* 175

A Process for Inference of Columnar NoSQL Database
Schemas

Angelo Augusto Frozza'?, Eduardo Dias Defreyn', Ronaldo dos Santos Mello'
'Universidade Federal de Santa Catarina (UFSC) — Florianépolis — SC, Brazil
?Instituto Federal Catarinense (IFC) — Camborid, SC - Brazil
angelo.frozza@ifc.edu.br, eduardo_dududex@hotmail.com, r.mello@ufsc.br

Abstract. Although NoSQL Databases do not require a schema a priori, to be
aware of the database schema is essential for activities like data integration,
data validation or data interoperability. This paper presents a process for in-
ference of columnar NoSQL DB schemas. We validate the proposed process
through a prototype tool that is able to extract schemas from the HBase colum-
nar NoSQL database system. HBase was chosen as a case study because it is
one of the most popular columnar NoSQL solutions. When compared to related
work, we novel by proposing a simple solution for the inference of column data
types for columnar NoSQL databases that store only byte arrays as column val-
ues, as well as a generated schema that follows the JSON Schema format.

1. Introduction

In the current scenario of computer systems development, new applications have as a
requirement the need for greater flexibility over the data representation, which may com-
prise complex nested structures and data structures in memory. In order to meet these
needs, NoSQL databases (NoSQL DBs) have been proposed. They are classified into four
data models: key-value, document, columnar and graph [Sadalage and Fowler 2013].

Unlike traditional relational DBs, NoSQL DBs are usually schemaless, i.e., they
do not require a previous schema or support a flexible schema, which facilitates data
storage [Han et al. 2011, Sadalage and Fowler 2013]. Nevertheless, to be aware of the
data schema is essential for processes such as data integration, data interoperability or
data analysis. Although NoSQL DBs do not require an explicit schema, there is usually
an implicit schema on each DB instance that is ruled by the application that accesses it
[Ruiz et al. 2015]. However, to infer the data schema from the source code of the applica-
tion is a complicated process. Another alternative is to analyse and get information from
the DB catalog, which may also be a hard task.

In order to provide a less complex solution to this problem, this paper presents a
process for columnar NoSQL DB schema inference, focusing on the HBase DB manage-
ment system (DBMS), which can be adapted to other columnar NoSQL DBMSs. It also
generates schemas in JSON Schema format. HBase particularly stores the data as byte
arrays. It makes the column data types known only by the application that generated the
data. So, the challenge is how to infer these data types. The process is materialized as a
prototype tool called HBase Schema Inference (HBaSI).

This paper is organized as follows. Section 2 introduces columnar NoSQL DBs
and HBase. Section 3 details the proposed process and Section 4 shows the evaluation.
Section 5 comments the related work and Section 6 presents the conclusion.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

176 »

2. Columnar NoSQL Databases and HBase

A NoSQL DB can be defined as a distributed and scalable DB that normally does not have
a fixed schema, avoids join operations, does not always have an SQL access interface and
tends to be open source [Tudorica and Bucur 2011]. Columnar NoSQL DBs is one of the
four main NoSQL DB data models. Figure 1 shows the structure of a columnar NoSQL
DB. Each column is associated with a key-value pair. A set of columns defines a row,
which is accessed by an identifier (Row-Key). Different rows can hold different columns,
being suitable for the representation of heterogeneous data [Hewitt 2010]. Some colum-
nar NoSQL DBMSs support the supercolumn concept, i.e., columns composed of other
columns. The most popular columnar DBMSs are HBase!, Cassandra? and Hypertable®.

