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Abstract. The growing popularity of audio and video streaming, industry 4.0
and IoT (Internet of Things) technologies contribute to the fast augment of
the generation of various types of data. Therefore, to analyze these data for
decision-making, supervised machine learning techniques need to be fast while
keeping a suitable predicting performance even in many real-life scenarios
where labeled data are expensive and hard to be gotten. To overcome this prob-
lem, this work proposes an adaptation to the Very Fast C4.5 (VFC4.5) algorithm
implementing on it a semi-supervised impurity metric presented in the literature.
The results pointed out that this adaptation can slightly increase the accuracy
of the VFC4.5 when the datasets have the presence of a very few amount of la-
beled instances, but it increases the training time, especially when the number
of labeled instances in the datasets increase.

1. Introduction
The amount of data generated and shared daily is increasing fast in the last years. This
phenomenon is pushed up by emerging technologies like audio and video streaming, in-
dustry 4.0 and IoT (Internet of Things). According to IDC, more than 59 zettabytes
(ZB) of data were created, captured, copied, and consumed in the world only in 2020
[Reinsel et al. 2021]. This means that efficient analytics solutions need to be developed
to handle the data generated in this scenario [Ip et al. 2018]. Therefore, the Machine
Learning techniques need to be even faster to process this huge amount of data while
keeping a suitable performance.

Among the available supervised learning techniques, decision trees are preferred
in many applications because they provide an easy to visualize and understand model and
they are one of the most powerful methods in machine learning [Bifet et al. 2017]. How-
ever, in many supervised learning applications, labeled instances are difficult, expensive,
or time-consuming to be obtained because they require empirical research or experienced
human annotators [Tanha et al. 2014]. Therefore, this circumstance would be an inhibitor
factor to apply decision trees.

Nevertheless, this shortcoming can be mitigated by enabling the decision tree in-
duction algorithms to support semi-supervised learning. The goal of semi-supervised
learning is to combine the information of the unlabeled examples with the explicit
classification of the labeled examples for improving the classification performance
[Chapelle et al. 2006]. Therefore, unlike a traditional decision tree, the semi-supervised



decision tree considers not only the class labels but also the distributions of input at-
tributes, which reflect and incorporate the structural or topological properties of the train-
ing dataset [Kim 2016].

Decision trees have another limitation concerning fast classification related to their
high computational cost, mainly in datasets with continuous attributes. To find the optimal
cut point of the continuous attributes, they need to sort the n examples for the m attributes,
which leads to a complexity of O(m × n log n) and then calculates the split information
gain for each k cut point which leads to a complexity of O(m×n×k) [Cherfi et al. 2018].
Therefore, traditional decision tree algorithms are not prepared to deal with fast and semi-
supervised model induction.

This work adapts the Very Fast C4.5 (VFC4.5) algorithm to enable it to deal
with semi-supervised learning called SSL-VFC4.5. The VFC4.5 was chosen because
it adapted the powerful and well-known C4.5 algorithm speeding up its models induction
by lowering the computation time complexity of finding the best cut point of continuous
attributes to O(2 ×m × n) [Cherfi et al. 2018]. Besides that, its ability to handle semi-
supervised learning is achieved by replacing its entropy-based supervised induction metric
to the impurity semi-supervised induction metric proposed by [Levatić et al. 2017].

The rest of the paper is organized as follows: Section 2 presents a overview of
fast and semi-supervised learning decision trees. Section 3 describes the proposed adap-
tation in VFC4.5. Section 4 shows the experiments and results. Finally, 5 highlights the
conclusion and future work.

2. Related Works

There are several works in the literature concerning semi-supervised classifica-
tion using decision trees. Most of them utilize one or more supervised base
learners. They iteratively train models with the original labeled data as well
as with the predicted pseudo-labels of unlabeled instances from earlier iterations
of the learners using approaches such as seft-training, co-training or boosting,
like those presented by [Leistner et al. 2009], [Song et al. 2011], [Settouti et al. 2013],
[Santos and Canuto 2014] and [Tanha et al. 2017]. However, standard decision trees can
not be effective in semi-supervised learning using self-training because they do not pro-
duce reliable prediction probability estimation [Van Engelen and Hoos 2020]. Besides
that, ensemble methods like boosting and Random Forest are not fast due to the induction
of several models.

