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Abstract. Natural Language Interface to Databases (NLIDB) systems usually 
do not deal with aggregations, which can be of two types: aggregation functions 
(such as count, sum, average, minimum, and maximum) and grouping functions 
(GROUP BY). This paper addresses the creation of a generic module, to be used 
in NLIDB systems, that allows such systems to perform queries with 
aggregations, on the condition that the query results the NLIDB returns are or 
can be transformed into tables. The paper covers aggregations with 
specificities, such as ambiguities, timescale differences, aggregations in 
multiple attributes, the use of superlative adjectives, basic unit measure 
recognition, and aggregations in attributes with compound names. 

1. Introduction 

Question Answering (QA) is a field of study dedicated to building systems that 
automatically answer questions asked in natural language. The translation of a question 
asked in natural language into a structured query in a database is also known as Natural 
Language Interface to Databases (NLIDB). To obtain the structured query (SQL or 
SPARQL) used to query the database, the question in natural language goes through 
several processing steps such as: (1) question analysis; (2) phrase mapping; (3) 
disambiguation; and (4) query construction. 

 One of the less well-solved tasks in step 4 of this process is the treatment of 
questions with aggregation involving grouping (GROUP BY clause) and aggregation 
functions such as count, sum, average, minimum and maximum, especially when the 
question is on another timescale with respect to the stored data, which call for a scale 
conversion. For example, consider the question: "What was the average annual 
compensation for employees in 2019?" If the compensation data is stored on a weekly 
scale, it is necessary to understand that the question is on an annual scale and perform the 
conversion. Note that it is not enough to multiply the average weekly compensation by 
52, as the salary may have changed over the year, as well as due to other events, such as 
vacations, or bonuses. It is necessary to filter the sum of all 2019 compensation data per 
employee and only then perform the average. 

 NLIDB systems usually do not deal with aggregations, but they produce good 
results for normal queries. The contribution of this paper is the creation of a generic 
module to be used with NLIDB systems, called GLAMORISE (GeneraL Aggregation 
MOdule for RelatIonal databaSEs). This module allows NLIDB systems to perform 
queries with aggregations, on the condition that the result of the NLIDB is or can be 
transformed into a table. Hence, GLAMORISE can even be used with Triplestore (RDF 
Store) NLIDBs, with the proviso that the result is presented in a tabular format. 



 

 

 

GLAMORISE also deals with some aggregations with specificities, including 
ambiguities, time-scale differences, aggregations in multiple attributes, and aggregations 
in attributes with compound names.  

 The rest of this paper is organized as follows. Section 2  contains a brief literature 
review. Section 3 describes GLAMORISE, its features and limitations. Section 4 
evaluates the performance of GLAMORISE against benchmark questions. Finally, 
Section 5 contains the conclusions and suggestions for future work. 

2. Related Work 

SQAK (SQL Aggregates using Keywords) [Tata and Lohman 2008] is a framework that 
allows users to perform queries with aggregations using only keywords, with no 
knowledge of the database schema or SQL. It uses the concept of Simple Query Network 
(SQN), which is similar to the Steiner Tree, but gives better results. Our work and SQAK 
deal with similar problems, aiming at the use of keywords for the final translation to SQL. 
The difference is that SQAK is a complete and monolithic NLIDB, while ours extends an 
NLIDB to handle aggregations. 

 NaLIR [Li and Jagadish, H. V. 2014; Li and Jagadish 2016; Li and Jagadish, H. 
V 2014] is a generic NLIDB that handles aggregations, nesting, and various types of joins. 
The approach followed is to take feedback from the user, returning the adjusted parse 
trees in the form of natural language, so that they can select the natural language question 
that makes the most sense or revise accordingly. In our view, this exchange of information 
jeopardizes the user experience, as it gives the impression of carrying out work that should 
be done by the NLIDB, regardless of the extent to which it ensures that the resulting query 
is correct after the adjustments. In our work, we prefer the approach of generating a 
structured query automatically from the natural language query. 

