

A Novel Solution for the Aggregation Problem in Natural
Language Interface to Databases (NLIDB)

Alexandre F. Novello, Marco A. Casanova

Department of Informatics, PUC-Rio, Rio de Janeiro, RJ – Brazil

{anovello, casanova}@inf.puc-rio.br

Abstract. Natural Language Interface to Databases (NLIDB) systems usually
do not deal with aggregations, which can be of two types: aggregation functions
(such as count, sum, average, minimum, and maximum) and grouping functions
(GROUP BY). This paper addresses the creation of a generic module, to be used
in NLIDB systems, that allows such systems to perform queries with
aggregations, on the condition that the query results the NLIDB returns are or
can be transformed into tables. The paper covers aggregations with
specificities, such as ambiguities, timescale differences, aggregations in
multiple attributes, the use of superlative adjectives, basic unit measure
recognition, and aggregations in attributes with compound names.

1. Introduction

Question Answering (QA) is a field of study dedicated to building systems that
automatically answer questions asked in natural language. The translation of a question
asked in natural language into a structured query in a database is also known as Natural
Language Interface to Databases (NLIDB). To obtain the structured query (SQL or
SPARQL) used to query the database, the question in natural language goes through
several processing steps such as: (1) question analysis; (2) phrase mapping; (3)
disambiguation; and (4) query construction.

 One of the less well-solved tasks in step 4 of this process is the treatment of
questions with aggregation involving grouping (GROUP BY clause) and aggregation
functions such as count, sum, average, minimum and maximum, especially when the
question is on another timescale with respect to the stored data, which call for a scale
conversion. For example, consider the question: "What was the average annual
compensation for employees in 2019?" If the compensation data is stored on a weekly
scale, it is necessary to understand that the question is on an annual scale and perform the
conversion. Note that it is not enough to multiply the average weekly compensation by
52, as the salary may have changed over the year, as well as due to other events, such as
vacations, or bonuses. It is necessary to filter the sum of all 2019 compensation data per
employee and only then perform the average.

 NLIDB systems usually do not deal with aggregations, but they produce good
results for normal queries. The contribution of this paper is the creation of a generic
module to be used with NLIDB systems, called GLAMORISE (GeneraL Aggregation
MOdule for RelatIonal databaSEs). This module allows NLIDB systems to perform
queries with aggregations, on the condition that the result of the NLIDB is or can be
transformed into a table. Hence, GLAMORISE can even be used with Triplestore (RDF
Store) NLIDBs, with the proviso that the result is presented in a tabular format.

GLAMORISE also deals with some aggregations with specificities, including
ambiguities, time-scale differences, aggregations in multiple attributes, and aggregations
in attributes with compound names.

 The rest of this paper is organized as follows. Section 2 contains a brief literature
review. Section 3 describes GLAMORISE, its features and limitations. Section 4
evaluates the performance of GLAMORISE against benchmark questions. Finally,
Section 5 contains the conclusions and suggestions for future work.

2. Related Work

SQAK (SQL Aggregates using Keywords) [Tata and Lohman 2008] is a framework that
allows users to perform queries with aggregations using only keywords, with no
knowledge of the database schema or SQL. It uses the concept of Simple Query Network
(SQN), which is similar to the Steiner Tree, but gives better results. Our work and SQAK
deal with similar problems, aiming at the use of keywords for the final translation to SQL.
The difference is that SQAK is a complete and monolithic NLIDB, while ours extends an
NLIDB to handle aggregations.

 NaLIR [Li and Jagadish, H. V. 2014; Li and Jagadish 2016; Li and Jagadish, H.
V 2014] is a generic NLIDB that handles aggregations, nesting, and various types of joins.
The approach followed is to take feedback from the user, returning the adjusted parse
trees in the form of natural language, so that they can select the natural language question
that makes the most sense or revise accordingly. In our view, this exchange of information
jeopardizes the user experience, as it gives the impression of carrying out work that should
be done by the NLIDB, regardless of the extent to which it ensures that the resulting query
is correct after the adjustments. In our work, we prefer the approach of generating a
structured query automatically from the natural language query.

 Gupta et al. (2012) presented a novel approach to build NLIDB based on the use
of Computational Paninian Grammar (CPG) [Bharati et al. 2014] in which the
relationships are syntactic-semantic. CPG was originally developed for Indian languages
and afterward received an English version. They argue that using this technique makes
the trees more semantic than other kinds of dependency trees, making them easier to map
to a SQL. In the following article [Gupta and Sangal 2013], the framework is extended to
handle aggregation processing with different types of aggregation operations in natural
language, including quantitative and qualitative aggregations, and those combining
quantifiers or relational operators with aggregations. A separate layer in the querying
process was devised: first, the SQL query is generated and processed in the RDBMS
without the aggregation, and then the aggregation is processed in the returned result set.
The whole concept is explained in detail in Gupta’s master’s dissertation [Abhijeet Gupta
2013]. This work served as an inspiration regarding the isolation and classification of the
parts that compose the aggregation and the processing of the aggregation in the returned
result set described in Section 3.