Methods based on the clustering-then-label approach, such as
[Chen and Wang 2011], [Tanha et al. 2014] and [Kim 2016], apply an unsupervised
clustering to guide the classification process, not considering the structural characteristics
of data for partitioning [Van Engelen and Hoos 2020]. Besides that, other are intrinsically
semi-supervised methods, which use labeled and unlabeled samples directly into the
induction metric, like those presented in [Levatić et al. 2017], [Levatić et al. 2018] and
[Ortiz-Dı́az et al. 2020]. They have the advantage of do not rely on any intermediate
steps or supervised base learners [Van Engelen and Hoos 2020].

Regarding fast learning, the Very Fast Decision Tree (VFDT) evaluates the data
only once and update the model, discarding that data afterwards. This allows the model



increases continuously [Domingos and Hulten 2000]. Also, the Very Fast C4.5 (VFC4.5)
improves the way of C4.5 finds the threshold of a continuous attribute by reducing the
number of candidate cut points [Cherfi et al. 2018]. However, their shortcoming is that
both do not support the semi-supervised learning. On the other hand, the Clustering
Feature Decision Tree (CFDT) integrates a scalable method of micro-clustering within
the VFDT algorithm as classifiers in tree leaves to improve classification accuracy and
reinforce the any-time property [Xu et al. 2011].

We propose a fast semi-supervised decision tree induction algorithm using the
VFC4.5 as a base classifier and substituting its original split metric (entropy) for the semi-
supervised impurity metric proposed by [Levatić et al. 2017].

3. Proposal: SSL-VFC4.5 algorithm
This work proposes an adaptation for the Very Fast C4.5 called SSL-VFC4.5, which en-
ables it to perform semi-supervised classification. This new proposal takes the VFC4.5
algorithm [Cherfi et al. 2018] as base classifier and introduces on it the semi-supervised
impurity-based metric proposed by [Levatić et al. 2017] to calculate the gain of infor-
mation when splitting a node. Therefore, the gain of information is calculated by two
fundamental components: (1) the impurity for labeled instances and (2) the impurities for
unlabeled instances.

The first component calculates the impurity based on the Normalized Entropy,
using the original metric of the VFC4.5 algorithm. This calculation is done using the
Equation 1.

Impurityl(El, Y ) =
Entropy(El, Yl)

Entropy(Efull
l , Y full

l )
(1)

Where, El and Yl represent the set of instances and labels of the analyzed labeled
data in a given node of the tree, and Efull

l and Y full represent the set of instances and
labels of all labeled data used in the construction of the tree.

The second component, which comprehends the treatment of unlabeled data, uses
the Normalized Gini to calculate the impurity for attributes with nominal values and the
Normalized Variance for attributes with numeric values, using Equation 2 and Equation
3, respectively.

Impurityu(E,Xi) = Gini(E,Xi)

Gini(Efull,Xfull
i )

, ifXi is nominal (2)

Impurityu(E,Xi) = V ariance(E,Xi)

V ariance(Efull,Xfull
i )

, ifXi is numerical (3)

Where E represents the set of instances in a given tree node (whether labeled or
not) and Xi the set of values from its ith attribute being evaluated, Efull represents the set
of all instances of the tree (whether labeled or not) and Xi the set of all values from its ith

attribute being evaluated.

