e 211

Query co-planning for shared execution in Key-Value Stores

Josué Ttito!, Renato Marroquin?, Sergio Lifschitz?

1Dept. Computer Science 2Oracle 3nformatics Dept.
Universidad Catdlica Pontificia Universidade
San Pablo Catolica-RJ
Arequipa—Peru Ziirich-Switzerland RJ-Brazil

josue.ttito@ucsp.edu.pe renato.marroquin@oracle.com sergio@inf.puc-rio.br

Abstract. Key value stores propose a very simple yet powerful data model. Data
is modeled using key-value pairs where values can be arbitrary objects and
can be written/read using the key associated with it. In addition to their simple
interface, such data stores also provide read operations such as full and range
scans. However, due to the simplicity of its interface, trying to optimize data
accesses becomes challenging. This work aims to enable the shared execution
of concurrent range and point queries on key-value stores. Thus, reducing the
overall data movement when executing a complete workload. To accomplish
this, we analyze different possible data structures and propose our variation of a
segment tree, Updatable Interval Tree. This data structure helps us co-planning
and co-executing multiple range queries together, as we show in our evaluation.

1. Introduction

The need for storing and analyzing vasts amounts of data motivates the design of data
management systems tailored for each application’s needs. For instance, graph databases
allow more complex data models to be stored while enabling them to express more
complex queries. On the other hand, key-value stores offer a much simpler interface both
for retrieving and storing data. The data model used in key-value stores consists of storing
(K, V) pairs where K represents a unique identifier of a value V. The actual value V'
can range from arrays of byte to complex JSON documents depending on the key-value
implementation. Their standard interface consists of methods such as GET for obtaining
a value given a key, a PUT method for writing a key-value pair, and a RANGE-SCAN for
retrieving multiple values given a range of keys.

Although the simple interface of key-value stores might be seen as an advantage,
its operations’ granularity makes it challenging to optimize more than the execution of a
single operation. For example, it is not clear how to apply known techniques to optimize
multiple queries or even optimize the execution of an entire query workload together.
In this work, we focus on optimizing the entire execution of a read-only workload to
reduce redundant data accesses. We achieve this by co-planning and co-executing queries
that access common subsets of data. More specifically, given a workload consisting of
range and point queries to be executed, we index the workload predicates to determine
overlapping data accesses and, then co-plan and co-execute the before-mentioned queries.
This results in a series of shared-scans that are executed against the data store. Thus,
removing redundant data accesses and retrieving required data only once.

!Josué’s work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of
the National Council for Science,Technology and Technological Innovation (CONCYTEC-PERU).

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

212

2. Work-sharing

There has been a long line of research for reducing the amount of redundant work car-
ried out during query processing. This ranges from traditional common sub-expression
elimination [Finkelstein 1982] to executing entire query workloads with a shared plan
in cloud data services [Marroquin et al. 2018]. Moreover, shared-workload optimization
(SWO) [Giannikis et al. 2014, Giannikis et al. 2012] was proposed as an alternative to
multi-query optimization (MQO) [Sellis 1988] to enable the generation of shared execu-
tion plans suitable not just for a group of queries but also for an entire query workload. In
contrast to MQO, where the main goal is to achieve the execution plan with the least cost
for a subset of queries, SWO aims to produce an execution plan with the least cost for the
entire query workload.

In high concurrency environments, many different queries are executed (each query
with its own frequency) against a shared pool of data. Approaches such as caching might
not be very effective in such scenarios because supporting a diverse set of queries would
require either a large cache or a predictable query frequency. On the other hand, shared
execution enables the possibility of improving the overall system’s throughput by not
carrying out redundant work multiple times, but, at the same time, by increasing individual
query latencies. Here, we focus on enabling work-sharing over key-value stores with a
workload of GET and RANGE.

I:I\\ Q
Q Q R,
Qz 1 |_ 2 R,
Q; Q Q, Rs
Q, ‘a R,
Qs 5 Rs
query indexing post filter

Figure 1. Shared workload execution.