 Gupta et al. (2012) presented a novel approach to build NLIDB based on the use 
of Computational Paninian Grammar (CPG) [Bharati et al. 2014] in which the 
relationships are syntactic-semantic. CPG was originally developed for Indian languages 
and afterward received an English version. They argue that using this technique makes 
the trees more semantic than other kinds of dependency trees, making them easier to map 
to a SQL. In the following article [Gupta and Sangal 2013], the framework is extended to 
handle aggregation processing with different types of aggregation operations in natural 
language, including quantitative and qualitative aggregations, and those combining 
quantifiers or relational operators with aggregations. A separate layer in the querying 
process was devised: first, the SQL query is generated and processed in the RDBMS 
without the aggregation, and then the aggregation is processed in the returned result set. 
The whole concept is explained in detail in Gupta’s master’s dissertation [Abhijeet Gupta 
2013]. This work served as an inspiration regarding the isolation and classification of the 
parts that compose the aggregation and the processing of the aggregation in the returned 
result set described in Section 3. 

 The following contributions were also developed in two stages. First, an NLIDB 
was created without the ability to process aggregations (or subqueries) [Pazos R et al. 
2016], called ITCM NLIDB, and a second work [Pazos R et al. 2018] added a module 
capable of carrying out these activities. Although simpler than previous works, the main 
contribution of this work was to identify recurring problems in how aggregations (and 
subqueries) are stated in natural language and propose solutions to them.  



 

 

 

3. GLAMORISE – A Proposed Solution 

NLIDB systems usually do not deal with aggregations, but they return good results for 
normal queries. This paper introduces GLAMORISE, a generic module that allows 
NLIDB systems to perform queries with aggregations, as long as the result is a table. 
Figure 1 shows the architecture of GLAMORISE. 

 
Fig. 1. GLAMORISE Architecture 

 Initially, the user types a query Q in natural language in the user interface. The 
GLAMORISE Preprocessor removes the aggregation elements and transforms Q into a 
query without aggregation Q’ in natural language and registers all the elements related to 
the aggregation, to be subsequently used by the Aggregation Processor. Then, Q’ is sent 
to the conventional NLIDB, where the query is processed by the NLIDB and converted 
into a structured query, being SQL in the case of an RDBMS or SPARQL in the case of 
a Triplestore, and a result set R without any aggregations is returned in a tabular format. 
Additionally, the metadata of the data result set can be retrieved to process more complex 
questions. Following this, the GLAMORISE Aggregation Processor stores R as a table 
in a local RDBMS (SQLite). Then, it processes the aggregation over the stored result set 
R by creating a SQL query, resulting in the final result set with aggregations R’, and 
returns it to the user interface. 

 The purpose of the Preprocessor is to map the keywords in natural language to 
the respective aggregation functions. The other primary mission is to identify whether the 
query in natural language also has grouping (GROUP by clause) conditions. These 
keywords are removed or substituted from the query to guarantee that the conventional 
NLIDB will not be confused by their existence, leading to incorrect mappings. 

 The Aggregation Processor is responsible for building the query itself in SQL, 
being responsible for analyzing the metadata saved in the Preprocessor stage, and 
including the aggregation functions (sum, max, min, avg and count), as well as 
recognizing the fields in which these functions should be applied in the received result 
set. Then, an identical process is undertaken for grouping (GROUP BY clause), reading 
the metadata to determine if there is grouping, which fields are involved, mapping them 



 

 

 

in the result set, and also if there is a HAVING clause with conditions. Another step is 
conducted to analyze any timescales that should be converted with the use of an 
aggregation function (sum) and grouping. 

  Lastly, this work focuses on treating aggregations with some types of 
ambiguities, time-scale differences, aggregations in multiple attributes, aggregations with 
the use of superlative adjectives, basic unit measure recognition, and aggregations in 
attributes with compound names. It is beyond the scope of this work to deal with elliptical 
aggregations and queries with subqueries using aggregations (other than the time-scale 
problem, which was properly addressed). Also, it does not deal with qualitative functions, 
such as good, bad, high, low, which have a subjective component. 