 The following contributions were also developed in two stages. First, an NLIDB
was created without the ability to process aggregations (or subqueries) [Pazos R et al.
2016], called ITCM NLIDB, and a second work [Pazos R et al. 2018] added a module
capable of carrying out these activities. Although simpler than previous works, the main
contribution of this work was to identify recurring problems in how aggregations (and
subqueries) are stated in natural language and propose solutions to them.

3. GLAMORISE – A Proposed Solution

NLIDB systems usually do not deal with aggregations, but they return good results for
normal queries. This paper introduces GLAMORISE, a generic module that allows
NLIDB systems to perform queries with aggregations, as long as the result is a table.
Figure 1 shows the architecture of GLAMORISE.

Fig. 1. GLAMORISE Architecture

 Initially, the user types a query Q in natural language in the user interface. The
GLAMORISE Preprocessor removes the aggregation elements and transforms Q into a
query without aggregation Q’ in natural language and registers all the elements related to
the aggregation, to be subsequently used by the Aggregation Processor. Then, Q’ is sent
to the conventional NLIDB, where the query is processed by the NLIDB and converted
into a structured query, being SQL in the case of an RDBMS or SPARQL in the case of
a Triplestore, and a result set R without any aggregations is returned in a tabular format.
Additionally, the metadata of the data result set can be retrieved to process more complex
questions. Following this, the GLAMORISE Aggregation Processor stores R as a table
in a local RDBMS (SQLite). Then, it processes the aggregation over the stored result set
R by creating a SQL query, resulting in the final result set with aggregations R’, and
returns it to the user interface.

 The purpose of the Preprocessor is to map the keywords in natural language to
the respective aggregation functions. The other primary mission is to identify whether the
query in natural language also has grouping (GROUP by clause) conditions. These
keywords are removed or substituted from the query to guarantee that the conventional
NLIDB will not be confused by their existence, leading to incorrect mappings.

 The Aggregation Processor is responsible for building the query itself in SQL,
being responsible for analyzing the metadata saved in the Preprocessor stage, and
including the aggregation functions (sum, max, min, avg and count), as well as
recognizing the fields in which these functions should be applied in the received result
set. Then, an identical process is undertaken for grouping (GROUP BY clause), reading
the metadata to determine if there is grouping, which fields are involved, mapping them

in the result set, and also if there is a HAVING clause with conditions. Another step is
conducted to analyze any timescales that should be converted with the use of an
aggregation function (sum) and grouping.

 Lastly, this work focuses on treating aggregations with some types of
ambiguities, time-scale differences, aggregations in multiple attributes, aggregations with
the use of superlative adjectives, basic unit measure recognition, and aggregations in
attributes with compound names. It is beyond the scope of this work to deal with elliptical
aggregations and queries with subqueries using aggregations (other than the time-scale
problem, which was properly addressed). Also, it does not deal with qualitative functions,
such as good, bad, high, low, which have a subjective component.

 The GLAMORISE prototype was implemented in Python1 with the help of the
library spaCy2, which is an open-source software library for advanced natural language
processing. In our work, the spaCy functionalities of POS tagging and parse tree are used.

4. Proof-of-concept

To test the performance of GLAMORISE, we implemented a mock NLIDB prepared to
receive the set of testing questions with completely different phrasings. First, we
confirmed that the questions were preprocessed correctly, removing or substituting the
expected words. Second, we confirmed that the generated SQL queries with aggregation
were correct. GLAMORISE answered all 21 questions correctly. Two, among all types
of aggregations addressed in this work, are discussed in what follows.

Superlative Adjectives. The superlative adjectives are suppressed and, depending on
their type, a min or max function is added to the aggregation functions metadata, as well
as the respective aggregation field. The superlative adjective is then removed from the
query since the NLIDB cannot handle such terms. Figure 2 shows an example. The min
aggregation function is identified because of the presence of the superlative adjective
“lowest”; also, “gas production” is identified as the aggregation field that is related. The
relation is obtained by the parse tree.

