e 157

Improving the Quality of the User Experience by Query
Answer Modification

Jodo Pedro V. Pinheiro', Marco A. Casanova', Elisa S. Menendez>

! Department of Informatics, PUC-Rio,
22453-900 Rio de Janeiro, RJ, Brazil

2Federal Institute of Education, Science and Technology of Sergipe,
49025-330 Aracaju, SE, Brazil

{jpinheiro, casanova}@inf.puc-rio.br, elisa.menendez@academico.ifs.edu.br

Abstract. This paper proposes a process that modifies the presentation of a
query answer to improve the quality of the user’s experience. The process is
particularly useful when the answer is long and repetitive. The process reorga-
nizes the original query answer by applying heuristics to summarize the results
and to select template questions that create a user dialog that guides the pre-
sentation of the results.

1. Introduction

Question Answering (QA) systems combine techniques from multiple fields of computer
science, among which: Natural Language Processing (NLP), Information Retrieval, Ma-
chine Learning (ML), and Semantic Web. Assuming that the user is interested in querying
an RDF knowledge base, a QA system may be split into two parts: Question, which re-
ceives a user’s input in natural language, transforms it into a SPARQL query and searches
the RDF knowledge base; and Answer, which displays consistent results in a human-
readable format to the user.

This paper addresses the problem of query answer modification to improve the

quality of the user’s experience. For example, imagine yourself as a user interacting with
a voice virtual assistant, and you ask an open-ended question about a specific subject,
e.g., “Which artists were born on May 30th?”. The query answer may have a long list
of artists, as shown in Table 1. Instead of listing the results, the virtual assistant may
formulate questions to the user based on the prior result set, such as: “Do you want to list
American or European artists?”; “Do you prefer Jazz, Pop, or Classical music?”; and

“Do you want to filter by active artists?”.

The paper proposes a process that reorganizes the original query answer by ap-

plying heuristics to summarize the results and to select template questions - explained in
detail on Section 3.3 - that create a user dialog that guides the presentation of the results.
The heuristics allow deciding which properties returned in the query answer are interest-
ing to apply aggregations (group by operations) and which template questions best fit
each case. The heuristics also help decide if the answer is ready to be displayed to the
user, or if the answer must be improved.

The rest of the paper is organized as follows. Section 2 summarizes related work.

Section 3 describes the query answer modification process. Finally, Section 4 presents the
conclusions and directions for future research.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

158 »

Artist Genre | Birth Date | Death Date | Gender | Nationality
Goodman, Benny | Jazz 1909-05-30 | 1986-06-13 | Male American
Leonhardt, Gustav | Classical | 1928-05-30 | 2012-01-16 | Male Dutch
Green, CeelLo Pop 1974-05-30 Male American
Biosphere Eletronic | 1962-05-30 Male Norwegian
Fredriksson, Marie | Pop 1958-05-30 | 2019-12-09 | Female | Swedish
Banhart, Devendra | Folk 1981-05-30 Male American

Table 1. Example of question answer for an open-ended question

2. Brief review of related work

The work in [Dalianis and Hovy 1996] addressed the problem of redundancy in text gen-
eration. The authors solved this problem with aggregation, focusing on identifying mech-
anisms or rules to remove redundant information. As an example, the text “Yigal is an
employee at ISI. Hercules is a visitor at ISI. Eduard is an employee at ISI. Kevin is an
employee at ISI. Vibhu is a student at ISI.” can be aggregated as “At ISI, Yigal, Eduard,
and Kevin are all employees; Vibhu is a student; and Hercules is a visitor.”.

The authors developed a questionnaire and applied it to computer scientists. It
was composed of five example sets of input data, and each example contained between
11 and 18 propositions. After analysing the answers, four classes or types of aggregation
rules became obvious: Grouping and collapsing rules, Ordering rules, Casting rules,
Parsimony rules. Furthermore, the paper listed eight aggregation strategies, each related
to one aggregation class.