 The GLAMORISE prototype was implemented in Python1 with the help of the 
library spaCy2, which is an open-source software library for advanced natural language 
processing. In our work, the spaCy functionalities of POS tagging and parse tree are used. 

4. Proof-of-concept 

To test the performance of GLAMORISE, we implemented a mock NLIDB prepared to 
receive the set of testing questions with completely different phrasings. First, we 
confirmed that the questions were preprocessed correctly, removing or substituting the 
expected words. Second, we confirmed that the generated SQL queries with aggregation 
were correct. GLAMORISE answered all 21 questions correctly. Two, among all types 
of aggregations addressed in this work, are discussed in what follows. 

Superlative Adjectives. The superlative adjectives are suppressed and, depending on 
their type, a min or max function is added to the aggregation functions metadata, as well 
as the respective aggregation field. The superlative adjective is then removed from the 
query since the NLIDB cannot handle such terms. Figure 2 shows an example. The min 
aggregation function is identified because of the presence of the superlative adjective 
“lowest”; also, “gas production” is identified as the aggregation field that is related. The 
relation is obtained by the parse tree. 

                                                 
1 https://www.python.org/ 
2 https://spacy.io/ 

 

Fig. 2. Superlative adjective example 

 

spaCy Parse Tree 



 

 

 

Aggregations with time-scale differences. To the best of our knowledge, this is a special 
condition in aggregation for which we did not find a solution in other works. The problem 
becomes apparent when the data is stored in one time-scale, and the question is asked in 
another. An example could be: “What was the average yearly production of oil in the 
state of Alagoas?”. The problem will arise if the data stored in the table is on a monthly 
basis. Assume that the database has two attributes, one for the year and another for the 
month, in addition to production (oil or gas). That is each tuple associates production to 
one year and one month. The SQL of this query would be: 

SELECT AVG(SUM(oil_production)) as avg_sum_oil_production 
FROM nlidb_result_set 
WHERE state = 'Alagoas' 
GROUP BY year 

Note that this query is different from the previous example since it involves two 
aggregation functions: the first performs the sum of the grouped attribute, “year”, and 
then the average of all years is calculated. For convenience, in this first implementation, 
we are using the SQLite to store the result set returned by the NLIDB and process 
aggregations. At the moment, the SQLite does not support nested aggregation functions 
like “AVG(SUM(field))”, so our query has to be translated to: 
SELECT AVG(sum_oil_production) as avg_sum_oil_production 
FROM (SELECT SUM(oil_production) as sum_oil_production 

FROM nlidb_result_set 
WHERE state = 'Alagoas' 
GROUP BY year)  

In the case of the example "yearly", the Preprocessor converts the adjective to its 
corresponding noun, in this case, "year". When we receive the NLIDB result set for this 
type of question, we also receive a metadata result set with information regarding the 
timescale in which the data is stored (daily, monthly, yearly, etc.). If the question was 
asked on a different scale, the Processor does the aggregation accordingly (SUM(field) 
and GROUP BY). Figure 3 shows how the Preprocessor recognizes the sentences and 
separates the "average" interpretation, which is the normal aggregation that will be made, 
from the "yearly" interpretation, which is the time-scale aggregation that will be made, 
depending on the time-scale that is stored in the database. 

 

Fig. 3. Aggregations with time-scale differences example 
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5. Conclusions and Future Work 

The main contribution of this work was the creation of a generic module, called 
GLAMORISE, to be used  in NLIDB systems, which allows the processing of queries 
with aggregations, on the condition that the result of the NLIDB is, or can be transformed 
into, a result set in the form of a table. The work addressed aggregations with some 
specificities such as ambiguities, time-scale differences, aggregations in multiple 
attributes, the use of superlative adjectives, basic unit measure recognition, and 
aggregations in attributes with compound names.  

 As future directions, we contemplate dealing with more complex unit measure 
recognition, followed by tackling subqueries and elliptical aggregations. Ellipsis is the 
suppression of a term that can be easily understood by the linguistic context or situation. 
We also consider using questions from previous QALD challenges as a benchmark. 
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