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Abstract. Principal component analysis (PCA) is an efficient model for the op-
timization problem of finding d' axes of a subspace RY C R? so that the mean
squared distances from a given set 'R of points to the axes are minimal. De-
spite being steadily employed since 1901 in different scenarios, e.g., mechanics,
PCA has become an important link in machine learning chained tasks, such
as feature learning and AutoML designs. A frequent yet open issue that arises
from supervised-based problems is how many PCA axes are required for the
performance of machine learning constructs to be tuned. Accordingly, we inves-
tigate the behavior of six independent and uncoupled criteria for estimating the
number of PCA axes, namely Scree-Plot %, Scree Plot Gap, Kaiser-Guttman,
Broken-Stick, p-Score, and 2D. In total, we evaluate the performance of those
approaches in 20 high dimensional datasets by using (i) four different classi-
fiers, and (ii) a hypothesis test upon the reported F-Measures. Results indicate
Broken-Stick and Scree-Plot % criteria consistently outperformed the competi-
tors regarding supervised-based tasks, whereas estimators Kaiser-Guttman and
Scree-Plot Gap delivered poor performances in the same scenarios.

1. Introduction

Principal component analysis (PCA) is a widely adopted model for dimensionality
reduction', a pre-processing step related to machine learning tasks [Pearson 1901,
Aggarwal 2015]. Such a step is particularly relevant for supervised-driven problems, in
which the curse of dimensionality [Pestov 2008] may disrupt the learning bias of certain
classifiers, e.g., Naive-Bayes (NB), Instance-based Learning (IbL), Decision-Tree (DT),
and Multi-Layer Perceptron (MLP), as well severely degraded their computational per-
formance [Aggarwal 2015, James et al. 2013]. Formally, given a dataset R C R?, PCA

'The most relevant dimensions for a particular set of points are the most prominent data features. Ac-
cordingly, we use the terms dimensions and features alternately.
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enables finding the d’ orthogonal axes of a subspace R* C R¢ so that the mean squared
distances from elements in R to the axes are minimal.

A common yet open issue that arises in practice is distinguishing relevant and non-
relevant axes so that data are reduced to a proper subspace [Pestov 2008, Aggarwal 2015].
Unlike previous approaches that investigate the relationship between d’ and co-variance
patterns within artificial data [Jackson 1993, Neto et al. 2005], we focus on examining
distinct criteria for choosing the number of PCA axes whose performance is assessed by
different classifiers. Figure 1 highlights the challenges of exhaustively estimating num-
ber d’ in supervised UCI dataset WINE? regarding two wrapped classifiers: (i) labeling
performance is not monotonic with d’, and (ii) individual maxima are overfitting-prone.
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Figure 1. PCA reduction and labeling of WINE dataset.

In this study, we investigate the behavior of six global, distinct, and classifier-
unwrapped criteria for choosing the number of dimensions in PCA reductions for label-
ing problems, namely (i) graphical-based estimators Scree-Plot %, Scree Plot Gap, and
2D; (ii) statistical-based indicators Broken-Stick, and Kaiser-Guttman; and (iii) intrin-
sic dimension-based criterion p-Score. We compared those criteria in the labeling of
20 datasets with four classifiers (NB, IbL, DT, and MLP), and results indicate estima-
tors Broken-Stick and Scree-Plot % surpassed the competitors, while indicators Kaiser-
Guttman and Scree-Plot Gap performed modestly. Such outcomes provide indications to
devise the tuning of PCA-based pieces within AutoML designs.

This remainder of this paper is organized as follows. Section 2 discusses the
estimators for the number of PCA dimensions, while Section 3 describes the material and
methods. Sections 4 and 5 provide the experimental comparison and conclude the study.

2. Preliminaries

PCA axes can be found as the uncorrelated coefficients calculated from discrete data
features. In a nutshell, reducing a dataset R C R? by PCA into a d’-dimensional repre-
sentation, d’ < d, is a sequence of six sequential steps, namely: (i) scale each R feature
to the [0, 1] interval, (ii) calculate means /i; ;c[1 4 for every R feature, (iii) subtract means
Miic,q) from each R element, (iv) calculate co-variance matrix Cy.q from R entries,
(v) obtain both C eigenvalues and eigenvectors, and (vi) calculate the cross product of R
entries and d’ eingenvectors related to the d' highest and descending-sorted eigenvalues.