As future work, the authors suggested a follow-up study involving a larger group
of people, not all of whom being computer scientists for more general results. Also, in
the last section, some scenarios presented unsatisfactory results and were listed as future
improvements.

In [Deutch et al. 2017], the main idea was an approach to present query results as
sentences in Natural Language (NL) with provenance information. The authors argued
that the answers in the query result lack justification and suggested the notion of prove-
nance, which corresponds to including additional information to query results. Also,
provenance information helps validate answers. The paper used the MAS (Microsoft
Academic Research) publication database to validate the results. The proposed solution
consisted of the following key contributions: Provenance tracking based on the NL query
structure, Factorization, Summarization, and Implementation and Experiments.

An important step was provenance tracking based on the query structure. The au-
thors used two external tools in this process. The modified NaLIR (Natural Language In-
terface for Relational databases) tool was used to store exactly which parts of an NL query
translate to which parts of the formal query. The evaluation of the formal query used the
provenance-aware engine SelP - Selective tracking and presentation of data provenance.
It stored which parts of the query “contributed” to which parts of the provenance. Thus,
two mappings are available for the next steps: text-to-query-parts and query-parts-to-
provenance.

This study was the first to address provenance for the NL queries problem. After

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Jodo Pedro V. Pinheiro et al. e 159

implementation and experiments, the authors listed two main limitations of their work.
The sentence generation module was specifically designed to fit NaLLIR, and will need
to be replaced if a different NL query engine is used. Second, the solution is limited to
conjunctive Queries, not supporting unions and aggregations.

Several studies addressed the problem of creating a question-answering (QA) in-
terface to databases. Usually, the proposed QA process has four steps: Question Analysis,
Phrase Mapping, Disambiguation, and Query Construction - not necessarily in this order.
In what follows, we assume that the QA interface is constructed over an RDF knowledge
base, accessed through a SPARQL endpoint.

3. The query answer modification process

This section is organized as follows. Section 3.1 describes the process of transforming a
single-column into a three-column result set. Section 3.2 addresses the use of frequency
analysis based on RDF metadata. Section 3.3 briefly discusses how to construct the user
dialog. Section 3.4 details the use of ranking to present the final result set to the user.

3.1. Transforming single-column into three-column result sets

The query answer modification process we propose starts after the query is executed.
The expected inputs are the SPARQL query and the result set. There are two possible
scenarios: the result set has a single column, or the result set has multiple columns. Our
study focuses on the first case.

We base our discussion on a series of question answering challenges over Linked
Data, referred to as QALD - Question Answering over Linked Data'. Several papers use
QALD to measure quality metrics of system’s answers. We noticed that most queries
listed in the QALD challenges had single-column answers, which calls for enriching the
answers for the purposes of this paper. A simple approach is to add to the instances
returned their property values. Indeed, frequently, the answers represent sets of instances
of the same rdf:type. So, it is straightforward to modify the original SPARQL query to
also retrieve the desired property values.

As an example, consider the question “Which artists were born on May 30th?”.
The result set of the corresponding SPARQL query has instances of type mo:MusicArtist,
as in Figure Ic. Then, by modifying the original SPARQL query, it is possible to also
retrieve property values, as shown in Figure 1d. Note that, in Figure 1d, the column artist
has repeated values. However, instead of normalizing the returned table, we decided to
keep this three-column format to simplify data manipulation.

3.2. Frequency analysis based on computed metadata

Recall that RDF allows representing data and metadata as triples of the form (s, p, 0),
where s is the subject, p is the predicate and o is the object of the triple. Also, recall that
an RDF triple set can be interpreted as a directed labeled graph.