Finally, these two components are combined in Equation 4 to calculate the impu-
rity of a node. The Impurityl performs the supervised part of the training, using only the



instances with a label in Y to calculate the impurity metric with Equation 1. In contrast,
the Impurityu performs the unsupervised part of the training, carrying both labeled and
unlabeled instances, where the values of the X ′

is attributes are used for calculating the im-
purity metric, with Equation 2 for nominal X ′

is and Equation 3 for numerical X ′
is. This

formula presents a w parameter used to define the impact of unsupervised learning on the
induction process. It can vary from 0 to 1, comprehending completely unsupervised and
fully supervised learning, respectively.

ImpuritySSL(E) = w ∗ Impurityl(El, Y ) +
(1− w)

|X|
∗

|X|∑
i=1

Impurityu(E,Xi) (4)

3.1. Implementation

The proposed SSL-VFC4.5 algorithm was implemented over the J48, which is an imple-
mentation of the C4.5 algorithm available in Weka [Hall et al. 2009]. Algorithm 1 shows
its main structure. In line 1 an empty list called Analysis pending nodes list is initial-
ized. This list stores all the nodes of the tree that will be analyzed. In line 3, the root
node N is added as the first to be analyzed. This first node comprehends all the instances
of the analyzed dataset (S). Starting from the root node, the top-down classification tree
induction process is performed by means of successive nodes division. Inside the loop
(lines 5 to 11), while there are still nodes to be analyzed, the algorithm tries to split them
(lines 7 and 8) using the best attribute selected by Algorithm 2 (line 6) and includes these
new nodes in the pending nodes list to be analyzed further (line 9), otherwise it marks the
node as a leaf (line 11).

Algorithm 2 presents how the best split attribute and cut-off point are selected.
For each attribute (line 1), if the attribute is nominal (line 2), it splits the instances of
the analyzed node according to their nominal values (line 3). However, if the attribute
is numerical (line 4), it splits the instances of the analyzed node according to their mean
and median values. After that, it verifies which of the two values produces the highest
information gain and selects it (lines 7 to 10). Finally, it substitutes the previously found
optimal split attribute and cut-off point to the new one, if it provides higher information
gain.

To implement the SSL-VFC4.5, the main modifications in the original version of
the C4.5 algorithm were:

1. Modification of the metric used to calculate the impurity of the node. The impurity
metric showed in Equation 4 replaced the original entropy metric of the C4.5
algorithm. This metric introduces the analysis of unlabeled instances to determine
the best division attribute of each node (line 6 of Algorithm 1). Therefore, it
assesses the characteristics of the attributes in both labeled and unlabeled instances
to determine if there are gains in dividing the analyzed node.

2. Substitution of the way to select the cut-off value for numeric attributes. In the
proposed SSL-VFC4.5, the original way of calculating the cut-off points was re-
placed by the calculation of the mean and median values as suggested in VFC4.5
[Cherfi et al. 2018]. Algorithm 2 shows how the mean and median values are cal-



culated and the one that provides the greatest gain of information is selected as the
cut-off point.

Algorithm 1: Semi-Supervised Learning Very Fast C4.5
Input:

S: Set of labeled or unlabeled examples.
w[0 . . . 1]: Weight parameter for supervised and semi-supervised learning.
attList : List of attribute.

Output: SSL V FC4.5 Tree: A model decision tree for semi-supervised
learning induced according to the S training instances data set.

1 pendingNodesList← Ø
2 Create SSL V FC4.5 Tree a tree with a single node N (the root) with all

instances
3 pendingNodesList← pendingNodesList ∪N
4 while pendingNodesList <> Ø do
5 Extract nextNode from pendingNodesList
6 splittingCriterion← selectBestSplitAttribute(nextNode, attList)
7 if splittingCriterion = true then
8 newNodes← split(nextNode, splittingCriterion)
9 pendingNodesList← pendingNodesList ∪ newNodes

10 else
11 Mark nextNode as a leaf node labeled with majority class
12 return SSL V FC4.5 Tree

Algorithm 2: Select the best split attribute for a node
Input: Smn : Set of m instances with n attributes that belong to the analyzed

node (nextNode); attList : List of attribute.
Output: splittingCriterion(aopt: the optimal attribute, cpopt: the best cut-off

point);
1 foreach atti ∈ attList do
2 if atti is nominal then
3 Scp ← Split S by the nominal values of the atti
4 else