’Data links at github.com/Renata-Barbosa/cpca
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Existing criteria for estimating the d’ value can be divided into (i) graphi-
cal, (ii) statistical, and (iii) intrinsic dimension-based approaches [Neto et al. 2005,
Pestov 2008]. Representative approaches of the first group include the following rules:

Scree-Plot % (SP-%). The estimator assumes a few eigenvalues concentrate the largest
part of data variance, and calculates d’ so that a percentage of variance is kept. Figure 2(a)
illustrates the SP-% rule for covering 70% of the area under the WINE eigenvalues.

Scree-Plot Gap (SP-G). The criterion uses a greedy search for finding the largest
variance difference between two consecutive pairs of scale-normalized eigenval-
ues [Zhu and Ghodsi 2006]. The intersection of both pairs is returned as d’. Figure 2(b)
shows the search on WINE where line segments represent the scaled differences.

Plane visualization (2D). This approach is a baseline rule that sets d’ = 2 so that data can
be visualized in a Euclidean plane. Figure 1(a) shows that PCA reduction for set WINE.

Statistical criteria examine whether a set of eigenvalues is larger than an expected
value drawn from a known data distribution. Approaches of that category include:

Kaiser-Guttman (KG). This rule retrieves every eigenvalue greater than 1.0 aiming at
retaining shared data variance [Guttman 1954, Neto et al. 2005].

Broken-Stick (B-St). If joint variance is randomly distributed within d
axes, then eigenvalues are supposed to follow the Broken-Stick distribution
[Legendre and Legendre 2012]. For a set of eigenvalues e;, Broken-Stick entries are given

by bs; = (#) / (Zd_i“ 1 ) B-St returns the last scaled eigenvalue that deviates

j=1  d+il—j
from the random distribution, i.e., d = k | (ek+1/zf:1 e; < bsp1 Absy < el/z‘j:l (’2) v
(ekﬂ/ Zle e; > bsgi1 Absy >eq/ Z‘le ei). Figure 2(c) depicts the B-St rule for set WINE.

Finally, intrinsic dimension-based criteria estimate possible correlations embed-
ded within data features. A stable rule for obtaining such a value is as follows.

Rho-Score (p-sct). This estimator approximates data intrinsic dimension by using its
distance distribution [Pestov 2008]. Formally, let R C R? be a dataset and § : R? x R —
R, be the Euclidean distance, the p-sct criterion estimates d’ as in Eq. 1.
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Figure 2. Choosing the number of dimensions d’ in a PCA reduction of WINE.
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3. Material and Methods

Estimation criteria implementation. We implement PCA, and the six reviewed estima-
tion criteria from scratch in R? by taking advantage of the spectral decomposition eigen
routine available at R-core package. Graphical-based criteria are constructed upon sorted
eigenvalues produced by the eigen routine, as well as the Kaiser-Guttman rule. An equi-
width histogram H with d positions is employed as the underlying data structure for the
B-St implementation. Each histogram position corresponds to a theoretical descending-
sorted eigenvalue that follows a scale-normalized Broken-Stick distribution. Accordingly,
the B-St estimation is carried out by a linear search over H for finding the first position
that deviates from the eigenvalues’ distribution. Finally, we implemented the Euclidean
distance, as well as both mean and variance Welford’s one-pass calculation for efficiently
obtaining the intrinsic dimension returned by the p-sct rule.

