string
attributes: title and author names for DBLP and title and actor names for IMDB. Further,
4 duplicates were generated from each record, obtained by performing transformations on
string attributes such as characters insertions, deletions, and substitutions (totaling 100k
records). We converted strings to upper-case letters, eliminated repeated white spaces, and
generated the corresponding token sets using g-grams of size 3. A single similarity predi-
cate based on Jaccard was specified for each attribute, all predicates with a same threshold
value within [0.75, 0.95]. We used the MPJoin algorithm [Ribeiro and Hérder 2011] in
our framework. Similarity computations in the verification phase were performed fol-
lowing the set attribute ordering for both MPJoin and PrefTreeJoin. All algorithms were
implemented using Java JDK 11 (Oracle). Overall performance was measured in average

Thttp://dblp.uni-trier.de
Zhttp://www.imdb.com

69

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

70

5
w 10 i] 1 sec. idx
2 B: = 4+ [2 sec. idxs
8 =] B 3 sec. idxs
§ 3 M 4 sec idxs
g o % :
=
c] £ o
a v
£] £
" @ =l \
S 1 I 2 3 4 5 0
o o 0 o o 0 0,95 0,85 0,75
Set attribute ordering Threshold
(a) Varying set attribute orderings. (b) Increasing number of secondary indexes.

5 —. 100000
. [J Exact S‘ 10000 4 [C] Qur proposal
T 47 @ Bloom filter o M PrefTreejoin
8 2 1000+

3
(1] o
1y o 100
£ 54 &
E £ 10
= 1- L8] i

0 = 0,1 .

0,95 0,85 0,95 0,9 0,85 0,75
Threshold Threshold
(c) Exact vs. Bloom filter. (d) Our proposal vs. PrefTreeJoin.

Figure 3. Experimental results.

wall-clock time over repeated runs. We ran our experiments on an Intel Xeon E5-26200
six-core, 2 GHz, 15MB CPU cache, and 16 GB of main memory.

Figure 3 shows the results on the DBLP dataset; due to space constraints, we skip
the results on IMDB as we observed similar trends. First, we evaluated the effectiveness
of our cost model in identifying a suitable set attribute ordering. Figure 3(a) shows the
timings of all set attribute permutations on the dataset instance with 3 attributes (threshold
value fixed at 0.75 and 2 secondary indexes). The ordering derived from our cost model,
denoted by O“™ in the figure, provides the best result, more than 3x times faster than the
worst-performing ordering. In the following experiments, the set attributes were ordered
according to O“™.

Figure 3(b) shows the results for an increasing number of secondary indexes on
the dataset with 5 attributes. The best configuration on this dataset used a single index
and performance drops as more indexes are added. The reason for this behavior is that
candidate pairs are filtered mostly due to the first index. Additional indexes marginally
increase the number of pruned pairs and, thus, do not pay off the overhead of checking
and maintaining them. For example, more than 2.6M pairs are filtered by the first index
and only about 32K additional pairs are filtered with the inclusion of the second index.
The following experiments used a single index.

Figure 3(c) shows the results of the comparison between an exact index imple-
mentation based on hash table and an approximate alternative based on Bloom filter (with
an expected false positive probability of 3%). While performance is comparable at high
thresholds, the Bloom filter variant is noticeably slower at low threshold values as the
number of false positives increases leading to many unnecessary similarity comparisons.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Leonardo Andrade Ribeiro et al. .

Finally, we compared our proposal with PrefTreeJoin. Figure 3(d) shows the re-
sults on the dataset with 3 attributes. Our proposal is orders of magnitude faster than
PrefTreeJoin. As already mentioned, the construction of the partial prefix tree is very
costly and most of execution time was spent in this phase. Moreover, the prefix tree is too
large for low thresholds. Indeed, PrefTreeJoin did not finish at the threshold value of 0.75
because it ran out of memory.

6. Related Work

There is a wealth of literature on efficiently answering set similarity joins
[Chaudhuri et al. 2006, Xiao et al. 2011, Ribeiro and Hiarder 2011, Mann et al. 2016,
Wang et al. 2017]. The vast majority of existing algorithms assume single-attribute data,
in which a filtering-verification framework supported by an inverted index is prevalently
adopted. In contrast to prior work on multi-attribute data [Li et al. 2015], our techniques
can be readily integrated into such algorithms for dealing with multi-attribute data. Most
proposals are geared towards the filtering phase, in which a variety of filters were de-
veloped to reduce the workload of the verification phase (see Section 2). Optimization
techniques proposed for the verification phase include: accounting for previous matches
in the filtering phase to skip initial set positions [Xiao et al. 2011]; leveraging token order-
ing to enable merge-like routines [Ribeiro and Hirder 2011]; applying early termination
conditions [Ribeiro and Hérder 2011]; and exploiting overlap among the matches of dif-
ferent sets [Wang et al. 2017]. In [Li et al. 2015], an algorithm is proposed to determine
the verification order of different similarity predicates. All these optimizations in the
verification phase are orthogonal to our work here, which focuses on the filtering phase.