1 https://www.python.org/
2 https://spacy.io/

Fig. 2. Superlative adjective example

spaCy Parse Tree

Aggregations with time-scale differences. To the best of our knowledge, this is a special
condition in aggregation for which we did not find a solution in other works. The problem
becomes apparent when the data is stored in one time-scale, and the question is asked in
another. An example could be: “What was the average yearly production of oil in the
state of Alagoas?”. The problem will arise if the data stored in the table is on a monthly
basis. Assume that the database has two attributes, one for the year and another for the
month, in addition to production (oil or gas). That is each tuple associates production to
one year and one month. The SQL of this query would be:

SELECT AVG(SUM(oil_production)) as avg_sum_oil_production
FROM nlidb_result_set
WHERE state = 'Alagoas'
GROUP BY year

Note that this query is different from the previous example since it involves two
aggregation functions: the first performs the sum of the grouped attribute, “year”, and
then the average of all years is calculated. For convenience, in this first implementation,
we are using the SQLite to store the result set returned by the NLIDB and process
aggregations. At the moment, the SQLite does not support nested aggregation functions
like “AVG(SUM(field))”, so our query has to be translated to:
SELECT AVG(sum_oil_production) as avg_sum_oil_production
FROM (SELECT SUM(oil_production) as sum_oil_production

FROM nlidb_result_set
WHERE state = 'Alagoas'
GROUP BY year)

In the case of the example "yearly", the Preprocessor converts the adjective to its
corresponding noun, in this case, "year". When we receive the NLIDB result set for this
type of question, we also receive a metadata result set with information regarding the
timescale in which the data is stored (daily, monthly, yearly, etc.). If the question was
asked on a different scale, the Processor does the aggregation accordingly (SUM(field)
and GROUP BY). Figure 3 shows how the Preprocessor recognizes the sentences and
separates the "average" interpretation, which is the normal aggregation that will be made,
from the "yearly" interpretation, which is the time-scale aggregation that will be made,
depending on the time-scale that is stored in the database.

Fig. 3. Aggregations with time-scale differences example

spaCy Parse Tree

5. Conclusions and Future Work

The main contribution of this work was the creation of a generic module, called
GLAMORISE, to be used in NLIDB systems, which allows the processing of queries
with aggregations, on the condition that the result of the NLIDB is, or can be transformed
into, a result set in the form of a table. The work addressed aggregations with some
specificities such as ambiguities, time-scale differences, aggregations in multiple
attributes, the use of superlative adjectives, basic unit measure recognition, and
aggregations in attributes with compound names.

 As future directions, we contemplate dealing with more complex unit measure
recognition, followed by tackling subqueries and elliptical aggregations. Ellipsis is the
suppression of a term that can be easily understood by the linguistic context or situation.
We also consider using questions from previous QALD challenges as a benchmark.

6. References

Abhijeet Gupta (2013). Complex Aggregates In Natural Language Interface To
Databases. International Institute of Information Technology, Hyderabad.

Bharati, A., Bhatia, M., Chaitanya, V. and Sangal, R. (2014). Paninian Grammar
Framework Applied to English South Asian Language Review, Creative Books, New
Delhi, 1998.

Gupta, A., Akula, A., Malladi, D., et al. (2012). A novel approach towards building a
portable NLIDB system using the computational Paninian grammar framework. Proc.
2012 Int'l. Conf. on Asian Language Processing, IALP 2012, p. 93–96.

Gupta, A. and Sangal, R. (2013). A Novel Approach to Aggregation Processing in Natural
Language Interfaces to Databases. Proc. 10th International Conference on Natural
Language Processing - ICON-2013.

Li, F. and Jagadish, H. V. (2014). NaLIR: An interactive natural language interface for
querying relational databases. Proc. 2014 ACM SIGMOD International Conference on
Management of Data, Snowbird, Utah, USA (June 2014), p. 709–712.

Li, F. and Jagadish, H. V (2014). Constructing an interactive natural language interface
for relational databases. Proc. of the VLDB Endowment, v. 8, n. 1, p. 73–84.

Li, F. and Jagadish, H. V (2016). Understanding Natural Language Queries over
Relational Databases. ACM SIGMOD Record, v. 45, n. 1, p. 6–13.

Pazos R, R. A., Aguirre L, M. A., González B, J. J., et al. (2016). Comparative study on
the customization of natural language interfaces to databases. SpringerPlus 5, 553.

Pazos R, R. A., Verastegui, A. A., Martínez F, J. A., Carpio, M. and Gaspar H, J. (2018).
Translation of natural language queries to SQL that involve aggregate functions,
grouping and subqueries for a natural language interface to databases. In: Fuzzy Logic
Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real
Applications. Studies in Computational Intell., vol 749. Springer, Cham, p. 431–448.

Tata, S. and Lohman, G. M. (2008). SQAK: Doing more with keywords. Proc. of the
2008 ACM SIGMOD International Conference on Management of Data, Vancouver
Canada (June 2008), p. 889–901.