Figure 1 depicts how shared execution works at a high level. First, all queries are
collected prior to their execution. Then, a shared plan for that group of queries is generated
and executed against the data store. Once the results are obtained, they are filtered and
returned to each specific query. Shared execution is similar to regular query batching in
the sense that for it to work, multiple queries need to be executed concurrently. However,
they differ in that in shared execution; a shared execution plan is generated for a batch of
queries. Such a query plan minimizes the overall redundant work and solves all queries
in the batch. In our work, the shared plan generation consists of building an interval tree
using the predicates of range and point queries, i.e., indexing the workload queries. This
shared plan represents the final range queries to be executed without any redundant work.

3. Shared-scans in Key-Value stores

Typically, data is indexed to speed up access to large amounts of data. On the other hand,
query indexing has been proposed when dealing with highly concurrent workloads and
stream-processing scenarios where incoming data needs to be checked against many in-
stalled queries [Unterbrunner et al. 2009]. Their goal is to reduce the number of operations
when determining the queries for which the incoming data is of interest. In our work, we
index range and point queries from a query workload to find overlapping opportunities

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Josué Ttito et al. e 213

by creating an interval tree with their predicates, thus reducing the overall work. In the
paragraphs below, we describe two well-known data structures for storing and retrieving
intervals: Segment Tree and Centered Interval Tree. Figures 2 and 3 show a segment and a
centered interval tree, respectively, built using the set of intervals below.

Sy : (100,670) Sy : (230,450) S5 : (120,340) Sy : (430, 760)

1
S5 : (800,920) Sg: (100,120) Sy : (230,340) Ss : (450, 760) %

A segment tree is a balanced binary tree that supports storing information about
a set [of n intervals. Building it has a time complexity of O(n log n) while searching
for intervals containing a query point can be done in O(log n + k) time where £ is the
number of retrieved intervals or segments 2.

A centered interval tree is also a binary tree, which given a set I of n intervals,
can be constructed in O(n log n) time. Searching for intervals containing a query point
can be done in O(logn + m) time where m is the number of overlapping intervals .

230 S1, 82, Sa 780

Se S; Ss Ss

Figure 3. Centered interval tree.

Figure 2. Segment tree.

3.1. Updatable Interval Tree

We define our Updatable Interval Tree (UIT) as a variation of the segment tree. The two
notable differences are: (i) the UIT can actually be incrementally updated, and (ii) the
UIT aims to minimize its total number of nodes by checking for overlapping intervals and
updating its structure accordingly. Additionally, all nodes maintain their intervals whose
size is controlled by a parameter M/, that represents the maximum size of an interval that
any node can hold. We use M to control the total amount of nodes created.

The insertion of an interval i = (%04, %hign) begins at the root node. At this point,
we check if the new interval overlaps with the interval j of the current node c. If overlap
exists and c is a leaf node, then the interval j is updated to j’, which copes with the new
interval, and no new node is inserted. This means that the current node’s interval will
be (jlow’7jhigh/) where jlow/ = low if jlow > Ujow OF jlow otherwise, and jhigh’ = Z'high
if Jhigh < %iow O Jhign Otherwise. If there is no overlap, then, similarly to a centered
interval tree, we check whether or not the new interval 7 is to the left or the right of the
current node’s interval, and insert a new node accordingly. Moreover, when inserting 7,
we check the size of the resulting interval of ;' to determine if it is smaller than M or
not. If it is, then we only update the node with the new j’, otherwise, the interval j' is
split, and a new node is created containing half of the ;' interval. After the insertion, we
enforce the segment tree property that intervals from the same level must not overlap. We
do this by recursively verifying if any interval from non-leaf nodes needs to be updated.
Overall, in the worst-case, building our UIT has a complexity of O(n?) as other similar
non-self-balancing data structures.

2https://en.Wiki1:>edia.0rg/wiki/Segment_t_lree
3 https://en.wikipedia.org/wiki/Interval_tree#Centered_interval_tree

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

214 -

The UIT does not create new nodes in all cases. There are two cases when we
may merge nodes and this depends on the maximum interval size nodes can hold, i.e., the
parameter //. One is when the new interval overlaps and the length of the resulting j’
is smaller than M. The other case is if the resulting interval is contiguous to its sibling
node’s interval, which we inspect after insertion. If both intervals are contiguous, then we
merge the two nodes into a single one which has a contiguous interval composed of both
original intervals. Figure 4 shows the example intervals stored in the UIT.