Non-parametric and pairwise hypothesis tests. We adopt pairwise tests for assess-
ing which criteria are suitable for estimating the number of dimensions in PCA reduc-
tions of labeled sets. The two-tailored Wicoxon test is convenient for such a pairwise
comparison because the null hypothesis is that results produced by two competing esti-
mators are drawn from the same distribution, whereas the alternative hypothesis is that
outputs are from different distributions [Wilcoxon 1992]. We model the results of PCA
criteria as the quality values measured after a classifier 10-folds cross-validation, e.g., F-
Measure [Aggarwal 2015]. Therefore, a pair of criteria is compared by its paired list of
label-driven results, being that pairwise list sorted by the absolute differences between the
two juxtaposed outputs. An incremental rank ranging from one to the number of observa-
tions is assigned to each position of the sorted list. Ranks of positions where the second
rule outperforms the first are multiplied by —1, which generates two rank groups aggre-
gated by a ranking sum. Such a sum adjusted by the number of observations produces a
z-score, which is employed in the analysis of Wilcoxon’s null hypothesis.

4. Experiments

We evaluate the performance of criteria SP-%, SP-G, 2D, KG, B-St, and p-sct in as-
sociation with four different classifiers NB, IbL, DT, and MLP in 20 medium to high
dimensional labeled datasets (R) from UCI, MILD, GBDI and QTDU repositories?. In
particular, we relied on both Weka v3.8.4 and R v3.6.1 to set up the classifiers as follows:
(i) DT with binary splits and early pruning, (ii) MLP with one hidden layer of v/d neu-
rons, and (iii) IbL with Euclidean distance and one neighbor. Evaluations were conducted
in a KUbuntu machine 19.10 with an Intel ¢5 processor, 8GB RAM, and a 1TB disk.

We tuned the SP-% criterion by evaluating its performance with parameters
% = {.65,.7,.75}, being the setup SP-% = .7 the tuning with highest F-Measures, on
average. Table 1 details the F-Measure reached by each criterion for every evaluation
scenario, where Emb. lines stand for data original dimensionality d. Results reinforce no
monotonic relationship can be drawn from F-Measure and the number of dimensions (d’).

