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Abstract. Data duplication is a common problem on data streams processing
applications that occurs due to software error or adoption of data loss
prevention measures, jeopardizing real-time data analyses. This paper explores
stream-based deduplication methods to identify challenges from these methods
and proposes a decision method to choose the most appropriate strategy for a
domain. This work investigates native solutions and auxiliary tools to provide
data deduplication and fault tolerance. The experimental results show that it is
necessary to use fast additional storage to persist the read keys, as long as they
can appear, or to use the optimized storage, with a quick key search.

1. Introduction

Batch processing is the processing of a large volume of data at once, which only allows
decisions based on historical data, which takes hours or days to analyze the data. An
advantage of this type of processing is the possibility of including semantic rules of the
domain, that is, complex rules since decision-making does not need to be immediate.

However, some companies require real-time decision making which needs the use
of data stream processing (DSP). According to Gedik et al. (2008), DSP is a method to
process a time-ordered series of events on-the-fly. In this way, companies relax in their
domain rules to guarantee agile decision making, with data analysis taking place in
minutes or even seconds. In that case, domain rules are no longer a priority.

A crucial and common domain rule, which that may influence the performance of
data processing, is the data uniqueness. Although in relational databases, this uniqueness
is guaranteed by integrity restrictions, the same is not valid in DSP systems. In DSP
systems, it i1s common to persist duplicate data due to implementations that prioritize fast
persistence by removing domain rule checks as the volume of data increases.

Some DSP frameworks, such as Apache Spark [Zaharia et al. 2010], have real-
time deduplication mechanisms. These mechanisms may consume a high amount of
resources in a cluster, which can cause application failures and data loss while the
application is unavailable. In this way, another relevant requirement to investigate is fault-
tolerant. This work investigates Spark's native deduplication mechanisms and possible
fault-tolerant solutions, to analyze the challenges from each solution, proposing a solution
choice method based on use cases.
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The remainder of this paper is organized as follows. In Section 2, we discuss the
related works. In Section 3, we provide an overview of streaming state management
methods for real-time data deduplication. Section 4 details our experimental results.
Section 5 concludes this work.

2. Related works

There are many studies on fault-tolerant streaming state management [Kwon et al. 2008]
[Fernandez et al. 2013][Wu and Tan 2015]. Most of them propose standalone solutions
that are not interoperable with a general DSP framework like Spark, Flink', and Samza?.
In addition, many works have analyzed how these DSP frameworks can be natively fault-
tolerant to prevent state loss [Carbone et al. 2017][Noghabi et al. 2017]. These solutions
often do not provide a native way to store state outside the cluster to prevent cluster node
termination, standard on cloud environments, and lose this data.

There are some novel solutions to prevent state loss that can be used by these
DSPs frameworks, like Megaphone [Hoffmann et al. 2019] and Rhino [Del Monte et al.
2020], but these solutions do not have their source code publicly available.

Data deduplication methods are often discussed as a subsequent step after the data
is stored, with batch [Kaur et al. 2018][Xia et al. 2019] and real-time [Duan and Xiong
2015][Xia et al. 2016]. Our work evaluates how deduplication can be applied to data
before its persistence (ingestion step). This approach enables less data to be stored and to
be analyzed by future queries.

3. Methods for real-time data deduplication

Apache Spark is a data processing framework that originated as a batch solution with
better performance than Hadoop MapReduce [Zaharia et al. 2010]. Stream processing has
been added as an evolution of the batch model, in which at intervals of time, a subset of
data, known as micro-batch, is extracted, transformed, and persisted.

An advantage of this evolution is the use of the batch model's transformation and
persistence operations, and mainly of the table abstraction guaranteed by this model
known as the data frame. Besides, new activities were included in the streaming model,
which persists in memory parts of the data consumed among micro-batches, available
through a time window configured in the system. This data set is the streaming state.

3.1 Apache Spark deduplication mechanisms

This section presents the two native methods (using distinct and dropDuplicates
operators) available in Apache Spark to deduplicate the data.

The simplest deduplication method for a dataframe is the distinct operator, which
removes duplicates by comparing rows, column by column. At the end of a micro-batch,
the deduplicated dataframe is persisted at the destination. The state is updated with new
rows for comparisons by subsequent micro-batches.

Another operator used to avoid the excessive use of memory and the delay of
future micro-batches is the dropDuplicates. It performs the comparison between rows

!https://flink.apache.org/

2 https://samza.apache.org/
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using only their keys, avoiding unnecessary comparisons of all columns of a data frame,
and persisting only these keys in memory.

By default, Apache Spark does not persist the streaming state on disk to avoid the
loss of data necessary to guarantee the uniqueness if the application needs to be restarted.

3.2 Auxiliary tools for deduplication in Apache Spark

To avoid losing the streaming state, it is common to use auxiliary tools to persist it outside
the application. It is updated at the end of each micro-batch and consulted when
comparing the rows of a dataframe.

Apache Ignite
Apache Ignite is a non-relational database that persists data in memory, but that

may be configured to copy all data to disk, keeping only the last data accessed in memory
[Stan et al. 2019].

This database has SQL-like functions that allow us to perform critical
comparisons on the database, ensuring that the Spark cluster does not need to persist a
state between micro-batches, reducing the memory consumption by the application.
Another benefit of Ignite is the replication of data stored in memory and on disk. This
allows a new instance of the database to improve query performance if the number of
comparisons increases and ensures that if one instance fails, the other instances will be
able to make all data available without loss. To verify that a key did not exist in Ignite, a
LEFT ANTI JOIN type join is performed between the data keys processed in the current
micro-batch with the already processed keys persisted in Ignite.