(100 765/\5300 - 920]

S1, Sz, S5, Sa, Se, Sy Ss, Ss

Figure 4. Updatable Interval Tree representing example intervals

Similarly to a segment tree, the non-leaf nodes of our data structure keep larger
segments towards the root node, and nodes at the same level only have non-overlapping
intervals. The leaf nodes represent the actual intervals we need to retrieve from the database.
To determine which final intervals match the original queries, we use only the leaf nodes to
create a second interval tree. Then, we match the leaf nodes intervals to the initial queries.
We also make the leaf nodes to keep pointers to its sibling nodes to avoid traversing the
entire data structure when retrieving only the leaf nodes.

4. Experimental evaluation

We design a set of experiments for evaluating different aspects of our solution. Our
benchmark consists of two phases: a load, and a query phase. The load phase consists of
loading a total number of £ key-value pairs into a key-value store where both key and value
are chosen uniformly at random from a domain D. We use as key-value store Rocks-DB.
The query phase consists of executing () queries (a combination of range or point queries)
against a key-value store. Moreover, we compare our proposed solution to the other only
possible way of executing read queries against a key-value store, which is one query-at-a-
time (QAT). Each query is executed independently from each other; thus, parallelization
is possible. Even though it is possible to exploit parallelism, both approaches, QAT and
Shared-Execution, would be benefited from it, by a factor of the total number of
threads used. For simplicity, we do single-threaded execution throughout the experiments.

The C++ implementation of our shared execution strategy is used as a middleware
to make it applicable to other key-value stores. However, it could also be implemented as
an additional component of any key-value store. We execute all experiments in a machine
running Ubuntu 20.04 with 16GB of DDR4 RAM, an Intel Core 15-8400 CPU, a 500GB
of hard-drive. We run them three times and report the average end-to-end execution time.

A) Shared execution vs Query-at-a-time: In this experiment, we use a domain
size of D = 108, which the loading phase uses to insert 10° key-value pairs. We com-
pare the QAT approach against the Shared execution approach to understand how they
compare. Moreover, the query workload used here consists only of range queries where
each query has a fixed selectivity of 10%), i.e., selects 10% of data. We use this selectivity
to determine the maximum interval size, M, for nodes of our UIT tree. We report the
end-to-end execution time of the entire workload while varying its size, i.e., the total
number of queries, (), executed.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Josué Ttito et al. ¢ 215

Figure 5a shows the execution time of the two approaches, query-at-a-time (QAT)
and shared-execution (Shared). Regarding the QAT approach, we observe that the
total execution time increases linearly with the query workload size, which is expected.
Although the execution time of the Shared execution approach also increases linearly, it
is still 15X faster than executing the entire query workload with a QAT approach. There are
two main reasons which make the execution time to grow linearly in the Shared approach.
The first one is related to the complexity of building our UIT. The second one is the amount
of time it currently takes us to perform results separation. Our current implementation
consists of a linear scan through our result set while assigning results to each specific query.
We also plan to apply similar techniques to query indexing for improving this part.

Figure 5b shows the query indexing break down when compared to the actual
query execution. Here, we show the time it takes for query indexing and the time to
execute the resulting query workload. We observe that with smaller workloads, less than
10° queries, building our query indexing structure is in the order of tens of milliseconds.
Therefore, when integrating our approach within a more extensive system, we could batch
up to 10° with a negligible time penalty. On the other hand, when dealing with larger
query workloads, the time taken for query indexing is comparable to the query execution.
There are mainly two reasons for this: (i) the time complexity of our indexing strategy,
i.e., building our data structure, will grow sublinearly with the number of queries; and (ii)
the total number of resulting queries accounts only 15% of the original workload size of
10. The reduction of the workload size occurs because once the UIT becomes a complete
binary tree, the leaf-nodes’ intervals actually cover the entire domain. Thus, when adding
new queries, no additional insertions or updates are needed for the UIT. This results in a
significant reduction of redundant work needed for this particular workload.