Recent work exploits massive parallelism available in modern graphics process-
ing units to speed up similarity join processing [Ribeiro-Junior et al. 2017]. Besides
stand-alone algorithms, set similarity joins can be realized using relational database tech-
nology. Previous work proposed expressing set similarity joins declaratively in SQL
[Ribeiro et al. 2016] or implementing it within the query engine [Chaudhuri et al. 2006].

In another widely used approach, strings are numerically represented by high di-
mensional vectors, where each dimension is a word (or token) extracted from the dataset.
A weighting scheme is typically employed to produce weighted vectors. The similarity
between two vectors is then determined by the cosine of the angle between them, which
reduces to the dot-product for /* normalized vectors. Similarity join on vectors is often
referred to as All Pairs Similarity Search [Bayardo et al. 2007]. Several optimization tech-
niques for sets can be adapted to vectors, including size-based filter, index reduction based
on data ordering, and most importantly to our context, prefix filter [Bayardo et al. 2007].
Therefore, our filters can be adapted as well to optimize similarity join on vectors. We
leave the evaluation of this approach for future work.

7. Conclusions

In this paper, we proposed a framework to enhance set similarity join algorithms for deal-
ing with multi-attribute data. Our framework allows easy integration of additional filters
into existing algorithms for single-attribute data. We further instantiate the framework
with a simple, yet effective filter based on lightweight indexes. Implementation alter-
natives were evaluated for this index using exact and probabilistic data structures. We

71

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

72 .

proposed a cost model to identify the best ordering of set attributes to reduce processing
time. Our performance study demonstrates that our approach is effective and significantly
outperforms the existing algorithm for multi-attribute data.

Acknowledgment This work was partially supported by the Brazilian agency CAPES.

References

Bayardo, R. J., Ma, Y., and Srikant, R. (2007). Scaling up All Pairs Similarity Search. In
Proceedings of the WWW Conference, pages 131-140.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422—426.

Chaudhuri, S., Ganti, V., and Kaushik, R. (2006). A Primitive Operator for Similarity
Joins in Data Cleaning. In Proceedings of the ICDE Conference, page 5.

Chu, X., Ilyas, I. F,, Krishnan, S., and Wang, J. (2016). Data Cleaning: Overview and
Emerging Challenges. In Proceedings of the SIGMOD Conference, pages 2201-2206.

CrowdFlower (2016). 2016 Data Science Report. https://visit.figure-eight.com/data-
science-report.html.

do Carmo Oliveira, D. J., Borges, F. F., and Ribeiro, L. A. (2017). Uma abordagem para
processamento distribuido de juncdo por similaridade sobre multiplos atributos. In
Proceedings of the Brazilian Symposium on Databases, pages 300-305.

Kaggle (2017). The State of Data Science & Machine Learning.
https://www.kaggle.com/kaggle/kaggle-survey-2017.

Li, G, He, J,, Deng, D., and Li, J. (2015). Efficient Similarity Join and Search on Multi-
Attribute Data. In Proceedings of the SIGMOD Conference, pages 1137-1151.

Mann, W., Augsten, N., and Bouros, P. (2016). An Empirical Evaluation of Set Similarity
Join Techniques. PVLDB, 9(9):636-647.

Oliveira, D. J. C., Borges, F. F., Ribeiro, L. A., and Cuzzocrea, A. (2018). Set Similar-
ity Joins with Complex Expressions on Distributed Platforms. In Proceedings of the
Symposium on Advances in Databases and Information Systems, pages 216-230.

Ribeiro, L. A. and Hérder, T. (2011). Generalizing Prefix Filtering to Improve Set Simi-
larity Joins. Information Systems, 36(1):62-78.

Ribeiro, L. A., Schneider, N. C., de Souza Inécio, A., Wagner, H. M., and von Wangen-
heim, A. (2016). Bridging Database Applications and Declarative Similarity Matching.
Journal of Information and Data Management, 7(3):217-232.

Ribeiro-Junior, S., Quirino, R. D., Ribeiro, L. A., and Martins, W. S. (2017). Fast Parallel
Set Similarity Joins on Many-core Architectures. Journal of Information and Data
Management, 8(3):255-270.

Wang, X., Qin, L., Lin, X., Zhang, Y., and Chang, L. (2017). Leveraging Set Relations in
Exact Set Similarity Join. Proceedings of the VLDB Endowment, 10(9):925-936.

Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G. (2011). Efficient Similarity Joins
for Near-Duplicate Detection. ACM Transactions on Database Systems, 36(3):15:1-
15:41.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