In the process we propose, a set of SPARQL queries is used to generate graph
statistics, which help decide what to do next. These statistics are related to the frequency
of the instances by class and the frequency of the predicates. Subject ranking is based

'http://qald.aksw.org

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

160

prefix me: <http://purl.org/ontology/mo/>
prefix foaf: <http://xmlns.com/foaf/8.1/>

select distinct ?artist
from <http://musicbrainz.org=
where {
tartist a mo:MusicArtist .
tartist dbo:birthDate ?date .
filter(regex(7date, "5-3@%", "i"})) .
}

(a) Single-column query

select distinct ?artist ?predicate Tobject
where {
{
select distinct 7artist
from <http://musicbrainz.org=
where {
7artist a mo:MusicArtist .
?artist dbo:birthDate ?date .
filter(regex(?date, "5-38%", "i"}))
¥
} # prior query as subquery
?artist 7predicate ?Tobject .
filter(isLiteral({7object))
}

(b) Multiple-column query

artist

mo:MusicArtist/5

mo:MusicArtist/6

mo:MusicArtist/1
mo:MusicArtist/2
mo:MusicArtist/3

mo:MusicArtist/7
mo:MusicArtist/8
mo:MusicArtisy'9

artist

predicate

object

mo:MusicArtist/1

foaf :name

"Green, Ceelo"

Jmo:MusicArtist/1

mo:genre "pop
mo:MusicArtist/1|dbo:BirthDate |"1974-05-30"
|mo:MusicArtist/ 1|dbo:Deathpate [""
Imo:MusicAﬂisUI foaf:gender "Male"
|mo:MusicArtisU l|dbp:nationality|"American"

Imo:MusicArtistf?. foaf :name "Leonhardt, Gustav"
|mo:MusicArtist/2 mo:genre "classical"
mo:MusicArtist/2|dbo:BirthDate |"1928-05-30"
mo:MusicArtist/2{dbo:DeathDate |"2012-01-16"
|mo:MusicArtist/2|foaf : gender "Mala"
|m0:MusicArtist.|'2 dbp:nationality|"Dutch”
Imu:MusicAnisU3 foaf:name "Goodman, Benny"

Imo:Mus:icArtislﬂ mo:genre "Jazz"
Imo:MusicArtisUB dbo:BirthDate ["1909-05-30"
Imu :MusicArtist/3|dbo:Deathbate ["1986-06-13"
Imo:MUSiCAnislﬂ foaf:gender "Male"

mo:MusicArtist/10

(c) Single-column result set

Im{l:MI.ISiCAl"EiSU3 dbp:nationality|"American”

(d) Multiple-column result set

Figure 1. Transformation with SPARQL queries

on InfoRank, a family of importance measures proposed in [Menendez et al. 2019]. The
InfoRank metric helps our process prioritize the most relevant triples of the result set. Its

usage is detailed in Section 3.4.

There are two types of frequencies used in the system. A global frequency is
defined over the full graph and is computed only once before any query is executed. On
the other hand, a local frequency is defined over the sub-graph generated as in Section
3.1 and is computed at run time. It is important to highlight that both global and local
Jfrequencies are computed over predicates pointing to literals only.

As an example, Figure 2 shows an instance Al. The initial state (Figure 2a) has
predicates pointing to literals and other instances. Notice that the final state (Figure 2b)
only has predicates pointing to literals and an extra predicate called inforank.

A parameterized threshold is used to filter predicates that are candidates to be used
in a group_by operation. By default, this threshold values is set to 0.4, which means the
predicate must appear in at least 40% of the unique subjects.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

Jodo Pedro V. Pinheiro et al. e 161

“Green, Ceelo” “Green, Ceelo”
“1974-05-30" 5 “Male” “1974-05-30" " “Male”
‘\éh\ ;} \\39'&// 1‘\2\ :? O\ca\//'
N o0 . o
g 5:’.?(\.\‘ \\ :‘/ . 5353& \ j/
" AL nationality _ va marican” 71 Y| nationality _ vAmarican”
— inforank -
g & = g™
el @5;“ > *.b/ \'«'A_,' 4N
"5op” ;/ \“ "s0p”
51 MusicArtist
(a) All predicates (b) Filtered predicates

Figure 2. Filtered predicates by literal and highlighted InfoRank

3.3. Computing the user dialog

As mentioned in the previous section, an aggregation process is applied over the filtered
predicates. These predicates are evaluated sorted by its local frequency. Another thresh-
old is related to the number of aggregated values. If this number is less than or equal to
the default value - which is 5 - then the process chooses which template question must be
used and returns a single new question to the user.