Next, we compare the competing criteria through a set of pairwise Wilcoxon’s
tests grouped by classifiers. Figure 3 shows the z-scores obtained for each pairwise com-
parison (line vs. column), and highlights the cases in which the null hypothesis was re-
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Table 1. F-Measures for data reduced by PCA with distinct criteria.
. Y F-Measure ’ F-Measure | / F-Measure
Crit. || d NB DT IbL MLP R | | d NB [ DT [ IbL [ MLP | R | | d NB DT IbL MLP R
SP-% 26 855 858 965 936 15 668 788 195 .870 19 829 711 839 .870
SP-G 2 373 424 379 430 % 3 468 .689 715 .689 2 2 322 276 257 311 I
KG 13 799 852 947 .880 o 1 326 446 408 416 r:x,i 6 654 .608 666 698 EE
B-St 47 .870 854 972 951 H 7 557 147 780 197 0 28 871 7122 .865 912 E
p-sct 27 856 858 973 934 a 3 468 .689 715 .689 E 17 815 698 829 859 =
2D 2 373 424 379 430 K= 2 420 573 586 559 A 2 322 276 257 311 5
Emb. 784 .686 .860 965 883 128 743 197 .830 883 617 841 823 .896 873
SP-% 3 321 909 901 921 17 715 870 879 .896 25 504 631 670 659
SP-G 2 321 321 885 .898 o 2 165 .809 194 812 . 2 543 498 572 537 -
KG 2 321 321 885 .898 S 1 610 813 768 .806 o 1 505 469 558 542 S
B-St 3 321 909 901 921 % 2 765 .809 7194 812 E 28 503 626 669 658 N
p-sct 4 901 921 911 921 =] 2 765 .809 7194 812 'ﬁ 1 505 469 558 542 8
2D 2 321 321 885 .898 & 2 765 .809 7194 812 ~ 2 543 498 572 537 =
Emb. 72 751 922 914 914 57 792 931 .894 901 230 525 704 670 641
SP-% 571 877 .886 700 763 o 14 936 875 970 957 12 743 876 873 875 q
SP-G 2 696 699 624 .698 I 2 .596 621 554 635 5 3 761 822 .803 296 E
KG 28 892 908 965 977 E 11 929 877 965 947 g 1 181 181 725 181 .E;
B-St 517 879 885 719 971 = 26 952 871 973 973 H 23 616 875 871 893 @
p-sct 68 870 888 954 976 A 23 949 870 974 970 § 1 181 181 725 181 H
2D 2 .696 .699 624 698 S 2 596 621 554 635 N 2 242 271 164 227 g
Emb. 5000 916 938 958 .898 £ 649 954 949 978 960 400 280 895 882 821 =
SP-% 4 124 784 755 .508 37 957 938 976 879 . 2 507 789 792 .603 Q
SP-G 2 341 629 577 370 % 2 316 316 .838 316 E 2 507 789 192 .603 ?f)
KG 2 341 629 577 370 ;n; 12 948 939 971 974 = 1 174 394 302 264 %
B-St 13 828 855 885 .899 = 27 957 932 972 982 o 4 .609 957 983 828 =
p-sct 4 124 184 755 508 g 65 961 935 964 963 % 1 174 394 302 264 H
2D 2 341 629 577 370 = 2 316 316 838 316 g 2 507 789 192 .603 S
Emb. 561 674 930 960 183 264 926 943 977 975 ~ 128 595 978 995 938 *
SP-% 13 270 272 293 .100 D% 35 656 907 968 928 29 565 685 712 744
SP-G 2 .069 .070 253 .068 % 2 .200 610 615 279 a 3 571 .683 .664 .660 ]
KG 4 081 .085 250 .084 S 2 .200 610 615 279 o 1 474 578 .555 582 2
B-St 36 308 269 301 121 o] 34 .652 905 967 923 E 27 495 698 711 743 el
p-sct 12 266 112 287 .095 : 17 .087 182 .280 178 3 1 474 578 .555 582 §
2D 2 .069 .070 253 .068 E 2 .020 610 615 279 e 2 536 647 .643 661 2
Emb. 1111 104 284 310 133 = 520 .508 895 973 836 230 .608 .803 719 675
SP-% 4 410 581 667 .546 4 .508 553 706 262 Q 11 964 783 955 965
SP-G 4 410 581 667 .546 [ 2 262 512 611 262 DZ’ 2 366 306 322 304 g
KG 1 181 .240 355 191 % 2 262 512 611 262 ; 1 073 072 .073 041 :JZ>
B-St 8 124 665 848 147 a 11 516 572 11 516 a 14 968 789 974 975 =
p-sct 7 697 638 826 127 2 4 508 553 7106 262 Ldj 9 949 786 957 961 %
2D 2 174 346 362 278 S 2 262 512 611 262 ™ 2 366 .306 322 304 &
Emb. 90 631 .694 856 .801 300 218 759 7134 770 S 192 970 743 987 993
SP-% 243 577 660 .500 573 = 122 912 899 925 923 4 955 949 921 949
SP-G 2 .606 615 580 573 35 3 319 882 881 319 g 2 977 949 961 961 =
KG 1 599 .607 544 579 = 9 891 897 907 898 :u 1 966 938 949 972 E
B-St 3 634 649 .670 625 é 54 909 905 924 917 E 2 977 949 961 961 =
p-sct 404 569 637 503 547 2 16 908 912 919 915 é 1 966 938 949 972 a
2D 2 .606 615 580 573 S 2 319 319 .867 319 E 2 977 949 961 961 ~
Emb. 400 595 .390 542 .657 =~ 1024 .837 920 930 922 13 966 938 949 972
* 90% confidence interval ¢ 95% confidence interval ¢ 99% confidence interval
SP% SP-G KG B-St p-scr 2D Emb. SP% SP-G KG B-St p-scr 2D Emb.
SP % 2.913] 3.383] -1.61[-1.35[3.145] 0.13 | [sP% 3.033] 3.363 -0.71 | 2.20¢] 3.823[ -2.22
SP-G |-291 -0.26 [ -2.66 | -2.17 [ 1.833] -2.99 | [sP-G [-3.03 0.23 [-3.46 [ -1.25] 1.15[ -3.55
KG -3.38 [ 0.26 -3.66 [ -2.50 | 0.67 | -2.84 | |KG -3.36 [ -0.23 -3.36 [ -1.93 | 0.67 | -3.45
B-St [ 1.61¢] 2.663| 3.66 2.823] 3.513] 1.38¢| |B-st | 0.71 | 3.463] 3.363] 2.843| 3.823 -2.73
p-scr | 1.35¢] 2.173] 2.503] -2.82 2.583 -0.22 | |p-scr |-2.20| 1.25 | 1.933[ -2.84 1.973] -2.91
2D -3.14 | -1.83 | -0.67 [ -3.51 | -2.58 -3.58 | |2D -3.82[-1.15]-0.67[-3.82]-1.97 -3.66
[Emb. [-0.13 ] 2.993] 2.843] -1.38 | 0.22 | 3.583] [Emb. [ 2.223] 3.553] 3.453] 2.733 2.913] 3.663
(a) - Naive-Bayes (b) - Decision-Tree
SP% SP-G_KG B-St p-scr 2D Emb. SP% SP-G KG B-St p-scr 2D Emb.
SP % 3.403] 2.993[ -1.69 | 1.51¢[ 3.583] -3.53 | [sP % - [ 3.623] 2.993] -2.00 [ 1.663] 3.723] -2.29
SP-G | -3.40 0.05 | -3.80 [ -1.33 | 1.62+[ -3.85 | |sP-G |-3.62| - [-0.85]-3.72-2.07 | 1.46] -3.92
KG -2.99 | -0.05 -3.40 [ -1.93 | 0.26 | -3.62 | |KG -299[ 08| - [-376]-2.17]0.96[-3.62
B-St | 1.69:] 3.803] 3.403 2.823 3.483 -2.99 | |B-st | 2.003] 3.723] 3.763] - [ 3.383 3.723] 0.04
p-scr [ -1.51 | 1.33¢] 1.933[-2.82 1.51¢| -3.64 | |[p-scr [-1.66] 2.073] 2.178 -3.38 | - [2.293] -3.08
2D -3.58 [ -1.62 | -0.26 [ -3.48 | -1.51 -3.85| |2D -3.72 [ -1.46 | -096 [ -3.72| 229 - [-3.92
[Emb. | 3.533| 3.853| 3.623 2.99 ¢ 3.643] 3.853 [Emb. | 2.298] 3.923 3.623 -0.04 [ 3.083[ 3.923] -