1 Column family

]
; Va ;
| . R tolulnl Column2 Columnh \
- \ Kgy! name'.l valueI name? va'l.uez : na'neN \rnlucN/'l '
i h i
| :
Row Colulnl Columng ColumnN
Key\f \ namel valuel t name9: \rnlueg " (na'neN nlueN_/l

Flgure 1. Example of a columnar NoSQL DB structure
[Sadalage and Fowler 2013]

HBase is a columnar NoSQL DB, developed by Apache Foundation, that runs on
the Hadoop distributed system*. It is a high performance and open-source DBMS with a
flexible schema [Shriparv 2010]. Its data model can accommodate diverse semistructured
data, which are converted into a byte array to facilitate data distribution. This physi-
cal representation makes hard to determine the data types of the columns without prior
knowledge when accessing data.

Namespace
Table 1] Table 2 | Table n
Rows
RowKey Column Family 1 | Column Family n

Column 1 | Column 2 [Column n [

Figure 2. HBase hierarchical structure

The HBase data model, as well as other columnar NoSQL DBMSs, defines a
hierarchical structure (see Figure 2)°. A DB instance is called namespace, which contains
a set of tables. Each table, in turn, holds a set of rows, where each row has an identifier
(RowKey) and at least one column that is always linked to a column family. A column
family holds a set of required or optional columns, and different column family instances
may hold a different number of columns (a so-called column-oriented data model).

'https://hbase.apache.org/

Zhttps://cassandra.apache.org/

3https://hypertable.org/

“https://hbase.apache.org/book.html

Sadapted from http://www.informit.com/articles/article.aspx 2p=2253412

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Angelo Augusto Frozza et al. * 177

3. The Schema Inference Process

As stated before, we consider HBase as our case study as it is a widely used columnar
NoSQL DBMS. Our schema inference process receives as input a namespace (see Section
2) and outputs a schema specification for the DB in JSON Schema, which is a common
recommendation for data representation and exchange®. The basis of the schema infer-
ence process is the analysis of the DB hierarchical structure. A new namespace is created,
containing a copy of the input without the data, i.e., only the nested structure table-column
Sfamily-column is maintained. The process goes through each table and, for each one, it
analyses its columns, making the inference of the data type (see Figure 3). It is necessary
to scroll all the column values to check for variations in the values of the data types stored
into a column.

Input: 1. Structure 2. Selecta | 3. Select a 4. Select a

Ed — e
HBase namespace }_ duplication table column value

5. infers data
type

6. Compare
with previous
data [i:]

| Output: 10, Translation " 9. Have | YES & Have yES 7. Have
.pu ; = to ISON E | evaluated all } S evaluated all S evaluated all =)
ISON Schema
Schema tables? J columns? | values?

Figure 3. Organization of the JSON Schema document generated by the process

As mentioned earlier, HBase stores data in terms of byte arrays. This particularity
represents the most difficult task of our process, i.e., to infer a data type from a byte array,
as the data type is only known by the application that uses the data [Shriparv 2010]. Thus,
our strategy here is to develop a set of rules for the inference of most common data types
from the binary content of the data item as follows:

byte: a byte array of size one, accepting any amount;

boolean: a byte array of size one, only with the values OxFF or 0x00;

string: a variable size byte array that follows the UTF8 binary standard;

short: a byte array of size two, accepting any value;

char: a byte array of size four, having its two least significant bytes represented in

UNICODE;

float: a byte array of size four, being limited by the values indicated in the IEEE

7541 standard (representation of binary numbers in floating-point);

e integer: a byte array of size four that can use up to 32 bits to represent a value;

e double: a byte array of size eight, being limited by the values indicated in the
IEEE 7541 standard;

e [ong: a byte array of size eight that can use up to 64 bits to represent a value;

e blob: any entry that does not fit any of the previous rules.

After analyzing all the values in a column, the inferred data types are compared
each other to define a consensual data type, i.e., the more general data type that best
represents all the values in the column. Once analyzed the DB structure and the columns
of all tables, a JSON Schema document is created. Since most of the inferred data types

®https://json-schema.org

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

178 »

are not the same as the native data types of JSON Schema, the definitions section of the
JSON Schema document is used to describe these data types, concerning extended data
type definitions specified in a previous work of our research group [Frozza et al. 2018]. In
turn, the properties section of the JSON Schema describes the DB hierarchical structure.
Each column is a property of an object that represents a column family, each column
family is a property of an object that represents a table, and so on.