Apache Hudi

Apache Hudi® is a file format which persist the keys of each data in a file in a
Bloom filter contained in its metadata. This filter is consulted by all Spark writing
operations to validate the existence of each data produced at the end of a micro-batch, to
delete or update the already persisted data in each file. It is important to note that, unless
configured, Hudi files do not delete or update the rows, but rather add a new version of
this row so that it is possible to query historical data. If history is disabled, it is possible
to make it impossible to keep duplicate keys in the destination.

4. Experiments

This section presents experimental environment and results.

4.1 Experimental Environment

An application that monitors the RAM usage and evaluates each micro-batch's execution
time for each deduplication method was implemented with Scala. The application (1)
consumes messages from an Apache Kafka topic, (i1) removes duplicate messages, and
(iii) persists these messages in an AWS S3 bucket on Parquet format*.

The cluster in which the application was executed uses the Amazon Web Services
(AWS). There is an Elastic MapReduce (EMR) service, with six r5.2xlarge nodes, which

3 https://hudi.apache.org/
4 Except with the Apache Hudi file format test
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has eight cores of the Intel Xeon Platinum 8175 processor and 64GB of memory RAM
each, performing the slave function of the cluster, and one r5.xlarge master node with
half the specifications of the slaves’ nodes.

The Apache Kafka was configured in a 3-node mS5 large cluster, with two cores
of the Intel Xeon Platinum 8175 processor and 8GB of RAM each. The message topic
was partitioned into 30 parts, using the keys of each message as partitioning criteria.

In the Apache Ignite test, this database was instantiated on Spark slave nodes to
prevent data traffic out from the cluster during data comparison, avoiding the degradation
of application performance.

In the Apache Hudi test, the application was configured not to persist historical
data. Also, the default size limit of 128MB was not changed.

We have used a data set with a two-week sample from a Brazilian classifieds
company, totaling about 540 million messages originating from Kafka, each with 276
fields, of which only 23% were unique messages, adding up to a total of 1.624 TB of data
processed by Apache Spark.

The company had two important domain rules: a duplicate data could be produced
even over a year after its first appearance, and the ingested data needs to be available
within a ten minutes delay from creation at most. To enforce these rules, no time window
was configured for any test (as it would be unfeasible to maintain its keys in memory for
a year), and each micro-batch was triggered every tenth minute. The system was
implemented to consume 10 million messages per micro-batch, totaling 54 micro-batches.

Therefore, it is possible to analyze the difference among micro-batches in an
extreme case and force a high consumption of RAM. Since the domain rule imposed by
the company in this application, there is a chance a duplicate message will be produced
with up to 1 year away from the original, making it impossible to use temporal windows.

4.2 Experimental Results

The results presented here comprise the average of five repetitions of each test,
which were performed in isolation on the cluster. To prevent any hidden RAM usage from
being considered, the cluster was deleted at the end of the last micro-batch and
provisioned anew for the next test.

The graphics in Figure 1 show the memory consumption of the four case studies,
in which it is possible to highlight the high use of memory in the use of the distinct method
(Figure 1-a), which failed during the execution of the 17th micro-batch on all repetitions
due to lack of memory in the cluster nodes. By zooming it, figure 1-b shows that with the
other methods, memory consumption remained below SOGB. DropDuplicates and Ignite
methods grow linearly with each micro-batch, while Hudi is always oscillating below
5GB. It is worth mentioning that there is a considerably higher consumption in Ignite
compared to dropDuplicates. This is because of the replication of keys among instances
of Ignite. It is also necessary to emphasize that, in case of failure, Ignite would be able to
recover data that would have been lost in a restart of the application only with
dropDuplicates.

Figure 2 shows the duration (in seconds) of each micro-batch processing. There
were peaks in the chart, especially during the 12th micro-batch. This is due to the
comparison made by this method considering all columns if there is no difference. For
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the dropDuplicates process, there is a significant improvement in time after the 13th
micro-batch. As most messages are duplicated, the state of the application already has
most of the possible keys in this data set. Hudi had the worst performance, as expected,
due to the inevitable metadata persistency in S3, outside the cluster.

Figure 1. Memory consumption of micro-batches

Figure 2. The execution time of micro-batches

Despite these results, it is essential to note that for Ignite and Hudi, duplicates
were not removed in any other way than the specific solution itself. This means duplicates
within the same micro-batch were not treated, only among micro-batches. An advantage
of Hudi is that the file format itself displays only one version of a key, so deduplication
occurs automatically during the query. Also, the format adds new data to the same file
until it reaches a size limit. This feature prevents many small files from being in the data
repository, impacting the execution time of a subsequent query to that data.

Also, given how Spark stores state, its native methods do not have any protection
against hardware or software failure. On this regard, using Ignite that is a NoSQL
database that replicates its data across its nodes, or using Hudi that stores the necessary
metadata to remove duplicates within the data itself, achieves the expected goal related
to fault tolerance.

5. Conclusions

This paper compared four deduplication methods for data stream processing as well as
the fault tolerance capability, by their RAM usage and impact on micro-batch duration.

Through the experimental results, it is possible to notice that in scenarios with a
massive volume of processed data per minute, only the native operators' methods of
Apache Spark are not enough to persist state between micro-batches of data of a high
amount of processed data. Both Ignite and Hudi proved to be efficient in real-time data
deduplication. However, it is possible to notice the advantage of Ignite in time processing
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and Hudi in memory consumption. In this case, it is necessary to consider the priority of
the analysis and how much resource is available when deciding which solution to choose.

Future work will address new comparisons with other data processing frameworks
like Apache Flink, and different stateful scenarios can be considered, such as anomaly
detection. Furthermore, the fault tolerance test of Hudi and Ignite may be deepened
through simulated failures as losing a node or network bandwidth degradation.
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