(c) - Instance-based Learning

(d) - Multi-Layer Perceptron

Figure 3. Pairwise Wilcoxon’s tests (lines vs. columns) grouped by classifiers.

jected and the corresponding level of confidence. Results indicate B-St rule outperformed
every competitor (including the original data dimensionality) for a confidence level of at
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least 90% regarding NB and MLP classification, whereas SP-% also outperformed estima-
tors SP-G, KG, and 2D. A similar result was observed for classifiers IbL. and DT in which
B-St dominated SP-G, KG, p-sct, and 2D within significance levels. In those scenarios,
SP-% also outperformed SP-G, KG, 2D, and p-sct with statistical significance. Such find-
ings pinpoint both criteria B-St and SP-% are suitable rules for choosing the number of
dimensions in a PCA reduction. Notice, however, B-St is a parameterless estimator that
may be preferable to SP-% whenever adjusting variance area % is unpractical.

A counterpart discovery is estimators KG and SP-G performed poorly in compar-
ison to other criteria regarding labeling-driven tasks. In particular, KG did not outperform
any competitor, including SP-G, and baseline rules 2D and E'mb.. Lastly, p-sct criterion
showed an intermediary performance, which indicates there may be a relationship be-
tween the intrinsic dimension and the number of PCA axes, but not strong as a correlation
to be spotted by the experimental supervised evaluation we carried out.

5. Conclusions and Future Work

This study has discussed global criteria for finding the number of dimensions in a PCA
reduction of labeled datasets. Since estimators are based on distinct theoretical grounds,
we examine their performance from an experimental perspective regarding the biases of
different classifiers. Results indicate B-St and SP-% are suitable rules for estimating the
number of PCA axes, whereas KG and SP-G shall be avoided in the reductions. Such
outcomes enable devising the tuning of PCA-based pieces of AutoMLs in future work.
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