T T T 11T T T TTTT
|+QAT+Shared L/

z 104 g é — 0.6 |- *
g 100 F E = 04 || urT-building
=102 E E g
= - E =
=~

1ot O query-matching
vl v vl il 021 ||] db-execution
10! 102 102 10 10° 10% 0
104 10° 10

6
Number of queries

(b) Query indexing break down
(a) Shared execution vs Query-at-a-time

Figure 5. Experiment varying humber of queries

B) Varying query workload mix: We investigate the cost of building the
UIT with a workload containing both range and point queries. This is because if a a
workload consists only of range queries, many of them might overlap depending on their
selectivity. On the other hand, if the query workload consists of only point queries, then
there might be little to no chance to reduce redundant work. For this experiment, we
use as domain D = 10° and a query workload of) = 10° queries. Here, we vary
the percentage of range and point queries in the query workload and the range query
selectivities (from 0.01% to 10%) to show how the query selectivity impacts our shared
execution strategy. Moreover, a workload named 90-10 means having 90% of point
queries and 10% of range queries.

Figure 6a depicts the building time of the UIT under different workload mixes. It
is important to note that regardless of the amount of range queries present in the workload

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

216 -

Selectivities: |] Hoo1% |:| foi% D (1% I [10% Selectivities: |] Ho.o1% |:| fo1% D 1% I 0 10%
100 |-

0.1 |-

0.05 | HI
| | 0 H|_| [l =

T T I I I T
50-50 80-20 90-10 99-1 50-50 80-20 90-10 99-1

Time[s]
Query reduction [%]
(o)
=)
T

(a) Ul-tree construction times (b) Percentage of queries reduced

Figure 6. Experiment varying workload mix

if such range queries are very selective, it takes the longest to build our indexing data
structure. The main reason is that there is less opportunity for queries overlapping with
a mix of very selective range queries and point queries. As a consequence, we obtain a
UIT with a more significant number of nodes. On the other hand, if range queries select
more data, then many queries might overlap, which reduces the building time of our data
structure. The effect of queries overlapping is reflected in the total number of resulting
queries to be executed (see Figure 6b). For example, the query workload labeled as 99-1,
which contains only 1% of range queries, can reduce the amount of redundant work in up
to 70% if range queries select at least 10% of the data.

5. Conclusion and on-going work

We presented the design and implementation of a data structure to enable shared work
execution of a query workload consisting of range and point queries. The resulting
UIT helps us determining the overlapping intervals, which represent the redundant work,
while minimizing the total number of nodes created. There are a few lines of work we
are still working on. For instance, we are working on removing the query matching
process we currently do. By doing this, we will further improve the efficiency of our query
indexing approach. Moreover, we plan to use the maximum interval size, M, to introduce
a more flexible interval partitioning scheme. We also plan to leverage information from
underlying the key-value (e.g., LSM min-max values per layer, data distribution per server
in a distributed data store) to achieve this.

References

Finkelstein, S. J. (1982). Common subexpression analysis in database applications. In
Schkolnick, M., editor, Proceedings of the 1982 ACM SIGMOD.

Giannikis, G., Alonso, G., and Kossmann, D. (2012). Shareddb: Killing one thousand
queries with one stone. Proc. VLDB Endow., 5(6).

Giannikis, G., Makreshanski, D., Alonso, G., and Kossmann, D. (2014). Shared workload
optimization. Proc. VLDB Endow., 7(6).

Marroquin, R., Miiller, 1., Makreshanski, D., and Alonso, G. (2018). Pay one, get hundreds
for free: Reducing cloud costs through shared query execution. In ACM SoCC 2018.

Sellis, T. K. (1988). Multiple-query optimization. ACM Trans. Database Syst., 13(1).

Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., and Kossmann, D. (2009). Pre-
dictable performance for unpredictable workloads. Proc. VLDB Endow., 2(1).

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