These template questions are choice questions, formulated in natural language,
that offer aggregated predicates as alternatives to the user. Using the same example as
before, the filtered predicates are: foaf:gender, with two aggregated values - female and
male; and dbo:background, with three aggregated values - non_performing_personnel,
non_vocal_instrumentalist, and solo_singer. Thus, the process may generate the following
questions :

1. Do you prefer {female}, or {male} artists?
2. Between {non_performing_personnel}, {non_vocal_instrumentalist},
and {solo_singer}, which artists do you prefer?

Since foaf:gender precedes dbo:backgroud in the computed frequencies, only the
first question displayed above is returned to the user. If the user keeps interacting with the
system, the whole process restarts.

3.4. Ranking the final results

This last step is only triggered when the process detects that there are no other candidate
predicates for aggregation. Thus, a result set must be submitted to the user. The inforank
metric is used to sort and filter relevant information in the final answer.

Finally, since one of the main goals of the query answer modification process is to
reduce the final query answer, the number of rows returned may be limited.

4. Conclusions

This paper proposed a process that reorganizes a query answer to improve the user’s
experience. The process is based on heuristics to summarize the results and to select
template questions that create a user dialog that guides the presentation of the results. The
heuristics allow deciding which properties returned in the query answer are interesting to
apply aggregations (group_by operations) and which template questions best fit in each
case.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

162

Parameterized thresholds allow customized behavior for each scenario. These
thresholds are used to filter interesting properties to apply aggregations and to select tem-
plate questions that best fit in each case. Also, this approach is easily pluggable into any
QA system.

Future work will contemplate further experiments to improve the heuristics that
drive the user dialog based on template questions.

References

Dalianis, H. and Hovy, E. (1996). Aggregation in natural language generation. In Car-
bonell, J. G., Siekmann, J., Goos, G., Hartmanis, J., Leeuwen, J., Adorni, G., and
Zock, M., editors, Trends in Natural Language Generation An Artificial Intelligence
Perspective, volume 1036, pages 88—105. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Deutch, D., Frost, N., and Gilad, A. (2017). Provenance for natural language queries.
Proceedings of the VLDB Endowment, 10(5):577-588.

Diefenbach, D., Lopez, V., Singh, K., and Maret, P. (2018). Core techniques of ques-
tion answering systems over knowledge bases: a survey. Knowledge and Information
Systems, 55(3):529-569.

Hu, X., Dang, D., Yao, Y., and Ye, L. (2018). Natural language aggregate query over RDF
data. Information Sciences, 454-455:363-381.

Isotani, S. and Bittencourt, 1. I. (2015). Dados abertos conectados. Novatec, Sdo Paulo.
OCLC: 959729676.

Menendez, E. S., Casanova, M. A., Leme, L. A. P., and Boughanem, M. (2019). Novel
node importance measures to improve keyword search over rdf graphs. In International
Conference on Database and Expert Systems Applications, pages 143—158. Springer.

Pan, J. Z., Vetere, G., Gomez-Perez, J. M., and Wu, H., editors (2017). Exploiting Linked
Data and Knowledge Graphs in Large Organisations. Springer International Publish-
ing, Cham.

Reutter, J. L., Soto, A., and Vrgoc, D. (2015). Recursion in SPARQL. In Arenas, M., Cor-
cho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier,
M., Heflin, J., Thirunarayan, K., Thirunarayan, K., and Staab, S., editors, The Seman-
tic Web - ISWC 2015, volume 9366, pages 19-35. Springer International Publishing,
Cham.

35° Simposio Brasileiro de Bancos de Dados (SBBD 2020)