4. Experimental Evaluation

A prototype tool called HBaSI was developed to validate our schema inference process
over HBase. The Java language was used for the implementation, with the aid of the
Apache Maven, HBase API and Gson libraries. As shown in Figure 4 (a), it is able to
connect to HBase and list the available namespaces (left window), as well as the different
schema versions generated for the selected namespace (right window). If the user decides
to create or update a namespace schema, the tool generates a corresponding JSON Schema
document that can be copied to the clipboard or exported as a JSON file (Figure 4 (b)).

Namespaces disponiveis: Faguemas:
Namespace: NameSpace A

JEUN Schoma

: ESquema: Namespace A Sun May 11 21:03:54 BRT 2018
NameSpace A Sun May 12 2i50:2% HRT 2014, 7 -
Nanespace B Sun May 11 21:03:54 BRT 2019 -

wesenlalion ul @ hbase nramespace

Atualizar Fxcluir Gerar Novo

Siatus: I Copiar JSON Schema I [Exportar JSON Schema I

(@) (b)

Figure 4. User interface of the prototype tool

For the experimental evaluation, we also implemented a data generator that creates
random DB tables with different amounts of rows (ten, one hundred and one thousand).
The data types supported by the data generator are the same mentioned in Section 3. In
order to assess the quality of the schema inference, three possible results were considered:
a) the data type does not match as expected (incorrect); b) the data type is as expected
(correct); c) more than one possible (equivalent) data type is returned and the expected
type is one of them (partial). The partial option deals with cases where more than one
data type is inferred to the same column value, which usually occurs for numeric types.

The extracted schemas from the generated HBase DBs always got a 100% accu-
racy for the structural hierarchy, as expected, since this information can be obtained in a
straightforward way from the DB namespace. This is not the case for column data type
inference, as shown in Table 1. We see that string, boolean, byte, short and blob types
were correctly identified. It happens because the set of rules that defines them (see Section
3) is restricted and does not contain many ranges in common with other data types.

On the other hand, char, integer, float, long and double data types, although it was
possible to obtain the expected type, it was not possible to always define it accurately. It
happens because of the limitations of the four bytes data types (char, integer and float)

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Angelo Augusto Frozza et al.

Table 1. Result of the data type inference experiment

Data type | Incorrect | Correct | Partial
string 0% 100% 0%
boolean 0% 100% 0%
byte 0% 99% 1%
short 0% 99% 1%
blob 0% 100% 0%
char 0% 0% 100%
integer 0% 17% 83%
float 0% 0% 100%
long 0% 11% 89%
double 0% 0% 100%

* 179

which are not exclusive, as well as the eight bytes ones (long and double), which are also
not. In fact, when we analyse data in binary format, the representation of one data type
may be contained in the representation of another one. For example, a char content always
has a binary encoding similar to an integer or float content. Additionally, some integer
contents do not have a binary encoding that also represents a char or a float content.
Therefore, in some cases, it is possible to correctly infer an integer data type. The same
holds for some long contents. For these cases, our schema inference process considers
the set of all possible data types.

We also analyse the spent time to generate the schemas. Although HBase can
be used as a distributed DB, this experiment was limited to a monolithic DB instance,
running on an Intel (R) Core (TM) i5-3337U CPU @ 1.80GHz machine, with 6 GB RAM.
Table 2 shows the execution times for each input size. The last column shows how many
Key-Value (K-V) pairs were analysed per second. It is possible to see that, with a small
number of rows and K-V pairs, the time required to generate the schema (third column in
Table 2) impacts the final performance. When the number of K-V pairs increases, a more
linear relationship between processing time versus K-V pairs number is maintained.