/* If the attribute is numerical */
5 Scp1 ← Split S by the mean(S1i,...,mi) of the atti
6 Scp2 ← Split S by the median(S1i,...,mi) of the atti
7 if infoGain(Scp1 , atti) ≥ infoGain(Scp2 , atti) then
8 cp← cp1;
9 else

10 cp← cp2;
11 if infoGain(Scp, atti) ≥ infoGain(Scpopt , aopt) then
12 aopt ← atti
13 cpopt ← cp

14 return (aopt and cpopt as splittingCriterion)

4. Results assessment
We evaluate the performance of the SSL-VFC4.5 concerning its predictive accuracy and
time spend to build the models comparing it with the following algorithms:

• C4.5 algorithm: Supervised algorithm proposed by Quinlan [1993] and available
in Weka as the J48 implementation.



• VFC4.5 algorithm: Supervised algorithm based on C4.5, proposed by Cherfi et
al. [2018], which speeds up the process of identifying the cut-off points of numer-
ical attributes. It was implemented over the J48 algorithm available in Weka.

• SSL-VFC4.5 algorithm: Semi-supervised algorithm based on the VFC4.5 algo-
rithm proposed in this work. As same as VFC4.5, it was also implemented over
the J48 algorithm available in Weka.
These algorithms are compared using different datasets mainly obtained from the

UCI repository [Lichman 2013]. Table 1 describes the characteristics of the seven used
datasets: name, number of instances, number of discrete attributes, number of numeric
attributes, number of different classes and if there are missing values for any attribute.

Table 1. Used datasets.

Dataset Name Instances Discrete Numeric Classes Missing data
Abalone 4177 0 8 3 No

Adult 32561 9 5 2 Yes
Bank 45211 10 6 2 Yes

Banknote 1372 0 4 2 No
Biodegradation 1055 0 40 2 No

Eyestate 14980 0 14 2 No
Madelon 2000 0 500 2 No

Mushroom 8124 22 0 2 No

All the experiments were performed over Weka [Hall et al. 2009] framework for
data mining. Weka provides a collection of evaluation tools and a great variety of known
algorithms. The algorithms were evaluated using the ten-fold cross-validation method.

4.1. Methodology
To assess the behavior of each algorithm to deal with the presence of unlabeled instances,
the class of most of the instances was removed during the training stage. The values
of the rest of the attributes remained unchanged. Therefore, only a small part of the
data remained classified. Therefore, the supervised assessed algorithms were trained only
with the small portion of remained labeled instances, in contrast to the semi-supervised
one, which used the unlabeled instances, too. However, in the testing stage, the original
class of each instance was compared with the class predicted by the model to evaluate its
accuracy.

To simulate different amount of labeled data, seven different datasets were created
from each original ones. The difference between them is that they have subsets of 25, 50,
100, 200, 350, 500, and 1000 classified instances, respectively. The rest of the instances
of each dataset had their class removed. The choice of the instances that maintained their
class was made through a uniform random distribution. This approach was applied to
evaluate the robustness of the algorithms to build models regardless of the number of
labeled instances.

The experiments were carried out using the same standardazed configuration op-
tions for all the algorithms. Some of the configurations are: the value of 0.25 as confi-
dence factor and the value of 0 as minimum limit to obtain information. Besides that, all
the algorithms used the same pruning procedure presented in the original J48.



The proposed semi-supervised learning algorithm uses a parameter w that is ad-
justed in the training phase. Therefore, to achieve the best possible result for each test, it
is necessary to find the best value of w. With this objective, 11 evaluations were carried
out with different values of w, starting from 0.0 (not supervised), increasing by 0.1 in each
execution, until reaching the value of 1.0 (totally supervised).