Table 2. Result of schema inference processing time experiment

Rows | K-V pairs | HBaSI processing time (seconds) | K-V pairs per second
10 550 4 137
100 50500 203 248

1000 | 5005000 23037 229

As this is a preliminary assessment over a monolithic instance, it is not always
possible to guarantee a good performance of our solution, as the processing time can be
degraded in a distributed environment. However, this tendency for a linear complexity of
our process w.r.t. the number of K-V pairs shows that it is a promising proposal.

5. Related Work

When migrating from a relational database to a NoSQL database, the biggest con-
cern is how to represent the relationship data in the adopted NoSQL data model
[Zhao et al. 2014]. This work, instead, aims to extract the most possible detailed schema
from an HBase database, respecting its columnar data model.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

180 -

Few approaches in the literature are related to our proposal. In [Ruiz et al. 2015]
are applied MDE (Model-Driven Engineering) techniques to create NoSQL DB schemas
that follow the aggregate-oriented data model, as is the case of the columnar NoSQL
data model. However, it requires that the extracted data items have a unique identifier
and a rype property, and the considered data types must be the same as those available
for JSON format. Another work proposes an approach for HBase data integration, in
which schemas are extracted in the format of OWL (Ontology Web Language) ontolo-
gies [Kiran and Vijayakumar 2014]. Genetic algorithms are used to identify which record
best represents a table’s data set. Different from this work as well as the work of Ruiz,
our schema inference proposal is less complex as it neither imposes constraints on the
data items to be analysed nor requires the mapping to high level abstraction model as an
ontology. Additionally, our extracted schema follows the JSON Schema recommendation.

6. Conclusion

This paper presents a process for inferring column-oriented NoSQL database schemas that
deals with the problem of determining data types for columns that represented in a low
level of abstraction as byte arrays. Our proposal differs from related work by introducing
a simple inference process and outputting the extracted schema in JSON Schema format.
We also developed a prototype tool that is able to generate DB schemas from the columnar
NoSQL HBase DBMS. Preliminary experimental evaluation shows that our proposal is
promising in terms of quality of the generated schemas as well as processing time. The
tool source code is available at UFSC Database Group repository’. Future works include
the improvement of the data type inference rules, the inference of optional and mandatory
columns, performance analysis with large data volumes, and tool internationalization.

References

Frozza, A. A., Mello, R. d. S., and da Costa, F. d. S. (2018). An Approach for Schema
Extraction of JSON and Extended JSON Document Collections. In XIX IEEE Int.
Conf. on Information Reuse and Integration, pages 356-363.

Han, J., Haihong, E., Le, G., and Du, J. (2011). Survey on NoSQL database. In VI
International Conference on Pervasive Computing and Applications, pages 363—-366.

Hewitt, E. (2010). Cassandra: The Definitive Guide. O’Reilly Media.

Kiran, V. K. and Vijayakumar, R. (2014). Ontology-based data integration of NoSQL
datastores. In IX Int. Conf. on Industrial and Information Sysvems, pages 1-6.

Ruiz, D. S., Morales, S. F., and Molina, J. G. (2015). Inferring Versioned Schemas from
NoSQL Databases and its Applications. LNCS, 9381:467—-480.

Sadalage, P. J. and Fowler, M. (2013). NoSQL Distilled : A Brief Guide to the Emerging
World of Polyglot Persistence. Addison-Wesley.

Shriparv, S. (2010). Learning HBase. Packt Publishing.

Tudorica, B. G. and Bucur, C. A. (2011). A Comparison between Several NoSQL
Databases with Comments and Notes. In Proc. RoEduNet IEEE Intern. Conference.

Zhao, G., Lin, Q., Li, L., and Li, Z. (2014). Schema conversion model of SQL database
to NoSQL. In Proc. 9th Intern. Conference 3PGCIC, pages 355-362. IEEE.
https://github.com/gDB-ufsc/HBaSI

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