All algorithms were evaluated using two criteria. The first one was the accuracy
analysis, which is the percentage of correctly classified instances. The second one was
the runtime analysis, which is the total time spent to build the trees. The time consumed
to find the best value of w was not considered. To carry out the analysis efficiently, scripts
were developed in Python programming language to automate the execution of the tests
through the command line interface provided by Weka.

4.2. Analysis of the results

This section shows the assessment results of the algorithms in each dataset. Section 4.2.1
presents the accuracy analysis while Section 4.2.2 presents the runtime analysis.

4.2.1. Accuracy analysis

Figure 1 presents the accuracy achieved by the algorithms in the presence of unlabeled
instances. The proposed SSL-VFC4.5 algorithm achieved a slightly better average of ac-
curacy, around 1%, for (a) Abalon, (c) Bank, and (h) Mushroom datasets. In contrast,
it had slightly worst average accuracy, also near to 1%, in (b) Adult, (d) Banknote, (e)
Biodegradation, (f) Eyestate, and (g) Madelon datasets. These results indeed do not rep-
resent a statistical significance difference when it was applied the Nemenyi statistical test.

However, when analyzing in detail each assessed dataset, it is possible to see that
the proposed SSL-VFC4.5 has presented slightly better accuracy with few amount of
labeled data, i.e. 25 and 50 labeled instances. This can be observed in the (b) Adult, (c)
Bank, (g) Madelon, and (h) Mushroom datasets. On the other hand, it slightly decreased
its accuracy when the number of labeled instances got increased. This can be seen in the
(e) Biodegradation, (f) Eyestate and (g) Madelon.

Besides that, Figure 1 also shows that it obtained the best result in the (c) Bank
dataset, with a stable behavior for every subset of labeled data and with an increment of
accuracy with 1000 labeled instances. This behavior was similar in the other datasets with
more discrete attributes than numerical ones, indicating that the proposed SSL-VFC4.5
provides better splits for discrete attributes. In contrast, it has presented its worst accuracy
in the (g) Madelon dataset, especially when the number of labeled instances got increased.
The (g) Madelon dataset has 500 numerical attributes, which represents a massive calcula-
tion of numerical cut-off points. Therefore, this indicates that the proposed SSL-VFC4.5
did not perform appropriately with a considerable amount of numerical attributes, caused
by the variance calculation. However, this problem of degradation of accuracy did not
happen when the dataset has less than a hundred numerical attributes, as seen in the (e)
Biodegradation and the (f) Eyestate datasets. Therefore, this indicates that the proposed
SSL-VFC4.5 has an equivalent accuracy performance compared with the others when the
datasets do not present a huge amount of features.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Results of the accuracy of the algorithms on the assessed datasets. (a)
Abalone, (b) Adult, (c) Bank, (d) Banknote, (e) Biodegradation, (f) Eyestate,
(g) Madelon, (h) Mushroom.



4.2.2. Runtime analysis

The second assessed criterion was the time spent to build the models. The results are
presented in Figure 2 where the algorithms are compared according to the runtime (in
seconds) to build the models in relation to the number of labeled instances processed. For
the semi-supervised algorithm, the best value of w was selected in the assessments.

The supervised learning algorithms are faster than the proposed SSL-VFC4.5 al-
gorithm, especially when the number of labeled instances increase. One reason for this
result is that the SSL-VFC4.5 algorithm deals with all the instances (labeled or unlabeled),
while the supervised algorithms only analyze the labeled ones. Besides that, the impurity
metric applied in the SSL-VFC4.5 (see Equation 4) performs a nested-loop over all the at-
tributes of the instances to assess the unsupervised part of the impurity metric. Therefore,
this is a time-consuming task with O(n2) time complexity, which considerably increases
the runtime of building the models.

When analyzing in detail each assessed dataset, it can be seen that the VFC4.5
algorithm did not present less execution time than the C4.5 algorithm as expected. Be-
sides that, in some experiments, the VFC4.5 presented execution time equal to the SSL-
VFC4.5, as observed in (d) Banknote with 50 labeled instances and (f) Eyestate with 50
labeled instances too. Also, it can be seen that the SSL-VFC4.5 had a quite worst execu-
tion time on the (e) Biodegradation, (g) Madelon and (h) Mushroom, when the number
of labeled instances increase. However, even for this datasets the SSL-VFC4.5 presents a
similar execution time for 25 and 50 labeled instances.

In summary, the SSL-VFC4.5 algorithm has a similar and compatible execution
time compared to the other algorithms for few labeled instances, i.e., 25 to 100 instances,
but in some cases, especially in datasets with many attributes, it gets worse execution time
for datasets with more than 100 labeled instances.

4.3. Discussions about the experiments

Based on the results obtained in the assessments, it can be noted that regarding the average
accuracy values the algorithms did not present a significant difference. For example, in
datasets such as (d) Banknote and (h) Mushroom they achieved almost identical results.
However, when the datasets have lower number of labeled instances, the SSL-VFC4.5
achieved better accuracy than the VFC4.5. Although, it is valid to highlight that for (f)
Eyestate and (g) Madelon datasets, the SSL-VFC4.5 did not have suitable accuracy when
the number of labeled instances increase. Nevertheless, in the (g) Madelon dataset, all the
algorithms showed an irregular behavior depending on the number of labeled instances.

In terms of runtimes, the SSL-VFC4.5 algorithm achieved higher values than the
supervised algorithms, especially in datasets with many attributes and instances. The
main factor that increases the runtime of the semi-supervised algorithm is the need to
calculate the impurity for all the attributes in the unsupervised part of the Equation 4,
which add a O(n2) time complexity to the processing. Besides that, it needs to process
all the unlabeled instances while the supervised algorithms ignore them.
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Figure 2. Results of the runtime of the algorithms on the assessed datasets. (a)
Abalone, (b) Adult, (c) Bank, (d) Banknote, (e) Biodegradation, (f) Eyestate,
(g) Madelon, (h) Mushroom.



5. Conclusion and future work

This paper presents an adaptation to the VFC4.5 algorithm to deal with semi-supervised
learning, called SSL-VFC4.5. Therefore, this work proposed an algorithm that could per-
form suitably classifications in scenarios with few labeled instances, extracting relevant
information from instances that are not labeled.

The original supervised entropy-based split metric used by VFC4.5 was substi-
tuted to the semi-supervised impurity-based metric proposed by [Levatić et al. 2017]. The
proposed SSL-VFC4.5 was implemented over the version of the C4.5 available in Weka,
named J48. Therefore, we first implemented the very fast extension of C4.5 over the J48,
turning it a VFC4.5, and after we implemented the semi-supervised impurity-based metric
over the already adapted VFC4.5.

Throughout the performed assessments, it was possible to test the proposed SSL-
VFC4.5 in different scenarios and compare it the C4.5 and VFC4.5. As result, it was
shown that the SSL-VFC4.5 achieved better accuracy than VFC4.5 in more the half of the
test datasets with the presence of 25 and 50 labeled instances. However, no statistically
significant differences among the achieved accuracies.

Nevertheless, considering the runtime assessment, it could be observed that the
SSL-VFC4.5 can induce models as fast as the other algorithms with few labeled instances
(25 and 50 instances). However, when the number of labeled instances increases, its
execution time increases faster than the other assessed algorithms. Therefore, compared
with C4.5 and VFC4.5, we can infer that the SSL-VFC4.5 algorithm can induce slightly
more reliable models than VFC4.5, with suitable runtime, when the datasets have very
few labeled instances.

Future work aims to implement a feature selection strategy to first select the more
relevant attributes of the training dataset before performing the semi-supervised learning
using the proposed SSL-VFC4.5. The feature selection aims to reduce the number of
analyzed attributes in the unsupervised part of the impurity-based metric and thus reduce
the time to build the models in the SSL-VFC4.5 algorithm.
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